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Analysis of thermodynamic properties of molybdenum and tungsten at high temperatures
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Using recent and accurate experimental information on various thermodynamic quantities up to the
melting temperature Tf of molybdenum and tungsten, we make a detailed study of some of their high-
temperature properties. In particular, we consider the entropy, reduced to a fixed crystal volume, and
interpret the result in terms of an electronic part and a temperature-dependent entropy Debye tempera-
ture. The analysis reveals large explicit anharmonic effects. When plotted versus the reduced tempera-
ture T/Tf, various quantities of Mo and W related to anharmonicity show a striking similarity. For in-
stance, the heat capacity Cz is the same for Mo and W, to better than 1%, for T/Tf )0.2. We also
make a detailed study of the temperature dependence of the Gruneisen parameter at constant pressure
and at constant volume.

I. INTRODUCTION

An accurate theoretical account of the high-
temperature heat capacity and related thermodynamic
properties of transition metals has largely been lacking.
Recently, it has even been questioned whether such an
account in terms of current theories for electrons and lat-
tice vibrations is at all adequate. The analysis is compli-
cated by the fact that simple analytic models, giving a
linear temperature dependence of the electronic heat
capacity and the low-order anharmonic effects, are
insuScient at high temperatures. Further, experimental
data near the temperatures of fusion Tf have been uncer-
tain, and sometimes convicting or lacking. However, the
situation in regard to the experiments has improved con-
siderably during the last decade. For instance, the width
of the experimental scatter band for C~ data of many
transition metals is less than about 9% close to T&, and
also data on the bulk modulus and the thermal expansion
are known accurately enough to allow for a meaningful
analysis. '

Theoretical models often refer to a fixed volume Vo
(e.g., the volume at 298 K), thus avoiding the complica-
tions due to the thermal expansion. Thermodynamic
properties may be considered at constant pressure or at
constant volume. As an example, the quantity
Cv=(t)U/BT)& is usually obtained by subtracting from
Cz a term that accounts for the expansion of the solid.
Then C& is referred to as the heat capacity at "constant"
volume. Actually, the standard Cz —C~ correction im-
plies that the (t)U/BT)v derivative is evaluated at the
volume V( T, PO) in equilibrium with the constant pres-
sure I'o at which the measurements were performed. In
this paper we shall be particularly interested in properties
at fixed volume Vo. Wallace has compared Cv and Cv
for 18 systems, mainly alkali halides and simple metals

below 400 K. This paper focuses on transition metals, up
to their melting temperature. We choose to consider
molybdenum and tungsten, since their extreme melting
temperatures (Tf =2896 K for Mo and 3695 K for W)
cause features we wish to study to be pronounced. The
shape of the electron density of states of the solid (bcc)
phase, with a deep and broad minimum around the Fermi
level, stabilizes the solid relative to the liquid and pushes
up the melting temperature. One may thus view bcc Mo
and W at high temperatures as "overheated" solids,
which make them favorable for a study of high-order
anharmonic eA'ects in the lattice vibrations.

In a previous paper we gave a qualitative account of
many exceptional thermodynamic properties of tungsten,
relying on the shape of the electron density of states.
Those results remain valid, but we shall here reconsider
W and extend the discussion to properties at fixed
volume, using more recent experimental data. The
analysis of molybdenum is presented in detail. That in-
cludes a critical evaluation of the heat capacity, the
enthalpy, and the pressure and temperature dependence
of the molar volume, from which we calculate the entro-
py S(T, Vo) at fixed volume Vo. The contribution to S
from conduction electrons is evaluated from the electron
band structure. The remainder in S, of vibrational origin,
gives information about the low- and higher-order anhar-
monic corrections. We shall also study in detail the tem-
perature dependence of the Gruneisen parameter and
comment on striking similarities between molybdenum
and tungsten when some of their properties are compared
at equal reduced temperatures T/T&.

II. MICROSCOPIC THERMODYNAMICS

A. Electronic entropy

The entropy of the conduction electrons may be writ-
ten, in terms of the Fermi-Dirac function f and the densi-
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ty of states N(E),

S„=—2k~ f t f(E)lnf(E)

as a function of temperature and pressure. Our evalua-
tion of G ( T, P) is based on integrating the identity

+[1—f (E)]in[1—f (E)]JN(E)dE . (1)
(BG/dP) = V(T, P)

which gives

(4)

When N(E) is constant within the energy range around
the Fermi level where the integral in (1) gets its essential
contributions, one obtains the usual linear dependence on
the temperature T, S,~

=yb T. For Mo and W this is not
a valid approximation, and S,&

has to be evaluated nu-
merically, taking N(E) from a band-structure calcula-
tion. At the temperatures of interest here, there is no
electron-phonon many-body correction for N(E) or yb.
However, the finite-electron lifetime due to the electron-
phonon interaction leads to a broadening of the electron
states, which should be accounted for in N(E). We
neglect this effect, which may lead to an underestimate of
our parameter Oz by 1 —2% at Tf.

B. Vibrational entropy

The entropy of harmonic lattice vibrations can be writ-
ten

Sh„=keg( [1 +n( q, s)]1 n[1 +n(q, s)]
q, s

G(T, P)=G(T, O)+ f V(T, P')dP' . (5)

The Gibbs energy function at zero pressure, G(T, O), can
be obtained from heat capacity, enthalpy, and entropy
data. V( T,P) is assumed to follow the Murnaghan equa-
tion of state,

V( T, P) = V(T 0)[1+nP/Br(T, O)] (6)

for pressures up to about 50 CxPa (cf. Sec. IV B). In Eq.
(6) Bz. is the isothermal bulk modulus, n is the pressure
derivative of Bz- and assumed to be independent of P and
T (cf. below), and V( T, O) is determined from data on the
thermal expansion versus the temperature. Equation (6)
leads to a closed-form expression. for the pressure contri-
bution to the Gibbs energy in Eq. (5). Once G(T, P) is
evaluated from experimental data, as will be discussed in
Sec. IV, one can obtain various properties of the solid by
using a computer program package for general thermo-
dynamic calculations. '

n(q—,s)ln[n (q, s) ] ] . (2) B. Volume dependence of the heat capacity

The sum goes over all phonon states (q, s) of wave vector
q and mode index s. The Bose-Einstein functions n de-
pend on the phonon frequencies co(q, s). One can show
that in an anharmonic system and to lowest order, the en-
tropy is correctly given by (2) if all co are replaced by the
shifted frequencies co+Az+63+A4. Here 62 refers to
the effect of thermal expansion and b 3 and b 4 are the
low-order shifts at fixed volume. All three shifts 6 vary
linearly with T.

It is convenient to represent the vibrational entropy of
a system by an entropy Debye temperature Os chosen
such that when Os is inserted in a standard Debye model,
it reproduces the experimental vibrational entropy. In a
real system, Os(T) is temperature dependent at low tem-
peratures ( T (Os) because the system does not have a
true Debye spectrum, and at high temperatures ( T )Os )

because of anharmonic effects. The low-order anharmon-
ic effects referred to above would affect Os linearly in T.
Further details on the interpretation of Oz are found in
an account of simple metals.

The high-temperature expansion of the entropy in the
Debye model reads (R is the gas constant)

SD =3R j —,'+ln(T/Os)+ —,', (Oq/T) +
Thus, when T)Os, an error AS is the entropy is
equivalent with a shift 60 in 0& given by
b,O/Ss = —bS/(3R ).

III. MACROSCOPIC THERMODYNAMICS

A. Gibbs energy of a solid

Our evaluation of G (T,O) in Eq. (5) uses as input infor-
mation the heat capacity Cp(T, PD) obtained in experi-
ments at constant (atmospheric) pressure PD. From that
we obtain the heat capacity Cz, corresponding to the
equilibrium volume V( T, PD) at P =Pa, through

C~=cp —a VBz-T .

Here a is the thermal-expansion coe%cient. The reduc-
tion of CV to fixed volume [e.g. , the equilibrium volume
VD= V(TQ, PD) where T0=298. 15 K and Pa=1 atm] in-
volves an integration of the thermodynamic relation

(aC, /a V), = T(a' P/B T),
which, combined with the identity

(dP/dT) ~=aBr,
leads to

(9)

(BCv/BV)z-=[(Cp —Cv)/V][(1/a )(Ba/BT)p

+(2/aB )(BB /BT)

+(aB,/aP ), ]

=[(Cp —C~)/V](e —25z. +n) . (10)

C. Thermodynamic Griineisen parameter

The last equality defines the dimensionless parameters n

[cf. Eq. (6)], the Anderson-Griineisen parameter" 5r re-
lated to the isothermal bulk modulus, and e.

All thermodynamic properties of a solid substance can
be obtained if one knows its molar Gibbs energy, G ( T,P),

The thermodynamic Gruneisen parameter yG is often
defined as
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Ci, (T,O)=Cp/T +Ci+C~T+CiT +CqT, (15)

In theoretical work, the most convenient variables are T
and V. Equation (11), combined with (9) and the
Maxwell relation

a(T, O) =ai+a2T+a3T
Kr(T, O) =ki+k2T+k3T

(16)

(17)

(BS/i) V)z. =(r)P/r)T) i, , (12)

yields

y (T, V)=(V/C )(BPIBT) =(V/C )(BS/BV) . (13)

Experiments usually refer to the variables T and Po. We
find it convenient to use the expression

ya(T, Pp)= 2 (T,Pp)/[1 —aA (T,Pp)T],

containing the dimensionless quantity
—:aVB~/CI, . Often, eAT &&1, cf. Sec. VB.

(14)

A (T,Pp)

IV. TREATMENT OF EXPERIMENTAI. INFORMATION

A. General considerations

Following previous work on transition metals' ' the
evaluation of the G(T, P) functions for Mo and W uses
polynomial representations for Cp( T, O), a( T, O), and the
isothermal compressibility Kr( T, O) = 1/Bz-( T, O);

The constants in Eqs (15)—(17) were determined by
searching for the best fit to experimental data. We used a
computer program' for the optimization of thermo-
dynamic model parameters, which can treat simultane-
ously various types of experimental data. The program
minimizes the square sum of the diA'erences between ex-
perimental and calculated values, while giving each piece
of information a certain weight. The weights are selected
by personal judgment, and changed by trial and error
during the work, until the input data are accounted for
within the expected uncertainty limits.

The n parameter in Eq. (6) was not determined by op-
timization but taken from ultrasonic measurements of the
pressure dependence of the bulk modulus at room tem-
perature. Those measurements give information on
(dB& ldP)r where Bs is the isentropic bulk modulus. A
derivation of the thermodynamic relation between
(BBz./dP)z- and (dBsIBP)z. has been reported by Over-
ton. ' Using the dimensionless parameters introduced in
Sec. III B we express that relation as

(BB /BP) —(BB /BT) =[(C —C )/C ][[(C —C )/C ][@+1—(BB /BP) ]
—[e—2$ +(BB /BP) ]j . (18)

Using experimental information' on (dBs/r)P)r at room
temperature and zero pressure, i.e. (dBs/r)P) r p and the

values for E(T Op) and 5z.(Tp, O) obtained in the present
work (Sec. V) we find that the difference between n and
(Ms/dP)r p is very small, viz. 0.5% of (BB&IBP)z. p for

Mo and 0.4% for W, which is probably smaller than the
experimental error in the measurement of (dBsldP)y' p.

Therefore we determined the parameter n in Eq. (6) from
ultrasonic data at room temperature, using the approxi-
mation n = (dBs/dP) z- p. The effects of temperature

upon the n parameter are further discussed in Sec. V A.

B. Molybdenum

A critical evaluation of the thermodynamic properties
of Mo has been given by Fernandez Guillermet. ' The
results for Cp(T, O) were directly used here, and the
reader is referred to a detailed description' of the infor-
mation used in evaluating the coefficients C, in Eq. (15).
A description of V(T, O) has also been given earlier, '

based on combining experimental information from x-ray
and dilatometric measurements, ' expressed as molar
volumes. Here we reanalyzed V(T, O), by adding to the
data files values of the experimental linear thermal expan-
sion b, l /lp = [1( T)—I ( Tp ) ] /l ( Tp ) recommended by
Touloukian et al. , Amatuni et al. , and recent results
by Miiller and Cezairliyan and Chekhovskoi et al.
We also compared our calculated Al/lo with measure-

ments by Suh, Ohta, and Waseda. Bz-(T,O) was evalu-
ated from measurements of the elastic constants by Bu-
jard et al. for temperatures up to 0.82Tf. The bulk
modulus at higher temperatures was obtained by a
smooth extrapolation of their data in a Bz vs T/Tf plot.
The pressure dependence of the bulk modulus was de-
scribed by the room-temperature value n =4.46 based on
ultrasonic data by Katahara, ' see above. Using that
value and Bz we calculated V(T, Pp) for pressures up to
50 GPa using the Murnaghan model, and found very
good agreement with the static compression data of
Bridgman and Vaidya and Kennedy using piston-
cylinder techniques, by Ming and Manghnani ' using a
high-pressure x-ray cell, and with the
V( Tp, P)/V ( Tp, Pp ) ratios recommended by Kennedy
and Keeler and Mao et al. An analysis of Hugoniot
data from shock-wave experiments referred to in Sec. V A
also indicates that the Murnaghan equation of state ac-
counts reasonably well for the P-V relation of Mo for
pressures up to about 50 GPa.

C. Tungsten

The parameters C, in Cp(T, O) of tungsten were taken
from an analysis by Gustafson, who used heat-
capacity, ' enthalpy, ' and room-temperature entro-
py data. His description of Cz agrees well with the
values recently recommended by the CODATA (Com-
mittee on Data for Science and Technology) group; see
a comparison in Fig. 2 of Ref. 3. The parameters describ-
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ing V(T, O) [Eq. (6)] were evaluated in the present work
by treating simultaneously molar-volume data from
high-temperature x-ray measurements and values of20

b, l/lo recommended by the CODATA group and deter-
mined by Miiller and Cezairliyan using a subsecond
technique. We also compared our calculated b, l /lo
values with those previously reported by Kirby, "'
Pethukov and Chekhovskoi, ' those recommended by
Touloukian et al. (Ref. 23, p. 354), and recent measure-
ments by Suh, Ohta, and Waseda. The isothermal bulk
modulus Br(T,O) was evaluated from the measured elas-
tic constants of W at room temperature ' and at tem-
peratures up to 2073 K, as tabulated by Simmons and
Wang. Values for B& at high temperatures were es-
timated by us through a smooth extrapolation in a Bz vs
T/Tf plot. The pressure dependence of the bulk
modulus was described by the room-temperature value
n =4.32, based on ultrasonic data by Katahara. ' It
yields V ( To, P) in agreement with the static-compression
data obtained by Ming and Manghnani ' for pressures up
to about 10 GPa.

V. RESULTS

In this section, we shall examine quantities like e, 6z.,
and y6, which play a key role in the reduction of mea-
sured data to the condition of a fixed volume, and in an
account of the thermodynamic behavior of solids. We
shall also compare the eff'ect of temperature on various
thermodynamic properties of Mo and W, and investigate
the consequences of adopting T/Tf as a variable in treat-
ing high-temperature data.

A. Volume e6'ects on Cv and S

The volume eff'ect on Cv was expressed by Eq. (10) in
terms of the dimensionless parameters n, 6z, and e. Wal-
lace examined thermodynamic data on various sub-
stances, mainly simple metals and alkali halides, and not-
ed that there is often a strong cancellation between the
terms in e —26&-+n. The sign of this sum may even
change with temperature, for a given solid. We study
this issue for Mo and W, using the thermodynamic
description of the preceding section. Calculated values of
e and —26&-, as a function of T/Tf at P =0, are given in

Table I, together with the diff'erences AC~ and AS be-
tween the values corresponding to the equilibrium
volume at zero pressure V(T, O) and to fixed volume
V( To, 0). b Ci, was calculated (a) from Eq. (10) by
neglecting the volume dependence of the right-hand side,
i.e., as

b Ci, = (b, V/V)(Cp —Ci )(e—25z. +n)

and, (b), from the full G(T, P) function evaluated before.
There is a strong cancellation between e and —26&- for
Mo and W, at high temperatures. The diff'erence AC~ is
an appreciable fraction of Cz —Cz as derived from Eq.
(7), viz. 8% at T/Tf =0.3 and as much as 40&o when
T = T . Neglecting the volume dependence of the right-f'
hand side in Eq. (10) leads to an underestimate of the
correction to fixed volume, and the error increases with
T.

The calculations in Table I were based on the assump-
tion that the Murnaghan parameter n does not vary with
T, an approximation necessitated by the lack of direct
measurements of (BB&/dP)r at high temperatures. In
connection with our analysis of the vibrational entropy at
fixed volume it is important to know how large would be
the eff'ect of a change in n. We study that by performing
a series of calculations at T = Tf where the Murnaghan
parameter is given values between n

' =0.3n and
n ' = 1.7n, and n is the experimental value at To Po ~ The
eftect of those variations in n upon the heat capacity at
fixed volume Vo, Ci, (b,Ci, ), and S (AS) is shown in

0 0

Table II. The eff'ect upon Cz at the melting point would
0

be comparable to the diff'erence AC&= Cp —C~, shown in
Table I, only if the Murnaghan parameter at T = Tf has
changed by +70% of its room-temperature value. It is
therefore important to know whether such a large in-
crease is reasonable for the elements Mo and W. This
problem was studied for Mo by performing a thermo-
dynamic analysis of shock-wave data, using a method
previously applied' to Zr. The analysis of bcc Mo will
be reported elsewhere. It treated information on the
pressure, the volume, and the internal energy of samples
studied in the shock-wave experiments by McQueen
et ar. starting from 293 K and by Miller, Ahrens, and
Stolper starting from 1673 K. The thermodynamic

TABLE I. Comparison of calculated thermodynamic quantities corresponding to the equilibrium volume at zero pressure V( T, O)
and to fixed volume V(TO, O).

Element T/Tf
ACv ACv AS ~S/3R Cp Cv

n e —26&+ n J/K mol J/K mol J/K mol (%%uo) J/K mol
Cv/(C~ —Cv)

('Fo) from a (%) from b

Mo 0.3
0.5
0.8
1.0

0.3
0.5
0.8
1.0

21.274 —13.178 4.46
16.872 —13.018 4.46
11.438 —11.278 4.46
8.812 —9.826 4.46

14.589 —11.906 4.32
14.570 —11.689 4.32
11.381 —9.905 4.32
9.027 —8.466 4.32

12.556
8.314
4.620
3.446

7.003
7.201
5.796
4.881

0.075
0.272
0.850
1.560

0.059
0.284
1.219
2.58

0.073
0.272
0.967
2.022

0.057
0.288
1.387
3.205

0.377
0.982
2.485
4.056

0.488
1.132
2.764
4.586

1.5
3.9

10.0
16.3

2.0
4.5

1 1.1

18.4

0.649
1.579
4.263
7.298

0.734
1.665
4.483
7.939

11.6
17.2
19.9
21.4

8.0
17.1

27.2
32.5

1 1.2
17.2
22.7
27.7

7.8
17.3
30.9
40.4

'First-order approximation, Eq. (19).
From the full G ( T, P) expression, evaluated in Sec. IV.
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TABLE II. Effect of changes in the Murnaghan parameter n

on Cv and Sat T=Tf V Vp.

Element n'/n
bC~

0

J/K mol J/K mol

AS/3R

(%)

Mo 0.3
0.5
0.8
1.0
1.2
1.5
1.7
0.3
0.5
0.8
1.0
1.2
1.5
1.7

1.664
1.222
0.627
0

—0.540
—1.409
—2.031

1.988
1.460
0.610
0

—0.647
—1.690
—2.439

0.415
0.302
0.261
0

—0.130
—0.334
—0.477

0.486
0.354
0.146
0

—0.152
—0.393
—0.562

1.7
1.2
1.0
0

—0.5
—1.3
—1.9

1.9
1.4
0.6
0

—0.6
—1.6
—2.3

description of the present paper was used, but the param-
eter n in Eq. (6) was allowed to vary linearly with temper-
ature. From a consideration of the data on the low-
pressure range (P & 50 Gpa) an average increase in n

with temperature, An /6 T =7.3 X 10 K ', was ob-
tained. That implies an increase in n by hn =0.19 be-
tween 298.15 K and Tf, which corresponds to n'=1. 04n
and leads to an efFect upon AS/(3R) (Table II) smaller
than 0.5%. Since b, O&/Oz= —hS/(3R) (Sec. II 8) we
conclude that the approximation of a constant n probably
aff'ects our Oz (Sec. VI) at Tf by less than 1%.

The calculations in Tables I and II were directed at
studying the behavior of the various thermodynamic
quantities involved in the correction to 6xed volume.
The CI, values finally obtained from Cp(T, Pp) of Mo

0
and W are plotted in Figs. 1(a) and 1(b), respectively. We
also give values for the vibrational part, C„b, obtained by
subtracting from CI the electronic heat capacity (Sec.

0

II A).

with T/Tf, whereas A ( T,Pp) =a VBz/CI, decreases
with T at high temperatures, due to the rapid increase in
Cp, cf. Figs. 1(a) and 1(b). When plotted versus T/Tf,
the functions yG(T, Pp) and A (T,Pp) in Mo and W are
almost equal for T/Tf )0.55, and there is no significant
difference in the quantity 1 —+AT of Mo and W for
T/Tf & 0. 1. Using Eq. (7) we can write
1 aA—T =Cv/Cp. Then, from Fig. 2, both Mo and W
can be described by the relation

Cv /Cp 1 0. 144T/Tf (20)

I I I I I I I I I I

2.0—

1.8—

cr 1.6—

u 14

1.0-

0 8 I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0

for 0. 1& T/Tf &1. A further discussion of similarities
between Mo and W is given in Sec. V C.

The Griineisen parameter yG(T, Vp) at fixed volume
Vp: V ( Tp Pp ) is, by Eq. ( 1 3), the product of the two
quantities V/CI, and (dP/BT) V. In Figs. 3(a) and 3(b) we
plot, for Mo and W, these two factors (referring to
Tp Pp) and the resulting yG ( T, Vp ), as a function of
T/Tf. The thermal pressure (dP/dT)I, increases with

0

T/Tf, while the variation in CI, makes V/CI, decrease.
The two competing efFects cause yG(T, Vp) to be con-
stant, within +10%, for 0. 1 & T/Tf & 1.

B. Temperature eÃects on the Griineisen parameter

The properties of the Gruneisen parameter are of in-
terest in the analysis and extrapolation of termophysical'
and equation-of-state data for solids, and in the treat-
ment of anharmonic shifts in the phonon frequencies.
Analyses of experimental data in terms of Eq. (11), with
Cv corresponding to V(T, Pp), often show a weak varia-
tion of yG(T, Pp) with T, and it has been suggested' that
such a regular behavior can be used to detect errors in Cz
or n. Since our treatment of experimental data for Mo
and W does not involve explicit assumptions or approxi-
mations about the Gruneisen parameter, it allows us to
study the variation of yG(T, Pp) in a large temperature
range. In Figs. 2(a) and 2(b) we give yG(T, Pp) as a func-
tion of T/Tf, for Mo and W. Within the temperature
range 0. 1& T/Tf &1 yG(T Pp) deviates from its mean
value by less than 10%%uo, with a decrease above
T/Tf =0.65. We can gain insight on its behavior from
expression (14). Its denominator, 1 —a AT, varies linearly

2.2 I I I I I I I I I I

2.0—

1.8—

cx 1.6—

1.4—

1.2—

1.0—

0 8 I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0

FIG. 1. The total heat capacity at constant pressure, Cp, the
heat capacity at fixed volume, Cv, and the vibrational heat

0

capacity at fixed volume, Cv (vib), as a function of the reduced
0

temperature T/Tf for (a) Mo and (b) W.
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Bg (T Pp) and BT (T Pp)/BT (T Pp), as a function of T/Tf.

cannot be ruled out that the bulk modulus ratios remain
essentially constant also for T/Tf )0.56.

Figure 5 gives ratios for three quantities of the dimen-
sion of a force constant (force per length). Two of them,
Bz V' and BTV', are obtained from the properties
shown in Fig. 4. The ratio kz '/k& in Fig. 5 is between
average interatomic force constants k& which are derived
from the vibrational entropy through the relation
kz=M(ks8z/fi), where M is the atomic mass and 8z
is the entropy Debye temperature to be discussed in Sec.
VI. We have previously ' found an interesting constancy
among 4d and Sd transition metals in the same group in
Th Periodic Table, kz"/kz"=0. 76+0.01 at room tem-
perature. Figure 5 shows that for Mo-W this ratio does
not vary much for Mo-W up to T = Tf.

Figure 6 gives ratios for two properties involving
anharmonic effects at high temperatures, the thermal-
expansion coefficient a and the heat capacity at constant
pressure Cz. The ratio of thermal-expansion coefficients
remains essentially constant above T/Tf =0.5. For the
heat-capacity ratio, CP'/C~ =1.00+0.01, i.e., a most
remarkable constancy.
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FIG. 6. The thermal expansivity ratio a '/a and the heat-
capacity ratio Cp '/Cp, as a function of T/Tf.

VI. DISCUSSION OF ANHARMONIC
LATTICE VIBRATIONS

We obtain the vibrational entropy S ( T, PO ) from the
total entropy by subtracting an electronic entropy (Sec.
IIA), and then find 8z(T, PO). Our 8s(T, Vo) refers to
the vibrational entropy reduced to fixed volume Vo. We
have not allowed the electronic entropy to S(T,PO) to
vary with the thermal expansion of the solid. This ap-
proximation, which is unimportant for our conclusions,
may give 8z( Tf, PO) which are too high by 1 —2%%uo. Fig-
ures 7(a) and 7(b) show 8z(T, Po) and 8&(T, Vo) for Mo
and W. We shall now discuss anharmonic effects, with
the main emphasis on how they are revealed in the tem-
perature dependence of Oz at fixed volume.

At intermediate temperatures there is an approximate-
ly linear decrease in 0& followed by a much more rapid
decrease at high temperatures which is not well described
merely by a T term. The linear variation in Oz is simply
related to the shifts in the phonon frequencies (cf. Sec.
IIB). Its magnitude and sign may vary with the solid.
Some metals [Au (Refs. 7 and 53)] have an increasing 8+
with increasing T, while others [Al (Ref. 54)] show such a
weak temperature dependence that it has sometimes been
taken as evidence that anharmonic effects in the heat
capacity at fixed volume are almost negligible, and that
the Dulong-Petit limit of 3R should generally be a very
good approximation at high temperatures. The behavior
of 8z( T) seen here for Mo and W is the most common
for solids, but the rapid decrease at high temperatures is
more pronounced than observed for simple metals. We
interpret that as being due to the suppression of melting
(Sec. I) which allows higher-order anharmonic eff'ects to
be strongly developed. It may be tempting to view the
rapid decrease in 0& at high temperature as an incipient
dynamical instability of the type discussed by Stroud and
Ashcroft or as related to an "entropy catastrophe"
that may occur well above the actual melting tempera-
ture. We shall refrain from such speculations, and note
that there seem to be metals [Pb (Ref. 54)] where
Oz(T, Vo) would bend upwards at high T. We also re-
mark that close to Tf the nonlinear shifts in Oz may not
be given a simple interpretation in terms of shifted pho-
non frequencies, but we still find 8z( T) a very convenient
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for bcc Zr, Nb, and Mo, have concentrated on a few
high-symmetry modes which behave anomalously. To
extend the calculations to get the full phonon spectrum,
as a function of temperature, is so demanding on the
computing facilities that it is not yet feasible. In this con-
text, we should also note that the phonon spectrum of
Mo has been measured by neutron scattering, at 295 and
1203 K. Most phonon modes soften with increasing
temperature, but some zone-boundary modes stiffen. The
variation between the modes is too large to allow for a
comparison with our Os(T).

Finally we comment on the contribution of vacancies
to the thermodynamic quantities. It is sometimes as-
sumed that the nonlinear increase in Cp with temperature
is due to the formation of vacancies. The data we use
show a small increase in the molar volume above
T/Tf =0.9, which we interpret as due to vacancies with
a concentration less than about 0.4% at Tf. The polyno-
mial used here to fit to Cp does not pick up the rapid (ex-
ponential) increase just below Tf, and therefore effects of
vacancies are not present, e.g. , in Os(T). Moreover, the
vacancy concentration is much lowered under the condi-
tion of fixed volume. It should be remarked that some-
times a second-degree polynomial can be accurately fitted
to a linear plus an exponential term, and anharmonic
effects can be mistaken for vacancy effects. '

200 I I I I I I I

VII. CONCLUSIONS
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FIG. 7. The entropy Debye temperature at constant pres-
sure, O&(T,P0), and at fixed volume, Oz(T, Vo), as a function of
T/Tf for (a) Mo and (b) W.

parameter to use in a discussion of the thermodynamic
properties of solids at high temperatures.

There are several theoretical approaches which, in
principle, should be able to account for the results of this
paper. For instance, Gong, Horton, and Cowley per-
formed Monte Carlo calculations to get the thermo-
dynamic properties of NaC1 up to its melting tempera-
ture. Shukla, Cowley, and Wilk have considered high-
order anharmonic terms in the Helmholtz energy of a vi-
brating lattice. However, these methods do not at
present seem to be capable of giving quantitatively
relevant results for solids with interactions as complicat-
ed as in the transition metals Mo and W. Another ap-
proach is that of "frozen phonons, " in which one makes
an ab initio calculation of the total energy of the lattice,
modulated by a phonon mode. Most calculations, e.g. ,

The recent availability of accurate thermodynamic in-
formation for Mo and W up to their melting tempera-
tures has allowed us to make a detailed study of thermo-
dynamic quantities such as the entropy at fixed volume
and the Gruneisen parameter. The factors entering a
reduction of thermodynamic properties at constant pres-
sure to the condition of fixed volume are discussed in de-
tail. When various quantities related directly or indirect-
ly to anharmonic effects are plotted versus the reduced
temperature T/Tf, there are striking similarities between
molybdenum and tungsten. There are large anharmonic
effects also at fixed volume, and their temperature depen-
dence at high temperatures, cannot be accounted for by
low-order perturbation theory.
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