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Direct measurement of spin diffusion from spin relaxation times in solid He
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%'e show that the spin-di6'usion coefficient in solid He may be obtained unambiguously from mea-
surements of spin relaxation at low magnetic fields. For long times, the dipolar autocorrelation function
decays as t . This follows purely as a consequence of the hydrodynamics of the system. From this we

show that the low-frequency form of the dipolar spectral density function is J(co)=J(0)—3co', where
the constant A depends on the diffusion coefficient and is independent of the microscopic details of the
system. Values of the spin-diffusion coeKcient thus obtained are in good agreement with those obtained

by conventional means. Moreover this method permits extension to higher densities and lower diffusion
coefficients.

I. INTRODUCTION II. EXCHANGE AND DIFFUSION

Solid He is a unique model system. The nuclei, with
spin- —,', have pure dipole magnetic moments, while the
small mass of the atoms together with their Fermi statis-
tics results in significant quantum exchange. From the
NMR point of view this represents the simplest (line
broadening) interaction, while the exchange, which con-
ventionally is modeled by a spin Hamiltonian, is a
"motion" that modulates this interaction.

In the temperature range around 1 K the observed
spin-relaxation times are independent of temperature. '
At higher temperatures the motion of thermally activated
vacancies becomes important, while at much lower tem-
peratures the exchange excitations lose thermal contact
with the surrounding lattice. Within this intermediate-
temperature range the spin assembly may be described by
a Hamiltonian consisting of three parts: the Zeeman
term which gives the energy of interaction between the
magnetic dipoles and the externally applied magnetic
field, the internuclear dipolar coupling, and the exchange
spin Hamiltonian. Thus one has a fully specified
quantum-mechanical system which may be treated by the
established methods of many-body quantum mechanics.

The special property of this system from the theoreti-
cal point of view is that it is much simpler than the usual
many-body system since the quantities of interest are the
bounded spin variables rather than the unbounded spatial
coordinates. Nevertheless there remains sufhcient com-
plexity for the system to behave in a truly irreversible
way, and following a disturbance, to return to a state of
thermal equilibrium. From the experimental standpoint
measurements of relevant quantities, such as magnetiza-
tion, may be made quite directly and unequivocally so
that the connection between theory and experiment is
unusually direct. It is for these reasons that solid He is
such a unique system.

A. Exchange

The purpose of many spin relaxation experiments is to
study the motion of the spin-carrying atoms. And in the
case of solid He this means trying to understand the na-
ture of the exchange Hamiltonian. Although it was pro-
posed quite early on that the exchange process could be
rather complex, experimental measurements were often
analyzed on the basis of a Heisenberg pairwise exchange
of nearest neighbors. It was only with the observation of
the low-temperature ordered phases of He (Ref. 6) that it
was finally accepted that pairwise Heisenberg exchange
was an insufficient description for the system. The possi-
bility of zero-point vacancies has been variously pro-
posed and although these (together with pairwise ex-
change) cannot account for all the details of the ordered
phases, their existence is still an open question.

Within the framework of the pairwise exchange model
there is a single parameter to be determined: the ex-
change frequency, denoted by J. From experiments one
would hope to obtain values for the exchange frequency
to see how it varies with density, conventionally ex-
pressed as molar volume. It is not the purpose of this pa-
per to discuss exchange in detail and its determination
from relaxation-time measurements. SufFice it to say that
existing treatments give only the exchange frequency to
within a multiplicative constant of the order of unity, be-
ing based on various, albeit plausible, approximations.
Thus the density dependence is known well but the abso-
lute magnitudes are often scaled so as to agree with deter-
minations from thermal capacity or other measure-
ments.

A more realistic description of the exchange process
involves the consideration of interchange cycles involving
diA'erent numbers of spins. There are a larger number of
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parameters to be determined, for which conventional
NMR relaxation-time measurements are not adequate.
All one can obtain is some weighted mean of the
strengths of the various exchange processes.

B. Spin di6'usion

exp( yG D t /12—), (2.1)

where y is the magnetogyric ratio of the spins, G is the
magnitude of the magnetic-field gradient and D is the
diffusion coefficient. For an explanation of the above re-
sult treated in the context of this discussion see Refs. 12
and 18. In determining the diffusion coefficient we see
that it is only necessary to know the magnitude of the
field gradient G.

C. Field gradient

Since the accuracy and reliability of diffusion measure-
ments made by this method relies on a good knowledge of
the field gradient, we digress slightly to consider this fur-
ther.

If a uniform magnetic-field gradient is applied perpen-
dicular to the axis of a cylindrical specimen (a common
geometry; others can be treated similarly) then the en-
velope of the free-induction decay may be shown to be
proportional to

The purpose of this paper is to consider one of the hy-
drodynamic consequences of exchange: spin diffusion.
In particular we shall be concerned with the connection
between spin diffusion and spin relaxation. Regardless of
the precise microscopic details of the exchange Hamil-
tonian, on the long-time scale it will lead to the
phenomenon of spin diffusion. That is, a spin inhomo-
geneity of wave vector Q will relax exponentially with a
time constant DQ in the limit of small Q. Here D is
identified as the spin-diffusion coefficient. The relation
between D and the exchange parameter(s) has been evalu-
ated for a number of cases' ' and, very generally, it
takes the form D =const XJa . J is a frequency charac-
terizing the exchange and a is the interparticle spacing.
The dimensionless constant depends on the lattice struc-
ture.

The NMR technique of spin echoes' is conventionally
utilized for the measurement of self-diffusion, with special
variants' when the diffusion coefficient is very large or
very small. Central to the method is the application of a
magnetic-field gradient over the specimen, by which
means positional information is encoded as phase varia-
tions. Using such methods Reich and Garwin' ' and
Thompson, Hunt, and Meyer' have measured the spin-
diffusion coefficient in solid He over a range of densities
corresponding to molar volumes between 21 and 25 cm .
We emphasize that these measurements, performed in
this way, are purely hydrodynamic in nature. That is, the
values of the diffusion coefficients so obtained do not de-
pend on any assumptions about microscopic details of the
atomic motion such as jump length or hard-core dimen-
sion. Typically, in such an experiment, the spin-echo
height varies with time t as

J, (aGyt)
aGyt

where J, (x) is the first-order Bessel function and a is the
radius of the cylinder. This result provides a method for
finding the field gradient from the free-induction decay:
essentially by imaging the field distribution. Either one
may fit to the above function or simply locate the zeros.

The validity of the above result is based on a number of
assumptions, some questionable in a realistic situation.
In particular it requires the following:

(1) A truly cylindrical chamber with fat ends and non-
rounded corners.

(2) The field gradient precisely perpendicular to the
cylinder axis.

(3) Elimination of baseline errors; this is particularly
important in determination of zeros in a demodulated
free-induction decay.

(4) The field gradient over the specimen should be uni-
form.

(S) Hoinogeneous sensitivity of the NMR receiver coil.

The first three items have been discussed adequately in
the literature. '

Item (4) concerning uniformity of the field gradient is
likely to be problemmatic only in confined spaces where
the gradient coil is close to the specimen. There are two
aspects to this problem. So long as the gradient variation
does not change too wildly the spin-echo relaxation will
still follow the familiar cubic decay. But now, in the de-
cay function equation (2.1), the square of the gradient is
simply replaced by its mean-square value. The effect is
not so simple, however, on the free-induction-decay
shape. This would have to be calculated numerically
from a knowledge of the field profile of the gradient. The
problem introduced then is not in the actual measure-
ments but in the calibration process.

We now turn to item (5), the homogeneous sensitivity
of the receiver coil. Here we require that a precessing
spin in any part of the specimen chamber will induce the
same voltage in the coil. While this is true for an
infinitely long solenoid, it becomes decreasingly so for
shorter coils, particularly when they are wound closely
around the specimen. In a realistic calculation of the
free-induction signal it is necessary to take this position-
dependent sensitivity into account. By symmetry, con-
tours of constant sensitivity will be on-axis circles. And
such a circle of spins, of radius a, will produce a magneti-
zation proportional to

J2(aGy t)—2
'

where J2(x) is the second-order Bessel function. This ex-
pression must now be integrated over a sensitivity func-
tion for the coil. Fortunately this function may be found
in a relatively straightforward, if cumbersome way by ap-
plication of the reciprocity theorem. ' Numerical integra-
tion would then follow. The disadvantage is that now the
dimensions of the receiver coil enter into the discussion,
and the result can no longer be expressed in analytic
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form.
The result of the above discussion is to demonstrate

that although the conventional spin-echo method for
studying diffusion does give a purely hydrodynamic mea-
surement, nevertheless the precise values for D rely on an
accurate determination of the applied magnetic-field gra-
dient, which is not necessarily a trivial problem.

III. SPIN RELAXATION

As discussed in Sec. II A, measurements of spin-
relaxation times are performed in solid He, primarily, to
gain an understanding of the exchange interaction and its
strength. Analysis of experimental data in this way re-
quires a knowledge of the internuclear dipolar autocorre-
lation function or, equivalently, its Fourier transform, the
dipolar spectral density function. Unfortunately, such a
many-body function usually may not be calculated accu-
rately so that approximate forms are often used. Thus
for the bcc phase of solid He it is conventionally taken
that the spectral density function has an approximately
exponential form.

The approach of this paper is different. We shall be
concerned directly with the effects of spin diffusion on the
relaxation. Thus it is the hydrodynamics that are of con-
cern, and using this approach one can obtain results re-
quiring no approximation procedures or assumptions.
One conclusion will be the extraction of spin-diffusion
coefficients from relaxation-time data. This will be
shown to be a purely hydrodynamic measurement, de-
pending on no microscopic details of the atomic behavior
and with no adjustable parameters.

A. Bipolar autocorrelation function

Information about the relaxation processes is con-
tained in the dipolar autocorrelation functions. These
may be written in the form

(3.1)

where we use the conventional notation. " The sum is
over the particles in the system and 0 is the orientation
of the line joining the ith and the jth particle with respect
to the static magnetic field. In a true Hamiltonian ap-
proach to the problem the vectors r=(r, O)=(r, 8, 4)
have a time variation induced by a motion Hamiltonian:
the full many-body problem. One way of circumventing
this difficulty is to replace the summation over particles
by an integral over space with an appropriate distribution
function:

g ~a f drp f dr P(r, l p t)g (lp)

Here P(r, rp, t) is the probability that a pair of particles,
initially of separation ro will, after a time t, be separated
by r. And ag (rp) gives the probability that at time t =0
a pair of particles will be found with that initial separa-
tion rp, g(r) is the radial distribution function and a is
the spin density.

For diff'usive motion P(r, rp, t) may be found by solu-

tion of a diffusion equation (with the appropriate bound-
ary conditions). There have been a number of ap-
proaches to the phenomenon of spin relaxation along
these lines.

B. Di6'erent approaches

Torrey considered various jump models for atomic
motion and he also treated the hydrodynamic limiting
case of diffusion. In arriving at his results, however, he
made a number of approximations. He assumed a uni-
form spin distribution and regarded the atoms as hard
spheres. Thus he approximated g (r) by a step function:

0, r&a
g( )='l „) (3.3)

The boundary conditions on the relative diffusion were
taken into account only at the initial and the final
configuration, not during the motion; he simply excluded
the volume

~

r
~
(a from the integrals over rp and r. Hub-

bard " showed that Torrey's continuum-model result
could be integrated analytically to give the dipolar spec-
tral density in closed form. This is frequently referred to
in the literature as "model A."

Both Hwang and Freed and Ayant et al. treated
the boundary condition on the colliding particles in a
more realistic way. Their calculations, also, gave the
spectral density functions in analytic form. The main
qualitative difference was in the asymptotic high-
frequency behavior. Torrey's model led to a m law
whereas with correct (hard-sphere) boundary conditions,
referred to as "model 8," the high-frequency decay be-
came co . We note incidentally that neither asymptotic
form is physically correct, since the diffusion description
of particle motion is not appropriate in this limit; the mi-
croscopic details of the motion are paramount here. In
particular the principle of microscopic reversibility must
be respected. As discussed in another context, the
high-frequency spectral density must decay exponentially
or faster. Asymptotic behavior as above may seem to ap-
pear in some systems as a result of widely separated time
scales, but clearly at much higher frequencies this must
break down.

The dipolar interaction falls off quite rapidly with sepa-
ration, decreasing as r . Thus an important effect
comes from near neighbors. Now the radial distribution
function peaks significantly above its mean, large-
distance, value at the next-neighbor position. This means
that there are on average more near neighbors than the
uniform distribution would imply. And this will there-
fore have an inhuence on the observed relaxation behav-
ior. The effect of this was considered by Harmon and
Muller, although clearly no analytic solution was possi-
ble.

Unfortunately there is a further problem with the pro-
babilistic approach. At time t the probability of finding a
particle at position r is given by

a f 4 rpP(r, rp, t)g (lp) .

Accepting that g(rp) is the radial distribution function,
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C. Long-time behavior of G(t): Qualitative treatment

In all that follows we shall adopt the probabilistic
description, common to all four models discussed in the
previous section. Thus taking the expression for the di-
polar autocorrelation function, Eq. (3.1), we rewrite this
as an integral according to the recipe of Eq. (3.2), which
gives

3~aa2y4 Y~™(Qo)Y~ (0)
G (t) = P(r, ro, t)

5 r0r

Xg(ro) drodr . (3.4)

The time dependence of this expression is contained in
the propagator P(r, r&&, t). And if we are interested in the
long-time behavior of G(t), then we must examine how
the propagator behaves for long times. Now for large t,
P(r, ro, t) behaves in a diffusive manner. That is, it tends
to the diffusion propagator

Pd(r, ro, t)=(S~Dt) exp( —~r ro~ ISDt) . —

Fortunately the exponential is a function of inverse
powers of time. So the long-time behavior is given by the
small argument expansion of the exponential function.
And in particular the limiting long-time form is

P~(r ~ )~(8~Dr)

We conclude that for any motion which becomes
diffusive at long times, in this limit the propagator has a

we know that this distribution should remain constant in
time; the integral should evaluate to ag(r), the same
function. Unfortunately if P(r, ro, t) follows from a
diffusion equation then the final distribution in the above
integral tends to a uniform density at long times. Huang
and Freed take P(r, ro, t) as a solution of the Smolu-
chowski equation, which includes an effective pair in-
teraction of the particles U(r), related to g (r) by

g(r)=exp[ —U(r)lkT] .

This ensures that the density distribution remains as g (r).

t behavior as in the above expression. Substituting
this into Eq. (3.4) we obtain the long-time behavior of
G(t). We note that this result is independent of the pre-
cise nature of the particle motion. In this limit the only
quantity relevant to the motion is the diffusion coefIicient
D.

3m.aR y 1 Y2™(Qo)Y~ (II)
G (t~ oo )~

(8~Dr) 3/2 r0r3 3

Xg(ro)drodr .

(3.5)

An important point to observe about this expression is
that the autocorrelation function varies as t at long
times; it does not decay exponentially as most semiquanti-
tative treatments argue. We now examine this in more
detail.

D. Long-time behavior of G(t): Quantitative treatment

The next few steps follow closely those described by
Torrey. The complex exponentials are expanded as

1 /2
7Texp(ik r) =4~

2kr y jIY +(II)Ym(II')
m, l

XJ/+, /2(kr),

where 0' is the orientation of the vector k and J is a
Bessel function. These expansions are substituted into
Eq. (3.6), which is substituted into Eq. (3.4) for G(t).
Then exploiting the orthogonality properties of the
spherical harmonics we Anally obtain the expression

We turn to an explicit calculation of the behavior of
the dipolar autocorrelation function. The diffusion prop-
agator P (r, rot) is first expressed as a Fourier integral:

P(r, ro, t)= f exp( —2k Dt)exp[ik (r —ro)]dk .1

(2'�)
(3-6)

r

3~ah'y' ~, m J5)2(k ) ~,~z(«)
G (t) = f k exp( 2k Dt) f — dr f g (r)dr .dk . (3.7)

The two integrals in the curly brackets are similar, except that the second contains the radial distribution function.
Note also that there is no longer a dependence on the "spin-fIip" index m, a consequence of the rotational invariance of
the diffusive propagator.

In order to investigate the time dependence of G (t) we change variables in the k integral, substituting

x =&2Drk .

Thrs gcves

3 vrafi2y 2 ~5]2(xr I+2Dt )G(t)= — x exp( —x ) '
5 2Dt 0 0 3/2

Jgy2(xrl&2Dt )
dr

3q2 g (r)dr dx,
0 3/2 (3.8)
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and taking note of the t ' prefactor, we now focus atten-
tion on the Bessel function integrals.

Our intention is to demonstrate that the long-time be-
havior of 6 (t) is determined solely by difFusion and that
it is independent of any microscopic details. To this end
we introduce a length d such that for distances r greater
than d, the diffusion description of the motion is valid.
The Bessel function integrals can then be expressed as a
sum of two parts. For r &d details of the motion and
configuration may be important while for r )d only
diffusion need be considered. By the same token, for
r )d the radial distribution function in the second in-
tegral may be neglected.

Making the further substitution

X

&2Dt

the first Bessel integral is the sum of "internal" and
"external" parts:

x i. d/v 222& Js/2()/)

( 2Dt. )
i /4 3 o 3/2

+ J5/2 (~ )
Gy

xd /+2Dt

fl 1 a 77 t +O(
60&2 D'/' (3.14)

This gives the long-time asymptotic behavior. Observe
that the leading time is in t and that this term is in-
dependent of the precise magnitude of the distance d.

Turning now to the inner region r & d, we observe from
expression (3.11) that the time dependence of the integral,
Eq. (3.9), has a leading term in t '. Now we must con-
sider the function g(r) that appears in the second set of
curly braces of Eq. (3.8). Because of the functional form
of g (r), this will have the effect of reducing the value of
the integral compared with that of the first set of curly
braces of Eq. (3.8), evaluated above in expression (3.11).
Deviation of the propagator P(r, ro, t) from pure diffusion
may be considered similarly. The time decay of this term
must be t ' or faster. The conclusion is that the contri-
bution to G(t) from the region r (d will have a leading
term in t

In the above calculation we have demonstrated that
the leading term in the asymptotic expansion of G ( t )
varies as t and that this term is independent of the
structure function g (r) and the microscopic details of the
dynamics. The long-time behavior of G(t) is thus found
to vary as

J5/2(&) 1 2
Gy =

xd /"t/ 2Dt y 3 7T

J3/2(xd/v 2Dt )

xd l&2Dt

and the integrals may be evaluated as

xd/v 2Dt J5/2(3 ) J3/2(xd j&2Dt )

0 y
3/2 xd lv'2DtGy =

and

(3.9)

G(t) 1

G(0) 6v'~
70 5 3 5 5 &0F 2 ————4' ——'2'2'2'2' ' t

where we have introduced the zero-time value of G(t),

We note parenthetically that using a procedure similar
to that described above in arriving at Eqs. (3.9) and
(3.10), it is possible to obtain an exact expression for the
dipolar autocorrelation function in the case of the so-
called model A. We find that G (t) may be expressed as a
generalized hypergeometric function '

3/2

for r &d

For long times we may expand these:
1/2

3 m 20 Dt
(3.11)

6(0)=—X2y' a'
and a correlation time ~0, the time taken for a particle to
diffuse a hard-core distance a:

1

3

' 1/2
2 1 x d

1 —— — +. . . , for r)d .
20 Dt

(3.12)

co=a /2D .

From the expansion of the hypergeometric function we
may express 6 (t) as a series

Gd(t)= — x exp( —x )
3 &A% P ~ 2 2 1 2
5 (2Dj) / o 3 7T

1/2

2

+O(t ') dx .

(3.13)

Considering the diffusion regime r )d, as stated above,
the structure factor g (r) may be ignored since it is unity
except at very short distances. In this regime, then, the
two Bessel function integrals of Eq. (3.8) are the same and
they are given by expression (3.10), with long-time expan-
sion, expression (3.12). Thus the pure difFusion contribu-
tion to 6 (t) may be expressed as

6(t) 3 "
(
—1) (k+1) ro

6(0) v'~
k o (2k+3)(k+3)!

=—— X

whose first few terms may be written as

k +3/2

Ay av'7r 1 t6(t)-
20V'2 3 D /2

5/2

20 D 5/2

The leading term is identical with that obtained from the
general argument above, and we see that the second term,
in t, depends on the hard core dimension a: one of
the "microscopic details" of the system. Any model,
which may include a realistic radial distribution function
and a more appropriate description of particle motion, so
long as it leads to diffusive behavior at long times, will
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give the same value for the leading term in the above ex-
pression. Clearly the other, higher-order, terms will de-
pend on the specific details of the model as will the initial
value 6(0). These assertions are supported by explicit
calculations for the more sophisticated models
discussed in Sec. III B.

E. The dipolar spectral density function

2 na 2 4, 1 vrct 2 4 co

25 D 30 D D
3/2

1 ~a 242 co

300 D D
2

1 7TCK 2 4 3 CO

945 D D

1/2

(3.18)

The relaxation times in an NMR experiment are given
in terms of the spectral density functions: Fourier trans-
forms of the autocorrelation function. In particular we
have

=J,(co)+4J2(2'),1

1

We observe that the term in co' is independent of a.
This is no accident. This term is purely hydrodynamic:
independent of model. This is supported by the various
models of Sec. III B all having the same term in co even
though the other terms will in general differ. We shall
prove that this is a general result by showing that it fol-
lows from the asymptotic expansion for G (t).

1 =
—,
' Jo(0)+—', J, (co)+J2(2'),

2
(3.15) F. %'atson's lemma

1 =—'Jo(2co, )+—'J1(co)+J2(2a1)

for spin-lattice relaxation, spin-spin relaxation, and spin-
lattice relaxation in the rotating frame. Here co&/y is the
magnitude of the rotating frame magnetic field and

J„(a1)=f G„(t)exp(icot)dt .

Given the autocorrelation function for a particular
model it is possible (at least formally) to obtain the spec-
tral density function through Fourier transformation.
Alternatively one may start from the specification of the
system and attempt to obtain the spectral density direct-
ly. Thus Hubbard treated the above diffusion model
(model A), obtaining the following expression for J (co):

J(co)=6 (0)6rou I u —2+ [(u +4u +2)cos(u )

+(u —2)sin(u) j

Xexp( —u) I, (3.16)

where

u =(2~r, )'/2 .

This result for J(co) may be expanded as a power
series. The first few terms are

J ( co) =66 (0)ro
2 )1/2+ ( )3/2

567
( )5/2+ (3.17)

and we have an ascending series in fractional powers of
frequency. It is worth pointing out that this, also, is con-
trary to the assumption implicit in some semiquantitative
models, that J(co) must be smooth at the origin. In fact
its singular behavior there is a necessary consequence of
hydrodynamics.

As when considering 6(t) we shall now eliminate the
quantities 6 (0) and wo in favor of the diffusion coefftcient
and the hard-core dimension. We then write J (co) as

The autocorrelation function G(t) and the spectral
density function J (co) are related by Fourier transforma-
tion. There are many properties of Fourier-transform
pairs which are well known. Knowledge of one function
permits evaluation of the other (at least in principle). A
feature of one function will manifest itself in the behavior
of the dual function. Thus derivatives at the origin of the
time function are related to moment integrals of the fre-
quency function. What may be called "local" features of
the time function are in this way related to what may be
called "global" features of the frequency function.

There are also relations involving coefficients of asymp-
totic expansions. Kubo has given some examples of
these. Considering, for example, an asymptotic expan-
sion in inverse powers of time and a conventional power
series expansion in co of the dual function, there is a rela-
tion between the coefficient of co" and the coefficient of
1/t"+'. lt is quite straightforward to derive this by re-
peatedly integrating by parts the Fourier-Laplace integral
relating J(co) to 6 (t). Here, by contrast, local features of
the time function are being related to local features of the
frequency function.

Unfortunately the above method is not directly applic-
able in the present case. We are involved with expansions
containing fractional powers. Here the usual machinery
of Taylor expansion and differentiation, and integration
by parts, are of no use. Nevertheless the basic physical
ideas must still apply, and it turns out that there contin-
ues to be a relation between the coefficient of co" and the
coefficient of 1/t'+' even for nonintegral n. To demon-
strate the plausibility of this we start from the Fourier-
Laplace relations between J (co) and 6 (t)

J(co)=2 Re f G (t)exp(idiot )dt, (3.19a)
0

ooG(t)= —Re f J(co)exp( —idiot)dc@, (3.19b)

which apply since both 6 (t) and J(co) are real and even
functions, and these expressions hold for the magnitudes
of t and co. We use an integral identity that is essentially
the definition of the gamma function, valid for noninteger
n:
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f x" ' exp( —px)dx = I (n) .1

0 p
(3.20)

which may be compared with Eq. (3.19a) above. This in-
dicates that if G(t) has a term in r "then this leads to a
term in co" ' for the spectral density function J(co), the
coefficients being proportional. Thus the relation does
indeed generalize to noninteger n. This result, of course,
includes the result for integer n, however, we note that
for terms where n is an odd integer the constant of pro-
portionality is zero.

For the case of n =—'„ it then follows, since
I ( —,

'
) =&ir/2 and cos(3ir/4) = —1&2, that the term

alt ~ in G(t) corresponds to a term 2(2')'—~ ace' in
J(co).

The rigorous mathematical treatment of the above re-
sult for series expansions is embodied in what is known as
Watson's lemma. This states that if a function F(x) has
an expansion

F(x)= ~ a x'+
S

s=0

then its Laplace transform (variable t) may be expressed
by the asymptotic series

s+A.
s=o

a t '+ '" as taboo,

where s, A., and p are positive integers. There are conver-
gence conditions on the result that we do not need to
consider here. Fundamentally, the lemma tells us that
there is a relation between the coefficients of the small ar-
gument expansion and those of the large argument
asymptotic expansion of the dual function. Some terms
are lost in going from the Laplace transform to the
Fourier transform, on taking the real part of a complex
quantity; for integer-only expansions all are lost for the
cosine transform pair (the odd-integer n case above).

The consequence of Watson's lemma for the problem
in hand is that the coefficient of co' may be found direct-
ly from the asymptotic expansion of G (t), from the
coefficient of the 1/t term. And since we showed that
that term was purely hydrodynamic and model indepen-
dent, then the same must follow for the m' term. It is
thus a general result that at low frequencies the spectral
density function deviates from its zero-frequency value by
a term in the square root of the frequency. We have

' 1/2

J (co)=J (0)— A' y30 D D
+ e ~ ~ ~ (3.22)

Although the value of J(0) depends somewhat on the mi-
croscopic details of the motion, the coefficient of co'

does not. This term alone (as is its time domain counter-
part) is determined solely by macroscopic-hydrodynamic

Making the substitution x ~co and p~it, and taking the
real part of our result we obtain

Re f co" 'exp( i—cot)den=Re I (n)
1

0 (ii)"
=cos( n ir I2 )I ( n )lt ", (3.21)

quantities.
The expressions for T& and T2 in the low-frequency

limit, and for T&p in the high-cu0, low-co& limit are then

1 ( I +4&2) iraA' 1'

T, (0) 30 D

1

T1P(~1)

1

T2(0)

1

Tip(0)

(5+2&2) iraqi y
6o

&2 irafi y
CO] +

IV. ANALYSIS OF KXPKRIMKNTAL DATA

A. Extraction of diffusion coefBcients

(4.1)

V (cm ) 1=const —l. 187X 10 [fo (MHz) j'~
T2 ms D 3/2

(4.2)

where the diffusion coefficient D is in units of cm s ' and
V is the molar volume.

We have analyzed available relaxation-rate data by
plotting them on an f '~ scale. At lower molar volumes
only the lower-frequency points follow the linear asymp-
tote, but at higher molar volumes, where the diffusion is
more rapid, more of the points fall on the limiting
straight line. Some typical plots are shown. In Fig. 1 we
show T& measurements for a molar volume of 20.1 cm .
We see that the first four points follow the co' law very

3.0—
K
E
E ~o-
O

~.0-
E

0
'l. 0 2.0

F."' (MHz"')
FIG. 1. T& for molar volume 20.1 cm .

It follows from the treatment in the previous sections
that the low-frequency behavior of the relaxation times is
characterized by a co' variation. And whenever this be-
havior is observed the diffusion coefficient may be ob-
tained directly from the data without any knowledge of
the microscopic aspects of the system. For solid He the
relaxation-time equations may be written in terms of
measured quantities as

V (cm ) -3 1=const —2.019X 10 [fo (MHz) ]'i
Ti ms D 3/2



DIRECT MEASUREMENT OF SPIN DIFFUSION FROM SPIN. . . 4311

0 5
TABLE I. T& data, Richardson, Hunt, and Meyer (Ref. 34).

0.3—

I—
0.2—

E

0.1
I I t I I

1.0 2.0

F, (MHz )
FIG. 2. T& for molar volume 22. 1 cm'.

Molar volume
V (cm')

20.1

20.4
21.3
21.8
22. 1

22.4
23.8
24. 1

24.6

Slope
V.l(T,f '")
2.763
2.612
0.4293
0.169
0.118
0.1099
0.01665
0.0153
5.402 X 10

Diff. coeff.
D (cm2s ')

1.75 X 10
1.82 X 10
6.05 x 10-'
1.13x 10-'
1.43 x 10-'
1.50 X 10
5.28 x 10
5.58 x 10-'
1.12 X 10

well but the points at higher frequencies start deviating
quite rapidly. In Fig. 2 we show T& data for a molar
volume of 22. 1 cm . Here all points are seen to follow
the straight line. And in Fig. 3 we show T2 data at the
same molar volume.

Analysis of the data was performed by fitting a straight
line through those points following the visibly linear law,
using a least-squares method. From the slope of the lines
the diffusion coefficient was obtained using Eqs. (4.1) and
(4.2). In Table I we give T, data from Richardson, Hunt,
and Meyer, while Table II shows the data extracted
from Richards, Hutton, and Giffard. ' In Table III we
show T2 data analyzed similarly.

B. Comparison with conventional measurements

We compare the values for the diffusion coeKcient, ob-
tained above, with those found from the conventional
measurements using spin echoes in a magnetic-field gra-
dient. ' Two sets of measurements have been published:
those of Thompson, Hunt, and Meyer' and those of
Reich. ' In Fig. 4 we have plotted the values of D ob-
tained by both methods against molar volume. The filled
points have been obtained, by the above analysis, from
relaxation-time measurements. The open points are from
conventional measurements. The agreement between
measurements made in these two different ways is most

0.6

D =4. 12(J/2m. )a (4.3)

where the values of J are found from the formula of
Panczyk and Adams:

r 18.13
V

24
J = 13.67

2~
(4.4)MHz .

The line is seen to follow the data quite well. This
agreement is, however, more interesting since now some
microscopical considerations are involved.

The validity of both Eqs. (4.3) and (4.4) relies on the as-
sumption that only pairwise (and three-particle) exchange
processes are involved. To the extent that higher-order
excitations are involved the equations may be regarded as

gratifying. Although different, both techniques are pure-
ly hydrodynamic and so they should, fundamentally, give
the same values. The good agreement is indicative that
the dipolar autocorrelation function has a long-time tail
of the form presented above and that the method of
analysis is therefore appropriate.

While the conventional method for measuring diffusion
gives reliable values at the lower densities, we see that as
the density increases, for molar volumes below 23 cm,
there is already considerable dispersion in the data
points. The method becomes difficult for smaller values
of D. And there are no points for molar volumes of 21
cm or less; the diffusion is too slow. However the
present method is perfectly adequate, giving good values
for molar volumes down to 20 cm . And this could easily
be extended to higher densities, into the hcp phase, using
rotating frame measurements of T&p.

In Fig. 4 we also show a solid line. This is the diffusion
coeScient as calculated from the effective pairwise ex-
change frequency' for the bcc lattice:

0.4—

E
Molar volume

V (cm }

Slope
V /(T f'i)

Diff. coeff.
D (cm's ')

TABLE II. TI data Richards Hatton and Glffard (Ref. 1).

0.3 I I

1.0 2.0

FII (MHz )
FIG. 3. T2 for molar volume 22. 1 cm .

3.0 20.0
20.6
21.05
23.0

1.56
1.104
0.4396
0.0341

2.56 x 10-'
3.22 X 10
5.95 x 10-'
3.27 X 10
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Molar volume

V. (cm')
Slope

V /(T, f'i')
Diff. coeff.
D (crn s ')

TABLE III. T2 data, Richardson, Hunt, and Meyer (Ref.
34).

10—1
~ T& Richardson (34)

~ T, R
(a4)

~T&R
o DT

20.1

20.4
21.3
21.8
22. 1

22.4
24. 1

24.6

1.393
0.9341
0.2663
0.0824
0.0585
0.0408
6.04 x10-'
1.0875 X 10

1.94 X 10
2.53 x 10-'
5.84 x 10-'
1.28 x 10
1.60 X 10
2.04 x 10-'
7.28 X 10
4.92 X 10

10—0

10
19

I

21
I

20 22
I I

23 24

Molar Volume (cm )

referring to an "effective" pair exchange frequency—
possibly different for each equation.

The derivation of Eq. (4.3) relating D to the exchange
frequency relies on a number of assumptions about the
shape of a spin-correlation function. Cowan, Mullin, and
Nelson' have shown how bounds may be established for
such results, and following that method one finds that
while Eq. (4.3) is the likely result, the value of D must fall
within the interval

2.97(J/2~) a2&D &4.94(J/2~)a2 .

However previous measurements of D by spin echoes
have supported the result in Eq. (4.3).

The relation between J and the molar volume, Eq. (4.4)
also relies on details of a microscopical calculation.
Panczyk and Adams obtained their result from measure-
ments of the exchange frequency contribution to the pres-
sure at constant volume. Their analysis involves a high-
temperature expansion of the pressure found from the
partition function, a quantity of microscopic origin.
However, here again, their result is in good agreement
with measurements of Jmade in other ways.

V. CONCLUSION

We have shown that for low frequencies the dipolar
spectral density function has the form J (co) =J (0)
—Ace' . This is a consequence of the hydrodynamic be-

FIG. 4. Diffusion coeScient as a function of molar volume.

havior of the system at long times; the constant a is a
function of the diffusion coe%cient, but it is independent
of the microscopic details of the system. We have ana-
lyzed spin relaxation-time measurements in the bcc phase
of solid He, obtaining values for the diffusion coe%cient
in this way. These results are in good agreement with
conventional measurements, and they extend to higher
densities where measurements were previously unavail-
able. The results are also in good agreement with D
values inferred from exchange frequency measurements.
This is evidence that it is the quantum exchange which is
responsible for the diffusion. The method is suited to the
measurements of slow diffusion through studies of T,p.
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