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We report an extensive first-principles molecular-dynamics study of metallic liquid silicon. Our
description of the local order is in excellent agreement with x-ray- and neutron-diffraction experiments.
The difference in internal energy between the simulated liquid phase and the crystal agrees well with the
experimental enthalpy of melting. Analysis of the valence-electronic-charge density shows persistence of
some covalent bonds in the melt. These bonds give rise in the power spectrum of the system dynamics to
a well-identifiable feature associated with stretching vibrations. Unlike the case in the crystal, in the
liquid the covalent bonds are continuously forming and breaking in response to atomic motion. The ma-
jority of bonds are broken on average, leading to fast diffusion and to metallic behavior of the melt. The
calculated electronic conductivity shows good agreement with available experimental data.

I. INTRODUCTION

Silicon has several high-density forms which include
crystalline (c-Si), amorphous (a-Si), and liquid (I-Si)
phases. The former two are, at normal pressure, semi-
conducting and covalent, while the latter is metallic. The
semiconducting Si phases have traditionally received
much attention and have become a prototype of elemen-
tal semiconductor which has often been used as a testing
ground for new theories and methods. The metallic
liquid phase, however, was relatively little explored, both
experimentally! * and theoretically.*~® The crystal-to-
liquid transition occurs at a high temperature of ~ 1680
K,!° which makes experiments difficult to make. Yet /-Si
is technologically important. Single crystals are grown
from the liquid phase. Novel dopant profiles are generat-
ed by zone refining in laser-melted Si surfaces, and the
metallic nature of the melt is used to determine the thick-
ness of the laser-melted region.

I-Si has several intriguing and poorly understood prop-
erties. Upon melting, the density of Si increases by
~10%,!! and its structure goes from an open structure
with coordination number equal to 4 to a more compact
liquid structure characterized by a coordination number
exceeding 6.2 Tt is fairly unusual for a liquid metal to
have a coordination number between 6 and 7. Most
liquid metals are more closely packed with a coordination
~12.12 The low coordination of /-Si indicates a per-
sistence of covalent bonding in the liquid. A quantitative
description of the covalent bonding effects is, however,
still missing. The experimentally determined atomic
structure of /-Si exhibits peculiar features,’? and its static
structure factor strongly differs from that characteristic
of simple liquid metals, such as, e.g., aluminum.!

Upon melting, Si undergoes a semiconductor-to-metal
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transition as evidenced by a jump in the conductivity by a
factor of 20.!° The ac electrical conductivity has also
been measured, and the result indicates a Drude-like be-
havior,* even though the electronic mean free path is
short.

The theoretical efforts were concerned mainly with
modeling the experimental atomic structure in terms of
effective classical potentials>®%!® or with studying the
electronic properties given some model for the atomic
structure.®®!* The classical potentials were either con-
structed empirically by fitting a given set of experimental
data®!® or derived semiempirically from some approxi-
mate theoretical treatment.>® Although often very use-
ful, such approach is not entirely satisfactory since (i) the
effective potentials miss the close connection between
electronic and atomic structure, (ii) the range of their va-
lidity may be limited and is not known in general, and (iii)
it is usually difficult to make detailed quantitative predic-
tions for a particular material. For this reason we have
studied [-Si using an ab initio molecular-dynamic (MD)
method.” In our approach the interatomic forces are ob-
tained from an accurately calculated electronic ground
state within density-functional (DF) theory in the local-
density approximation (LDA) for exchange and correla-
tion effects.’® As will be discussed at length in the follow-
ing, some important qualitative differences emerge be-
tween the structures derived from potentials constructed
quantum mechanically and those derived from classical
empirical potentials.

In this paper the ab initio MD approach is applied to
an extensive and detailed investigation of structural,
dynamical, and electronic properties of /-Si. A short ver-
sion of these results has been presented elsewhere.!” The
structure of our simulated I-Si sample is in excellent
agreement with the available experimental diffraction
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data. Analysis of the electronic charge density allows the
first quantitative characterization of covalent bonding
effects in the liquid. These appear as local tetrahedral
fluctuations that give rise in the power spectrum of the
system dynamics to a feature associated with stretching
vibrations. The calculated electronic properties are also
in good agreement with experiment. The single-particle
electronic density of states shows metallic behavior. The
calculated ac electrical conductivity compares well with
experiment.

The paper is organized as follows: In Sec. II we briefly
review the ab initio MD scheme and give details of our
calculation. In Sec. III we study short-range order and
energetics of /-Si. Section IV contains a detailed analysis
of the bonding properties. Atomic motion is discussed in
Sec. V and electronic properties in Sec. VI. Finally, we
present our conclusions in Sec. VII. Convergence studies
are reported in an Appendix.

II. METHOD AND TECHNICAL DETAILS
OF THE SIMULATION

In our MD simulation the ionic forces are derived from
the many-body potential ®[{R;}] calculated from the
electronic ground state within DF theory. ®[{R,}]
defines the Born-Oppenheimer (BO) potential-energy sur-
face for the ions. The electronic ground state is attained
by minimizing the energy functional E[ {¢;},{R;}] with
respect to the “electronic degrees of freedom” {4, }:

Q[{RI}]:T{%?E[{%}’{RI}] . (D
The functional E[{¢;},{R;}] is given by'>!® (using

atomic units e =fi=m,=1)

occ

E[{¢:},(R;}]=3 [ dr (= 1y, (r)

+ fdr VeX(r)p, (1)
Pe(r)p,(r')

lr—r'|

pe 2= |R1_RJl .

1 )
+—2—fdrdr
(2)

Here p,(r) denotes the valence electron pseudo-charge-
density:

p(r)=S |,(r)]2 . (3)

V*(r) is the total ionic pseudopotential acting on the
valence electrons, Z; are ion-core charges, and the state
sum extends over the occupied (valence) states. E*[n] is
the exchange-correlation energy functional,'® for which
we adopt the local-density approximation. The single-
particle states {1;] are subject to orthonormality con-
straints:

Jdryroy;(n=5,; . 4)

At the minimum of the energy functional, the single-
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particle states {v¢;} coincide with the so-called Kohn-
Sham (KS) orbitals,'® within a unitary transformation.’
The minimization in Eq. (1) can be carried out in
different ways, but we find most convenient to follow the
generalized Lagrangian formulation of Ref. 15. In order
to fix the ionic temperature, we introduce the Nosé ther-
mostat?® on the ionic degrees of freedom. The system dy-
namics is governed by the following equations of motion:

SF

i(r,0)=———""—+ 3 A, .(r,1) , 5a)
p,(r 507 (r.0) ? G (r (5a
- JE _M, .
MIRI— aRI s RIS N (Sb)
05=s S M,(R,)?—sgk T+ %s’)2 . (5¢)
I

The Nosé equations (5b) and (5c) are written in terms of
“real variables.”?° Therefore, in Egs. (5) the dot indicates
derivative with respect to the “real time.”?* The ions
{R;} move both under the action of interparticle forces
[first term on the right-hand side (RHS) of Eq. (5b)] and
of the coupling to the thermostat represented by an addi-
tional dynamical variable s [second term on the RHS of
Eq. (5b)]. The interparticle potential is optimized dynam-
ically via Eq. (5a). Here u is an arbitrary parameter of
appropriate units which serves to define the fictitious
classical kinetic energy of the electronic orbitals {¢;}. A
is a matrix of Lagrange multipliers imposing the ortho-
normality constraints of Eq. (4). The Nosé thermostat is
governed by Eq. (5c), where Q is the dynamical “mass” of
the variable s, g =3N, where N is the number of ions, kg
is the Boltzmann’s constant, and T is the externally set
ionic temperature.

If the potential energy E in Eq. (5b) is given by the BO
potential-energy surface P, defined in Eq. (1), then, as
demonstrated by Nosé,?® with the above choice of g, Egs.
(5b) and (5c¢) lead to a canonical distribution in the ionic
phase space. One can obtain conditions where this is ap-
proximately the case if the electrons, evolving according
to Eq. (5a), follow adiabatically the motion of the ions,
remaining very close to the ground state. For this to
occur the time scale for the motion of the electronic de-
grees of freedom must be much shorter than that for the
ions. The key quantity that controls the electron time
scale is u/E,, where E, is the electronic single-particle
energy gap. In semiconductors and insulators, E, is finite
and one can select a conveniently small value of u such
that the electronic degrees of freedom acquire only a very
small classical kinetic energy to follow adiabatically the
ions. In other words, the system stays a long time in a
metastable state in which electrons and ions are not in
mutual thermal equilibrium, with the electronic tempera-
ture being much less than that of the ions. Under these
conditions ionic trajectories, initially lying on the BO sur-
face, deviate from it very slowly on the time scale of the
MD simulation. Thus very few or no separate minimiza-
tions are necessary to keep the system on the BO surface
during a MD run. Instead, in systems like metals, where
E, is zero or very close to zero, one cannot effectively
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present case of liquid Si, which is a metal, we have ob-
served a tendency to thermal equilibration between elec-
tronic and ionic subsystems related to the existence of
empty electronic states degenerate or nearly degenerate
with the occupied states. This induces substantial energy
transfer from the ionic to the electronic subsystem. This
process cannot be fully eliminated, but may be controlled
in part by the choice of u, since, in a finite-size system,
even in a metal, although tiny, Eg is different from zero.

The coupling of electronic and ionic degrees of free-
dom has two major consequences: (i) The electronic wave
functions deviate from the ground state, and (ii) the ionic
subsystem spontaneously decreases its temperature due to
the energy transfer to the electrons. To counteract these
two effects, we perform systematic electronic minimiza-
tions and control the ionic temperature by coupling the
ionic subsystem to the Nosé thermostat. The frequency
of the electronic optimizations depends closely on the
rate of transfer of energy from the ionic to the electronic
subsystem. In principle, electronic minimizations could
be performed at every time step. This, however, would
be rather costly, and in practice it is not necessary since,
even in metals, by a convenient choice of u the ionic tra-
jectories obtained from Egs. (5) deviate appreciably from
the BO surface only after many time steps. By perform-
ing systematic electronic optimizations, the interparticle
potential is not allowed to deviate appreciably from the
BO surface all along a MD simulation run. Thus the
conditions for the approximate sampling of the canonical
distribution under Nosé dynamics remain valid also in
this case.

In the present investigation of /-Si, we have performed
a Nosé-type constant-temperature, constant-volume MD
simulation at the experimental density p=2.59 gcm 3.!!
The MD cell contained 64 atoms with periodic boundary
conditions of the simple cubic (sc) type. The average
temperature was kept at 7=1800 K, close to the experi-
mental melting point 7,, =1680 K.!° At T=1800 K our
system was characterized by good liquidlike diffusive be-
havior. The present simulation does not allow a direct
evaluation of the melting point of our model system. It is
well known that large overheating and/or undercooling is
present in molecular-dynamics simulations of small sam-
ples with periodic boundary conditions. In order to cal-
culate accurately the melting point of our system, we
should perform highly nontrivial and time-consuming
free-energy evaluations, within our ab initio approach, for
both the liquid and solid phases. Such calculations would
allow to predict phase diagrams from first principles and
are therefore an important challenge for the future.

We used nonlocal norm-conserving pseudopotentials of
the Bachelet-Hamann-Schliiter type?' with s nonlocality
only. Kleinman and Bylander’s factorized form??> was
adopted to speed up the calculation. Exchange and
correlation effects were treated within LDA in the
parametrized form of Ref. 23. The electronic orbitals
were expanded in plane waves with an energy cutoff of 12
Ry. The I' point, k=(0,0,0), only was used to sample
the Brillouin zone (BZ) of the MD supercell. The in-
tegration time step was 5.5 a.u. (1.3X 107 !¢ s), while the
fictitious “mass” p was taken to be 300 a.u. The dynami-
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cal mass Q was set to 2.5X10° a.u. With this mass the
oscillation periods of s are comparable to the inverse of
the frequency of optical phonons in ¢-Si. In semiconduct-
ing phases this choice of parameters would have
guaranteed a very accurate adiabatic evolution of the sys-
tem over a relatively long MD run. In the present
metallic-liquid phase, the system remains close to the BO
surface only for times of the order of ~500 time steps.
For this reason we performed periodic quenches of the
electrons to the instantaneous ground state every 500
time steps. Toleration of small deviations from the BO
surface corresponds to ascribing it a finite thickness. The
average thickness of the BO surface in our simulation
was less than 50 K, while the maximal thickness was
~100 K, small compared to the ionic temperature and
also to the average temperature fluctuations, which in
our small sample are of the order of 10% of the average
temperature. By varying the rate of periodic electronic
minimizations, we have checked that the accepted
tolerated thickness of the BO surface in our simulation
does not affect our measured properties in any noticeable
way.

We note that, within our approach, one neglects
thermal effects on the electronic Fermi surface, which is
assumed to be perfectly sharp as at 7=0 K. This is a
reasonable assumption, since at the temperatures of the
simulation, the thermal smearing of the Fermi surface is
small compared with the occupied-valence-band width.

The initial configuration was generated by starting
from atoms in diamond lattice positions with small ran-
dom displacements and electronic orbitals in the ground
state. Then the system was heated up to ~ 6000 K by re-
scaling the velocities of the particles in order to achieve a
fast onset of the diffusive behavior, signaling transition to
a liquid phase. The temperature of the liquid structure
was then reduced to 7==1800 K and the Nosé thermostat
switched on. After equilibration, we have followed the
system for a total time of 1.2 ps, sufficiently larger than
the typical relaxation times.

We have checked the convergence of our calculation
with respect to periodic boundary conditions, cell size, in-
clusion of p nonlocality in the pseudopotential, and ener-
gy cutoff in the plane-wave expansion of the electronic
wave functions. The results were quite sensitive to varia-
tions in the energy cutoff, while changes in other condi-
tions produced only minor effects. A cutoff of 12 Ry was
necessary to achieve convergence and produce a coordi-
nation in close agreement with experiments. By lowering
the cutoff we observed a reduced tendency toward metall-
ization and a simultaneous trend toward more structured
systems having lower average coordination. In particu-
lar, with an energy cutoff of 6 Ry we reproduced, with
the 64-atom cell, the results already found in a prelimi-
nary calculation done with a 54-atom fcc cell and a simi-
lar cutoff.” The observed relative independence of the
structural properties on the unit-cell size and shape pro-
vides an indication that the calculation of the interatomic
forces, which requires a BZ average, is essentially con-
verged with respect to k-point sampling. A more detailed
account of these convergence studies is given in the Ap-
pendix.
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III. SHORT-RANGE ORDER AND ENERGETICS

We now turn to a detailed analysis of the structural
properties of /-Si. In Fig. 1 we show the results obtained
for the static structure factor S (k) and the pair correla-
tion function g(r) and compare them with x-ray-!' and
neutron-? scattering experiments. The g () is interrupted
at the distance of ~10 a.u., which is the largest length we
can study with our small-sized model. The agreement
with experimental data is very favorable, especially if one
considers the differences between the two sets of experi-
mental data and the absence of any fitting parameter in
the theory.

The structure of /-Si is dissimilar to that of most simple
liquid metals.’ The first peak of S (k) is asymmetric, with
a shoulder on the high-k side. There is a secondary max-
imum of g(r) (at ~7 a.u.) that appears at the position
where simple liquids have the first minimum. The aver-
age coordination number from the experimental g(r) is
6.4. Not surprisingly, simple models such as hard
spheres fail completely in the description of /-8i.2* This is
a situation where ab initio MD is particularly suitable be-
cause no arbitrary assumption is made on the interaction
potential. Since the atomic correlations fall off rapidly in
liquids, the effect of a relatively small size of the unit cell
does not pose serious limitations on our structural model.
In particular, the theory correctly predicts the shoulder
on the first peak of S(k), the anomalous secondary peak
of g (r), and the first peak position at ~4.65 a.u., appreci-
ably larger than the value 4.44 a.u. in ¢-Si. The coordina-
tion number, as obtained by integrating g(r) up to the
first minimum #,, =5.85 a.u., is ~6.5, in close agreement
with the experimental value of ~6.4.12 As shown in Fig.
2, our results indicate presence of a broad distribution of
local coordinations dominated by the sixfold one.

Additional information on the short-range order (SRO)
can be obtained from higher-order correlation functions.
In our case the triplet correlations are particularly impor-
tant since the system retains some covalent bonding
effects and has directional forces. This is conveniently
measured by the bond-angle distribution function
g5(6,r,,). Here 60 is the angle between the two vectors
that join a central particle with two neighbors at a dis-
tance less than r,. Our g;(0,r, ), shown in Fig. 3, is

0.0 2.5 5.0 7.5 10.0
r(a.u.)

0.0 20 4.0 6.0
k (a.u.)

FIG. 1. S(k) (left panel) and g(r) (right panel) of /-Si. Solid
line, MD simulation; dotted line, neutron-diffraction experiment
(Ref. 2); and dot-dashed line, x-ray-diffraction experiment
(Ref. 1).

STRUCTURAL, BONDING, DYNAMICAL, AND ELECTRONIC. ..

4265
40
30 [
a3 :
= 20 [
E=1
10 [
0

2 4 6 8 10
N

FIG. 2. Distribution d (N) of local coordinations in /-Si. The
coordination shell is defined by 7,,, the first minimum of g (7).

rather broad with maxima centered at 6 ~ 60° and ~ 90°.

In the past, various empirical models for SRO in /-Si
have been proposed. They either assume presence of two
kinds of atoms, differing in size>?* or coordination! (ei-
ther fourfold covalent or 12-fold metallic), or suggest that
SRO in [-Si is close to that of the SB-tin or the sc struc-
tures,'* which both are sixfold coordinated and metallic.
Our results do not support these models. They indicate
presence of a broad distribution of local coordinations
and bond angles distinctly different from that of sc or -
tin.

Some microscopic models of /-Si are based on few-body
potentials.>®% !> Two approaches have been widely used.
Effective pair potentials, obtained from pseudopotential
perturbation theory (PPT), have been extensively used by
Hafner and collaborators to model a large class of liquid
elements.?® In an earlier application to Si, Hafner and
Kah!’ based their description of the liquid structure on
the optimized random-phase approximation.?’” More re-
cently, /-Si was simulated by Jank and Hafner using
MD.? The resulting S (k) and g (r) were in good agree-
ment with experiment. One should expect, however, that
the perturbation-theory treatment, relying on weak pseu-

A
@ | 1 ‘\‘
bﬂm ,/l‘ ‘\’\_
0 90 180
6 (deq)
FIG. 3. Bond-angle distribution functions g;(6,r). The

cutoff distance r is equal (a) to r,,, the first minimum of g(r)
(solid line), and (b) to 7., the covalent cutoff defined in the text
(dot-dashed line). The arrow indicates the position of the
tetrahedral angle.
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dopotentials and electron-gas screening, should be more
appropriate for simple metals such as Na than for Si. In
spite of its metallic character, the electronic charge densi-
ty of I-Si is far from being uniform (see Sec. IV). The
PPT potential is not able to stabilize the tetrahedral net-
work and hence cannot be used to study solid phases.
Stillinger and Weber® (SW) constructed an empirical po-
tential for Si that includes two- and three-body terms and
used it in a MD study of the liquid phase. Again, S (k)
and g(r) were in agreement with experiments. Because
of the inclusion of the three-body terms, the SW potential
can stabilize the tetrahedral network. As a consequence,
it has been widely used to construct structural models of
liquid®?® and solid phases?®* 3! of Si. We consider here
the SW potential as a prototype of classical models
tailored to describe systems with covalent bonds. By
comparing our simulated structure with the SW liquid,
we find that there are important qualitative differences
between the two structures, in spite of the fact that the
two liquids have basically the same static structure fac-
tor. Indeed, important differences between the two
liquids appear in higher-order correlation functions, such
as g3(0,r,,). This is shown in Fig. 4, where the SW g, is
from Ref. 30. The angular correlations in the two liquids
are quite different. In particular, in the SW liquid there
is a strong tendency to overemphasize the local
tetrahedral order. Such feature is not present in the PPT
liquid whose g5(0,r,,) (Ref. 9) is very similar to ours.

Our simulation not only provides direct information on
the microscopic structure of the liquid, but allows one
also to compute specific thermodynamic properties such
as internal energies, specific heats, etc. This opens the
possibility of deriving thermodynamic phase diagrams of
real materials from first-principles microscopic calcula-
tions. It is therefore interesting to assess the accuracy of
the thermodynamic information that can be extracted
from the simulation. An internal energy U is readily ob-
tained as

U=(1 S MRI+E(](R,)]), ©
I
|

E N

=) a4 ~o

ap '! \

0 90 180
6 (deg)

FIG. 4. Bond-angle distribution function g;(6,r, ) of the
Stillinger-Weber (solid line, Ref. 30) and of our (dot-dashed line)
I-Si. The arrow indicates the position of the tetrahedral angle.
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where the brackets indicate temporal average over BO
ionic trajectories. By performing a separate calculation
for the crystal at T=0, with the same BZ sampling,
pseudopotential, and plane-wave cutoff used for the
liquid, we compute AU, =U,(T=1800 K)— U (T=0
K). Using the experimental equilibrium volumes at stan-
dard pressure for both the liquid and crystal, we obtain
AU, .~108.6 kJ/mol. This value should be approxi-
mately equal to the corresponding enthalpy difference
AH,; =AU, .+p AV, since the contribution to enthalpy
due to p AV is negligible. Using experimental data from
Ref. 32 we obtain AH*'~93.4kJ/mol, in very good
agreement with our theoretical prediction.

IV. BONDING PROPERTIES

In our simulation we generate simultaneously the ionic
trajectories and the corresponding ground-state electron-
ic charge densities. Therefore, we can study directly the
evolution of the chemical bonds resulting from atomic
motion. In this way we have been able to put on a quan-
titative theoretical basis the concept of covalent bonding
effects in /-Si. Persistence of transitory covalent bonding
in the metallic-liquid phase of Ge was also suggested by
Ashcroft,* on the basis of qualitative theoretical argu-
ments.

A plot of the pseudo-charge-density p,(r) in a plane
defined by three neighboring atoms in several liquid
configurations is shown in Fig. 5, where for comparison
we also report [in Fig. 5(a)] p,(r) in the (110) plane of
crystalline silicon (c-Si). In Figs. 5(b) and 5(c) the dis-
tances between the two external atoms and the one at the

N———

0@
Ve

o

FIG. 5. Contour plots of the valence-electronic-charge densi-
ty p.(r). (a) ¢-Si in the (110) plane. (b)—(i) Evolution of p,(r) in
I-Si at time intervals of ~5.5X 1073 ps. The dots indicate the
positions of the ions.
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center are quite close to the bond length in ¢-Si. Corre-
spondingly, the electronic densities have several common
characteristics. Both in the crystal and liquid, p,(r) is
strongly nonuniform and there is an accumulation of
charge between pairs of adjacent atoms. This provides
striking evidence for the persistence of covalent bonds in
the liquid. Figure 5(b) shows a snapshot of an instantane-
ous local configuration which changes in time with the
typical time scale of the diffusive motion of the atoms.
Its subsequent evolution at intervals of time of
~5.5X 1073 ps is shown in Figs. 5(c)-5(). We note that
in Fig. 5(e) one of the two bonds of Fig. 5(b) starts to
break, while the other is substantially weakened. Finally,
in Fig. 5(i) both bonds have disappeared, while in the
upper left corner one can guess the formation of a new
bond with an incoming atom not shown in the picture.
Interestingly, Fig. 5 also shows a correlation between co-
valent bonding and local tetrahedral order. When the
atoms are covalently bonded as in Figs. 5(b) and 5(c) the
angle between the two atomic pairs is close to tetrahedral
(~109°), while it is different when the bonds are broken.

To emphasize the chemical character of the bonding
charge, we can take, for any liquid configuration, the
difference between the true charge density and a superpo-
sition of atomic densities, i.e.,

Ap,(r)=p,(r)— Zp (Ir—R,]) . ™

Here p2' denotes the pseudo-charge-density of the free
atom. A plot of Ap, for the same liquid and crystalline
configurations of Fig. 5 is shown in Fig. 6, confirming

FIG. 6. Charge-density difference Ap,(r), as defined in the
text, for the configurations of Fig. 5. Solid (dashed) lines indi-
cate positive (negative) density. The atomic positions are indi-
cated by the dots.
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that the pileup of charge is not just a consequence of the
occasional close approach between two atoms, but
reflects the formation of a chemical bond.

An extensive analysis shows that covalent bonds al-
most always form between pairs separated by a distance
less than ~4.7 a.u. For larger separation distances the
great majority of the bonds are broken. Therefore, we
can define 7, =4.7 a.u. as the cutoff distance for covalent
bonds. This is slightly larger than the equilibrium bond
length of 4.44 a.u. of ¢-Si. Only a fraction of ~30% of
the atoms in the first peak of g(r) are at distances less
than r,. The bond-angle distribution function g;(6,r,)
corresponding to these atoms is shown in Fig. 3. g;(8,r.)
is peaked around an angle close to tetrahedral. A similar,
albeit considerably narrower, bond-angle distribution is
found in amorphous silicon. The covalently bonded
atoms tend to form chains of variable length. The pres-
ence in the liquid phase of local tetrahedral fluctuations
may play an important role in explaining why silicon is
able to reconstruct easily a tetrahedral network upon
cooling.

The average properties of the covalent bonds in the
liquid can be analyzed in the following way. According
to the Phillips bond-charge model,>* the pileup of charge,
in a covalent bond in an elemental semiconducting crys-
tal, can be mimicked by a point charge located at the
bond center. We extend this concept to the liquid by as-
sociating a point charge to each local maximum of the
valence electron density. We then consider these point
charges, which we call bond charges (BC), as extra parti-
cles in our system and apply standard correlation-
function techniques to characterize their average proper-
ties. For a given ionic configuration, the electronic densi-
ty p.(r) has several local maxima. In order to locate
them, we adopt a simulated annealing technique.’® In
our simulation p,(r) is defined on a uniform cubic mesh
of spatial points which defines a three-dimensional lattice.
We start a search from a randomly chosen lattice point.
Then we generate a sequence of Monte Carlo moves be-
tween neighboring points according to the Metropolis al-
gorithm,*® taking the negative of the electronic density
p.(r) as the cost function.® By starting at a high
effective “‘temperature” and by subsequently reducing it,
one ends up in a local maximum of p,. A representative
set of local maxima is generated by repeating the search
several times with different starting conditions. The ad-
vantage of using a simulated annealing technique is that,
by appropriate tuning of the annealing schedule, one can
reduce the probability of finding weak maxima resulting
from fluctuations due to disorder. As a consequence, the
probability of finding strong maxima, representative of
real chemical effects, is increased. _

We locate the BC’s for a representative subset of ionic
configurations generated by MD and compute the partial
pair correlation functions ggc gc(7) (bond-charge—bond-
charge) and g; gc(r) (ion—-bond-charge). The results are
plotted in Fig. 7, where we report for comparison also the
ion-ion correlation function g; ;(r)=g(r). g;pc(r) is
peaked at ~ 1.7 a.u., which does not correspond to half
the distance between a pair of ions and has a characteris-
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FIG. 7. Statistical characterization of bonding properties of
I-Si. Left panel: partial correlation functions (see text) ggcpc(#)
(dotted line), g; pc(r) (dot-dashed line), and g;_;(r) (solid line).
Right panel: distribution d(I) of valence charge maxima (asso-
ciated with BC’s). The symbol I stands for the intensity of the
valence charge at a local maximum. The arrow indicates the in-
tensity of the valence charge at the midbond maximum in ¢-Si.

tic shoulder at ~3.0 a.u. However, the average value of
the sum of the peak and shoulder positions corresponds
closely to half the average ion-ion distance (first peak of
gr.p)- This can be understood in terms of the existence of
a substantial amount of broken (weak) bonds, since these
are often characterized by the presence of two maxima in
the charge density (cf. Fig. 5). Similarly, the peak at ~1
a.u. in ggcpe(r) agrees with the distance between the two
maxima of a broken bond. In Fig. 7 we also plot the dis-
tribution of the values of the local charge-density maxi-
ma. We see that a significant fraction of maxima is ap-
preciably weaker than in c¢-Si. The tail on the high-
density side of the distribution is due to compressed
bonds.

We close this section by mentioning that a simple mod-
el based on the spirit of Phillips bond-charge model has
been used recently to describe qualitatively the structure
of I-Ge.>’

V. ATOMIC DYNAMICS

MD generates atomic trajectories that allow one to
study time-dependent phenomena and coefficients of
atomic transport. This provides valuable information,
since the dynamical properties of /-Si are essentially un-
known. We limit here the analysis of our data to the
diffusion constant D, the velocity autocorrelation func-
tion Z (t), and its Fourier transform Z (w), which gives
the power spectrum of the system dynamics.

We have calculated the diffusion coefficient from the
atomic mean-square displacement>®

N
Rz(t)=% S [R,(1)—R,(0)
I=1

~6Dt +c, ast— o , (8)

where D is the self-diffusion coefficient and ¢ is a con-
stant.’® This is shown in Fig. 8. For long times, R %(z) ex-
hibits a quasilinear behavior characteristic of a diffusive
motion. Using formula (8), we extract D ~2.26X10™*

cm?s”!. This value implies that, on average, in our simu-
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FIG. 8. Time dependence of the mean-square displacement
R?(¢) in I-Si (solid line). The least-squares fit to the asymptotic
large-t behavior is shown by the dot-dashed line.

lation each atom has traveled a distance of ~7 a.u. This
means that a substantial part of the phase space has been
sampled.

An alternative way of calculating D is by means of the
velocity autocorrelation function (VACF), defined as
_ {v(0)-v(1))

(v(0)-v(0))

In terms of the VACF, D is given by3!

Z (1) 9)

k

T
p— B ®
p=—r["zwar . (10)

Using Eq. (8) or (10) to compute D is mathematically
equivalent. It is interesting, however, to see whether, in a
numerical simulation, the two different procedures give
the same results. In our case, using Eq. (10), we find
D ~2.02X10"* cm?s ™!, in good agreement with the re-
sult of Eq. (8). This value indicates a rather fast ionic
diffusion. Although we are not aware of any direct exper-
imental measurement of D for /-Si, our findings are con-
sistent with indirect estimates based on the diffusivity of
substitutional impurities such as P or A1.*> The empirical
SW potential yields D ~6.94X107° cm?s™ 1,8 which is
significantly smaller than our estimate.

The VACEF is reported in Fig. 9. Z(?) is always posi-
tive, leading to a high value of the diffusion coefficient,
and has an oscillatory decay to zero after ~0.15 ps. This
has to be contrasted with close-packed liquids such as Ar
where a negative oscillation in Z (¢) is observed. This is
believed to result from the caging effect of the shell of
neighboring atoms.’®% [-Si is a much more open struc-
ture and exhibits no caging, but only effects due to the oc-
casional formation of covalent bonds. A similar con-
clusion can be drawn also from the asymptotic behavior
of the atomic mean-square displacement in Eq. (8). We
find a negative value of ~ —5.09 a.u. for the constant c,
which indicates that the diffusion is ahead of the corre-
sponding Markovian process with no caging.

The spectral density Z(w) is obtained by taking the
Fourier transform of the VACF:3®
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FIG. 9. Vibrational properties of /-Si. Left panel: velocity
autocorrelation function Z(z). Right panel: the corresponding
power spectrum Z(w).

Z) =2 [ “Z(t)cos(wt )dt . (a1
mYo

Z(w) is shown in Fig. 9. Besides the low-frequency
diffusive modes, one can identify vibrational modes
reflecting covalent bonding effects. These can be associ-
ated with the shoulder of Z (w) at the frequency of ~40
meV, which is quite close to the optical vibrational fre-
quency of ¢-Si just below the melting point.*!

In Fig. 10 we compare the power spectrum of the sys-
tem dynamics resulting from our first-principles MD
simulation with that of the SW liquid.*! The two spectra
are significantly different. In particular, the dynamics of
the SW liquid bears a close resemblance with that of the
corresponding crystal, as signaled by the presence of two
broad peaks that are remnants of the crystalline acoustic
and optical vibrational modes, respectively. This again
indicates the tendency of the SW potential to overem-
phasize tetrahedral bonding.

VI. ELECTRONIC PROPERTIES

There are not many experimental data on the electron-
ic structure of [-Si. As mentioned in the Introduction,
metallic character results from measurements of both the
dc (Ref. 10) and ac (Ref. 4) electrical conductivity. How-
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FIG. 10. Spectral density Z (w) of the SW liquid (solid line,
from Ref. 31) compared to the one of our simulation (dot-
dashed line).
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ever, detailed information on the occupied and unoccu-
pied electronic density of states is missing. Only the par-
tial density of p states in the valence band has been ex-
tracted from x-ray-emission experiments.’ These data
have been interpreted as indicating substantial free-
electron-like behavior, with no sign of the sp mixing at
the bottom of the band, which occurs in both the crystal-
line and amorphous phases.

On the theoretical side, a qualitative discussion on the
density of states of /-Si was made by Gaspard et al.,'*
who assumed the geometric structure to be dominated by
sixfold-coordinated atoms which were modeled by simple
cubic (sc) and white tin (B8-Sn) forms. More recently,
studies based on more realistic structural models were
performed by Allen and Broughton® and by Jank and
Hafner.’ All investigations agree in predicting metallic
character. In particular, Allen and Broughton generated
a SW liquid and used an empirical tight-binding model to
calculate the density of states and the frequency-
dependent electrical conductivity with a Kubo-
Greenwood formula. In agreement with experiment, ap-
proximate Drude behavior was predicted, but the con-
ductivity was severely underestimated by a factor of 3
over the entire frequency range, presumably due to
nonsufficiently accurate momentum matrix elements.
Jank and Hafner generated a liquid structure using a PPT
potential. They limited their study to the electronic den-
sity of states, which was calculated with a self-consistent
linear muffin-tin orbital (LMTO) procedure within the
atomic-sphere approximation (ASA).*> They used a
liquid configuration generated by MD with a 64-atom cell
with periodic boundary conditions, similarly to what is
done in the present study. The result was an electronic
density of states that looked remarkably free-electron
like. Jank and Hafner analyzed also the effect of
Brillouin-zone sampling on their density of states and
found that, although some general features, such as e.g.,
the metallic character, are relatively insensitive to
Brillouin-zone sampling, the use of the k=0 point only
may give rise to additional structures. On the other
hand, a single special k point*® is already enough to pro-
duce a density that is quite close to convergence.

In all these approaches, atomic and electronic struc-
tures are viewed as separate problems and are handled
with different techniques. By contrast, in our scheme,
atomic coordinates and corresponding electronic ground
state are the result of a single and self-consistent pro-
cedure. Given the ground-state potential, occupied and
unoccupied KS states can be calculated for each liquid
configuration generated by MD. This makes possible to
compute a large number of electronic properties, the BO
adiabatic separation between electrons and ions being the
only basic approximation. Here we limit our investiga-
tion to study the electronic density of states and the
frequency-dependent electrical conductivity. In all the
results that we present below, we have considered only
the KS states at k=0. This is fully consistent with the
treatment of the electronic ground state that we adopted
to dynamically generate the atomic configurations. On
the other hand, this results in a poor energy resolution of
the calculated spectral properties. It would be rather
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straightforward (even if computationally more time con-
suming) to improve Brillouin-zone sampling in the calcu-
lation of spectral properties, as is customarily done in
conventional electronic structure calculations for crystal-
line systems. This and similar other refinements are left
for future work.

In Fig. 11 we report the single-particle electronic den-
sity of states N (E) calculated by averaging over 12 atom-
ic configurations well separated in time. These provide a
representative sample of the liquid, as can be seen by con-
sidering the contribution of the occupied states only to
N (E), averaged over the entire MD trajectory, which is
also reported in the same figure. N (E) displays metallic
behavior as evidenced by the absence of a gap at the Fer-
mi level E;. Considering the limited energy resolution of
the histogram, N (E) is remarkably free-electron like. We
expect that these general features will not change with a
more careful k-point sampling, whose main effect should
be simply to produce a smoother curve. A metallic densi-
ty of states for /-Si was also found in a previous simula-
tion by two of us, using a 54-atom cell and an energy
cutoff of 5.5 Ry.” This earlier result is also reported in
Fig. 11. The differences between old and new data are
somewhat enhanced by the different graphic presentation,
but they reflect also some real differences between the
two simulations. In particular, the old N(E) appears
more structured with the presence of three broad features
in the occupied band, somewhat reminiscent of the three
main peaks found in the valence band of ¢-Si. If these
features were real, they would suggest substantial sp hy-
bridization in the liquid state, contrary to the indication
of x-ray-emission experiments.’ In Ref. 9, Jank and
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FIG. 11. Electronic properties of /-Si. Upper panel: density
of Kohn-Sham eigenvalues N(E) from the present calculation
computed by (a) averaging over 12 configurations (solid line),
and (b) averaging over the entire MD trajectory (dot-dashed
line). The vertical line indicates the Fermi level Er. Lower
panel: density of Kohn-Sham eigenvalues N(E) from a previ-
ous simulation (Ref. 7).
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Hafner suggested that these features were spurious effects
resulting from poor k-point sampling. We believe that
this is only partially true, since the same Brillouin-zone
sampling is also used to produce the new data in which
the features are, to a large extent, washed out. The other
effect that should be invoked to explain the more struc-
tured shape of the old N (E) is the observed general ten-
dency to produce less metallic liquids with a small energy
cutoff. As we have already remarked, a low-energy cutoff
gives also rise to a more structured pair correlation func-
tion g (r) and, correspondingly, to a lower average coor-
dination.

We now turn to the electrical conductivity. A good
general discussion on the conductivity of metallic [-Si can
be found in Allen and Broughton.? We follow their treat-
ment. In the melt the current is carried both by electrons
and charged ionic cores. The contribution of positive-ion
cores to the current can be estimated from the Einstein
formula

2
U=———L(Z:)TD . (12)
B

In our case the ionic charge Z is equal to 4, the density
p=2.59 gcm_3, and D, the diffusion constant, as ob-
tained from our MD simulation, is ~2X107% cm?s™ L.
At the temperature 7= 1800 K, formula (12) gives a con-
ductivity of ~1.8X107* (uQ cm)™!, i.e., about two or-
ders of magnitude smaller than the measured value,
which for [-Si is (1.0-1.3)X 1072 (uQ cm) ™~ !. Hence the
ionic contribution to the electric current is negligible. If
nonadiabatic effects can be neglected, the electronic
contribution to the conductivity o(w)=1[o,, (@)
+o,,(0)+0,(w)] may be evaluated by means of the fol-

lowing Kubo-Greenwood (KG) formula:*
|M|?

_ 2me 252

0 aml0) =272

(=07
L

X8(e, e —hw)) . (13

Here the factor of 2 stands for double-spin occupancy, Q)
is the unit-cell volume, the brackets indicate temporal
average over the BO ionic trajectories, the indices i and j
refer to instantaneous adiabatic KS states, f; and f ; indi-
cate the Fermi distribution function, and the matrix ele-
ment M is given by (4;[(—id/9x)[4;).

In our calculation we have assumed 7=0 in the Fermi
distribution function. This is consistent with our general
treatment of the electronic ground state, as we have al-
ready discussed in Sec. II. We have checked, however,
that inclusion of electronic temperature effects, by put-
ting T=1800 K in the Fermi distribution function in Eq.
(13), only produces minor changes in the calculated o ().
We also note that the nonlocality of the ionic pseudopo-
tential, appearing in the energy functional [Eq. (2)], en-
tails a correction to the momentum matrix elements.*’
We have not calculated this correction, which is found to
be small, albeit not negligible (of the order of 10%), in
crystalline static calculations.*> Additional corrections
are expected from a proper treatment of the nonuniform
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electronic charge density (giving rise to the so-called
local-field effects*®). Besides, a proper treatment of
many-body effects would require the use of a Kubo*’
rather than a KG formula. In spite of all these approxi-
mations, use of Eq. (13) is substantially more accurate
than the standard treatment adopted for the conductivity
of liquid metals, i.e., Ziman theory."'8 Unlike Ziman
theory, which requires weak-scattering conditions, the
KG formula applies also to a strong-scattering environ-
ment when the electronic mean free path / is comparable
to the interatomic spacing a. This is the situation of /-Si
where, taking free-electron Fermi-gas parameters with
Z=4, a mean free path / ~4.5 A is estimated from the
measured conductivity.* This is not large compared with
the interatomic distance a ~2.5 A.

We report, in Fig. 12, o(w) calculated by averaging
over 12 ionic configurations. The finite width of the
binds in the histogram reflects the finite-energy resolution
of our spectral calculation. By extrapolating o(w) to
©—0, we obtain 04,=0.38 a.u. [0.0175 (uQcm)”!] in
fairly good agreement with the experimental value of 0.27
a.u. [0.0124 (uQ cm) " !].'% The dc limit in our calculation
has the largest uncertainty because the number of energy
levels with ¢; <Ep and g;>Ep diminishes rapidly as
0—0, causing a larger error bar in the low-w sector of
the histogram. Despite the short electronic mean free
path, the calculated o(w) shows a Drude-like falloff.
This behavior has been found also experimentally.* By
fitting a Drude curve

olw)=—29_

1+o?7?
to our data in the range of the experimentally investigat-
ed photon energies (1.2-3.1 eV), we extract a relaxation
time (rM¢°")71~2.93 eV in close agreement with the
value (7°*P)71~2.99 eV obtained by a Drude fit of the
experimental data.* In view of the difficulties, mentioned
above, involved in a first-principles calculation of the
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FIG. 12. Electrical conductivity o(w) as calculated from the
Kubo-Greenwood formula given in the text (solid line). The re-
sult of a Drude fit of the experimental data from Ref. 4 is also
reported (dot-dashed line). The Drude fit is from Ref. 4. The
dotted line indicates an extrapolation of the Drude fit outside
the range of the measured frequencies. Atomic unit of conduc-
tivity is used here [e?/7iay =4.6 X 10° (O m)~!].
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electrical conductivity of a liquid metal such as Si, the
overall good agreement with experiment is more than sa-
tisfactory.

An alternative simple estimate of o4, can be obtained
from the following approximate expression, obtained by
assuming the scattering to be so strong that / ~a (a being
an average nearest-neighbor distance):*

Spe’lg?
7T s o
with Sy being the area of the Fermi surface, / the mean
free path, and g=N(Ep)/N(Ep)4. This gives
04.=0.18 a.u. [0.0083 (uQcm)~!], in reasonable agree-
ment with both the KG formula and experimental data.

VII. CONCLUSIONS

We have presented an extensive molecular-dynamics
study of /-Si, based on a fully ab initio approach, in which
the interatomic potential is derived from the electronic
ground state within DF theory. The scheme is parameter
free and allows one to obtain both atomic and electronic
properties of a molten system from a single self-consistent
calculation.

The results for /-Si are rather encouraging. Structural
and electronic properties are all in excellent agreement
with the available experimental data. In addition, the
calculation has revealed several important details of the
microscopic dynamics that are presently not available
from experiment. These refer, for instance, to the triplet
correlations, the power spectrum of the system dynamics,
and the self-diffusion coefficient. Perhaps the most im-
portant result of the present study has been obtained by
analyzing the evolution of the valence electron density
that accompanies atomic motion. This has revealed per-
sistence of covalent bonding effects in /-Si, which mani-
fest themselves through peculiar local tetrahedral fluctua-
tions even though, on average, the majority of bonds are
broken. These covalent fluctuations are intimately con-
nected with the unusually open structure of metallic /-Si
and the accompanying strongly nonuniform instantane-
ous valence-electronic-charge density.

In the last few years important progress in the under-
standing of /-Si has been made through MD simulations
based on empirical or semiempirical effective classical po-
tentials.>®%%28731 Tt is therefore quite interesting to
compare the results of these approaches with those of our
first-principles simulation. In this paper we have con-
sidered, in particular, the fully empirical SW model® and
the semiempirical PPT model,>® which is based on an ap-
proximate theoretical treatment. Our analysis has re-
vealed that important qualitative differences exist be-
tween our liquid and the one resulting from the SW po-
tential, both at the level of triplet correlations®® and of
dynamical properties.’! Specifically, the tetrahedral
character appears overemphasized in the SW model, due
to the strength of the three-body interactions that are
necessary to stabilize the crystalline network. In nature
(and in our approach) the weakening of the directional in-
teractions that accompanies melting is automatically ac-
counted for by bond-breaking processes. On the other
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hand, tetrahedral fluctuations are presumably missing in
the PPT model,>® which only contains central two-body
interactions and, as a consequence, cannot be used to
study phases different from liquid. Interestingly, the
bond-angle distribution of the PPT model is very similar
to that of our first-principles simulation. Dominance of
central interactions in the liquid can be understood since
the majority of bonds are broken. Nevertheless, particu-
larly after seeing the nonuniform nature of the valence
charge density, we found rather surprising that a good
description of the structure of /-Si was possible within a
model based on electron-gas screening. But perhaps this
should not be considered surprising, since, after all, even
¢-Si is nearly free-electron like in many respects.®® Clear-
ly, a deeper assessment of the validity of perturbation
theory is advisable. This should require a more detailed
comparison with first-principles simulation data, includ-
ing, e.g., dynamical properties.

The present study has been based on a constant-volume
MD simulation in which the volume was assumed to
coincide, somewhat arbitrarily, with the experimental
equilibrium volume at the melting point. Constant-
pressure MD simulations®! are possible within the ab ini-
tio MD approach, as has been recently shown.’?> With
constant-pressure simulations, the equilibrium volume of
[-Si would be a result, rather than an input of the simula-
tion, and it would be possible to check the prediction of
the scheme for an important thermodynamic property
such as the volume discontinuity at the melting point.
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FIG. 13. S(k) (left panel) and g(r) (right panel) of I/-Si
(T~ 1800 K) obtained with an energy cutoff of 6 Ry (solid line).
The g(r) of a [-Si sample obtained with a cutoff of 5.5 Ry, from
a previous simulation (Ref. 7), is also shown for comparison
(dot-dashed line). The present data are averaged over a time of
~0.6 ps.
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FIG. 14. S(k) (left panel) and g(r) (right panel) of super-
cooled I-Si at T~1250 K (Ref. 53). The data correspond to a
fully converged cutoff of 12 Ry, and the averages are taken over
a time of ~1 ps.

APPENDIX: DETAILS
OF THE CONVERGENCE STUDY

We have carried out a convergence study of our [/-Si
calculation with respect to periodic boundary conditions,
cell size, inclusion of p nonlocality in the pseudopotential,
and energy cutoff in the plane-wave expansion of the elec-
tronic wave functions. The results were quite sensitive to
variations in the energy cutoff. The variations in other
parameters resulted only in minor changes.

The static structure factor and the pair correlation
function obtained with an energy cutoff of 6 Ry is shown
in Fig. 13. It appears that a low-energy cutoff produces a
more structured system having lower average coordina-
tion. Interestingly, the 6-Ry structure is similar to a
structure obtained in a preliminary calculation with a
54-atom fcc cell and a similar low-energy cutoff (5.5 Ry).’
This structure is also reported in Fig. 13. On the other
hand, a number of general qualitative features are com-
mon to the low-energy cutoff and the more accurate
liquid structures. In particular, this is the case for triplet
correlations, tetrahedral fluctuations, and metallic char-
acter of the electronic density of states. Further analysis
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FIG. 15. Effect of inclusion of p nonlocality in the pseudopo-
tential on the S (k) of I-Si. Solid line: both s and p nonlocality
are included; dot-dashed line: only s nonlocality is included. In
both calculations an energy cutoff of 12 Ry is used, and the
averages are taken over a time of 1.2 ps. To facilitate the com-
parison, both curves have been smoothed.
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reveals that the structure obtained with a low-energy
cutoff is similar to the structure of a supercooled liquid,
as it can be seen from Fig. 14, where we report the
structural characteristics of a supercooled liquid, ob-
tained with a converged energy cutoff of 12 Ry, at
T~1250 K. The same conclusion about the similarity
of a low-energy cutoff structure and a supercooled liquid
is also supported by the reduced diffusion coefficient ob-
served for the low-cutoff system.

The fact that, when using a very similar cutoff (6 and
5.5 Ry), the main short-range-order characteristics do
not change on going from a 54 fcc to a 64 sc cell, pro-
vides an indication for a relative independence of the
structural properties of our calculation with respect to
unit-cell size and shape. This can be interpreted by say-
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ing that the calculation of interatomic forces is reason-
ably converged with respect to BZ sampling. A more ex-
tensive test on the size dependence of the calculation
would require simulations for larger system sizes, which
have not been attempted so far.

In order to check the effect of the inclusion of p nonlo-
cality in the pseudopotential, we have performed a liquid
simulation run in which both s and p nonlocality were
taken into account. The resulting static structure factor
is compared in Fig. 15 with that obtained with a purely
s-nonlocal pseudopotential. Since the structure is largely
unaffected by the inclusion of p nonlocality, which, on the
other hand, results in additional computational cost, we
made the choice of using a purely s-nonlocal pseudopo-
tential in all our subsequent calculations.
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