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Electron kinetics in simple liquids at high electric fields
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A model for the motion of an electron in a simple liquid is presented. It is used in the Monte Carlo
simulation of the behavior of an assembly of electrons in liquid argon subjected to high electric fields.
To implement this simulation, a set of scattering rates for electrons have been obtained. Electron-energy
distribution, transport parameters (drift velocity, longitudinal, and transverse diffusion coefficients), and
ionization rate have been calculated. The distribution function has been found to be far from the usually
assumed Maxwellian form. For fields above 10 kV/cm, the drift velocity decreases with increasing field,
changing to a positive slope for fields above approximately 500 kV/cm. At higher fields, the ratio of the
longitudinal to transverse diffusion coefficient becomes greater than 1. These observations are a conse-
quence of having, with increasing field, a maximum in the backscattering rate, and an increasing number
of electrons with energies above that corresponding to the maximum in the total scattering rate. The
threshold field for ionization has been calculated to be approximately 2 MV/cm.

I. INTRODUCTION

Understanding the behavior of an assembly of excess
electrons immersed in a liquid background and under the
inhuence of an external electric field is of fundamental
importance for liquid-state electronics. To formulate a
statistical description of the behavior of the assembly, it
is necessary to obtain a description for the state of an
electron belonging to the assembly and for its evolution
under the action of the field. Two physical approaches
have evolved for addressing these issues in simple liquids;
namely, as perturbations of similar problems in crystal-
line solids and dilute gases. ' In the gas picture, the
liquid is viewed as a dense gas (the perturbation parame-
ter being the ratio of the electron wavelength to the
scattering free path), ' whereas in the solid picture the
liquid is viewed as a crystal with static (zero-energy) den-
sity Auctuations (the perturbation parameter being the
magnitude of the density Auctuation).

A number of macroscopic models have been proposed
to extend the above approaches to more complex situa-
tions. ' These models are based primarily on either
percolation theory ' or on the assumption that a state of
dynamic equilibrium exists among the available electron
states. ' ' Even in situations where the perturbation ap-
proaches are satisfactory, the complex nature of the
electron-liquid interactions must be greatly simplified in
order to arrive at tractable descriptions. These
simplifications are most severe in molecular liquids since
the interactions are sensitive to the shape and the polar
nature of the molecule.

The descriptions that have been developed have been
used mainly to investigate the behavior of the drift veloci-
ty of the assembly as a function of electric field, tempera-
ture, density (pressure), and, in a limited sense, the nature
of the liquid. This focus derives from the fact that the ex-
perimental investigations have concentrated on measure-
ments of the drift velocity' ' and transverse diffusion

coeKcient under a variety of conditions. The drift ve-
locity of the assembly of electrons in liquids has been ob-
served to vary over 7 orders of magnitude. ' This range
results, qualitatively, from the ionlike behavior of the
electrons in strongly polar liquids (such as water) to the
Bloch-state-like behavior in some liquid rare gases (ar-
gon, for example). Although in some cases qualitative
agreement has been obtained, considerable work remains
in the development of theoretical models that explains
the wide range of behavior that has been observed. These
results have been reviewed in a number of articles. '

In this paper a model for the motion of an electron in a
simple liquid is presented and used in the Monte Carlo
simulation of the behavior of an electron assembly in
liquid argon at high electric fields. To implement this
simulation, a set of scattering rates for electrons have
been obtained. These topics are discussed in Secs. II—IV.
Results for the energy distribution of electrons, transport
parameters (drift velocity and transport coeKcients), and
average ionization rate are presented in Sec. V, followed
by concluding remarks.

II. SEMICLASSICAL MODEL FOR ELECTRONS
IN SIMPLE LIQUIDS

A useful approach for describing the behavior of an as-
sembly of noninteracting electrons in a background medi-
um is to first determine the allowed stationary states for a
single electron, and then represent, in terms of these
states, the evolution of the electron under the inAuence of
what are then considered to be potential perturbations.
These two problems are closely related since they result
from the standard separation of the Hamiltonian describ-
ing the system into two parts, one of which is treated as a
perturbation.

Consider the continuum energy states corresponding to
ionization of an isolated atom, i.e., infinite interatomic
separation (see Fig. l). These states are characterized by
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FIG. 1. Schematic representation of the behavior of
representative isolated-atom electron states vs density. Their
behavior with density is indicated by the solid lines. At liquid
densities only one conduction band is assumed.

plane-wave functions (i.e., free-electron wave functions),
and may formally be considered to form a band (the
"conduction band" in the Bloch scheme ) with no ener-

gy upper limit and lower limit given by the ionization po-
tential E, . These (stationary) states are identified by the
conjugate coordinates (r, p), where r is position and p is
the momentum (p=A'k, where A' is Planck's constant di-
vided by 2~ and k is the wave number of the associated
plane-wave function). The energy-momentum relation,
E =E(p) =E(k), for these states is parabolic and isotropic.
That is,

p2 f2k2E=
2pl 2vpl

where m is the electronic mass. The relation between ac-
celeration and the applied field is given by Newton's law

dp d (A'k) = —eE,
dt dt

where —e is the charge of the electron and E is the ap-
plied electric field.

In dilute gases, such that the interparticle separation is
still large, but finite, the stationary electron states can be
taken to be the same as those for the isolated atom (free-
electron states), and the density of these states (per unit
energy interval) is also taken to be a continuous function
of energy going to zero at the band edge. The gas atoms
(and the applied field) are treated as isolated potential
perturbations that cause transitions between these states.
In addition, these atoms may introduce localized states at
their location leading to negative ion formation. (It is
also possible, in principle, to have localized states at the
bottom of the "conduction" band due to multiple scatter-
ing as discussed below for the condensed phase. )

In those crystalline solids for which the Bloch scheme
is useful, the description of electron behavior is formally
the same as for dilute gases. ' In the case of solids, the
free-electron band extends to lower energies than in the
gas phase (to the bottom of the usual conduction band)

and gaps appear in the energy-momentum relation, Eq.
(1) (this relation may no longer be parabolic nor isotropic
for all energies). This results from the inclusion of part of
the microscopic scattering potential in the definition of
the stationary free-electron states. ' Thus, the perturb-
ing potentials causing transitions between the states have
a different origin than in the dilute gas (where the com-
plete scattering potential is treated as a local perturba-
tion). Consequently, for both medium (when the result-
ing scattering rates are, by design, not large), the statisti-
cal description of the behavior of the electron assembly
can be eIII'ected within the framework of kinetic theory,
and in particular, the Boltzmann equation. ' In the
presence of localization (i.e., negative ion formation in
the gas and trapping in the solid) and when the dynamics
of the localized states can be treated within a similar
framework, this approach can also be used by grouping
the electrons into subassemblies according to the nature
of the states.

The description of electron behavior in simple liquids
follows from the above discussion. To formulate this
description, the energy-momentum relation for the free-
electron states (and possible localized states), and the per-
turbing potentials causing transitions between them, need
to be determined. Of particular interest is the question of
whether or not the energy-momentum relation contains
energy gaps (as in solids) since it has a significant effect
on the threshold for impact ionization in the liquid phase.
To qualitatively answer some of these issues, consider
what happens to the free-electron (conduction) band and
discrete (bound-electron) states of a system of atoms as
the interatomic separation is reduced from infinity to that
which exists in a simple Auid. ' The free-electron band
broadens downward toward low energies (see Fig. 1),
overlapping the high-energy discrete (Rydberg) states
which are themselves broadening. Consequently, the bot-
tom of the band is lower than in the dilute gas phase.
The question arises as to whether or not any of the
lower-lying discrete energy states, which are not over-
lapped by the free-electron band, is sufFiciently broadened
to be considered a band of free-electron states. Measure-
ments of the low energy limit of the free-electron band in
simple liquids show that it changes by a few tenths of an
eV in going from a dilute gas to a liquid. It is then
reasonable to assume that the lower-lying (in energy)
discrete levels remain degenerate, albeit shifted in energy
from their values in the dilute gas phase. This is
schematically shown in Fig. 1, where nl corresponds to
the density of the liquid. The disordered structure of the
medium becomes more pronounced than in the gas phase
in that the density of states at the bottom of the band has
a tail similar to that found in amorphous semiconduc-
tors, and which indicates the presence of localized elec-
tron states (such tail should also exist in dilute gases, al-
though at extremely low energies 6).

Thus, as for gases and crystalline solids, the description
of the behavior of an electron assembly in a liquid in gen-
eral requires the use of coupled subassemblies for free and
localized (trapped or attached) electrons. These
subassemblies are represented by time dependent, semi-
classical distribution functions f&(r, pt) and f&(r, E&, t) for
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free and localized electrons, respectively, where c& corre-
sponds to the energy level of the 1th localized state. In
this paper the contribution from trapped electrons is not
taken into account. In simple liquids, c, l is below the
meV range, so that for the fields of interest in this paper
(with free-electron energies in the eV range), their contri-
bution is expected to be small. This is presently being in-
vestigated.

Given the initial distribution of electrons over the
free-electron states, the distribution at any other time
may be obtained from either Monte Carlo simula-
tion, ' or from solution of the Boltzmann transport
equation (BTE) ' ' by either iterative or analytical
techniques. At present, the Monte Carlo approach has a
number of advantages over the BTE approach: It is rela-
tively easy to implement at six-dimension (r, p) space
simulation, it can be easily modified to accommodate any
number of interactions between the electrons and the
background, and it provides considerable physical insight
into the behavior of the electrons, including Auctuation
phenomena.

To implement either approach, the energy-momentum
relation for the free-electron states (the "conduction
band, " in the sense discussed earlier) and the effect of per-
turbing potentials on these states (the scattering rates)
need to be determined. These two issues are of course re-
lated. The model to be used for the energy-momentum
relation has the following properties: (1) is more charac-
teristic of the band in a dilute gas for the higher energy
electron states (i.e., parabolic, isotopic, and with effective
mass equal to the electronic mass), (2) takes into account
multiple scattering toward the bottom of the band via an
effective mass and thus becomes more characteristic of
the condensed phase (with effective mass different from
the electronic mass), and (3) has no energy gaps. The
transition region (in energy) between the two types of be-
havior may be approximately delineated from scattering
considerations (since this determines how the Hamiltoni-
an is partitioned for defining the free-electron states and
the scattering potentials). For electron energies such that
the electron wave packet extends over a distance that is
less than one or two times the interatomic separation, the
free-electron states are taken to be those of the dilute gas
and the microscopic (atomic) potentials are treated as
perturbations causing transitions between these states. In
this energy range, the transition probability between
states k, and k', W& i, , is obtained using Van Hove's for-
mulation. ' In the low-energy range, multiple-
scattering effects become important and it is then useful
to incorporate part of this scattering into the energy-
momentum relation by treating the liquid as a disordered
crystal, as done by Basak and Cohen. The transition
probability in this range is then obtained by using
deformation-potential theory. '

III. THE MONTE CARLO TECHNIQUES

A. Tracking the electrons

In the kinetic description of the behavior of the elec-
tron assembly, the objective is to determine the distribu-

AkE(1+aE)=
2m*

g2
e=pk + (k —ko), e) E, ;

(4a)

(4b)

where a is the nonparabolicity parameter, m* is the
effective mass of the electrons at the bottom of the band,
c., is the energy above which multiple scattering is not in-

corporated into the effective mass, k, is the value of k at
c, =e, from Eq. (4a), and p is chosen to assure continuity
at c=a, . To obtain continuity in velocity, a is taken to
be larger than I/E„ in which case p-A'+2am*. The
values chosen for these parameters are discussed in Sec.
IV. Equation (4) represents a nonparabolic energy band
with spherical constant surfaces. It reduces to parabolic
relations at both high and low energies with effective
masses equal to the electronic mass (characteristic of the
gas phase) and m *-0.75m (Ref. 37) (characteristic of the
condensed phase at a density of 2. 12X10 cm ), re-
spectively. Equation (4a) is often used as a model for the
energy-momentum relation in semiconductors.

The potentials not included in the definition of the
dispersion relation (i.e., free-electron states) cause devia-
tions from the free-flight trajectory defined by Eq. (1), i.e.,
they give rise to the scattering events that terminate each
free Aight. The duration of a free Aight, t„ is determined
from the probability for the occurrence of such an event
via the relation

R, =1—exp — I z c t dt (5)

where R i is a uniformly distributed random number in
the interval [0,1] and I'r is the total scattering rate,
which is a function of the time-dependent electron ener-
gy. Since the integral in Eq. (5) cannot in general be eval-
uated analytically, an explicit expression for t, cannot be
obtained. An alternate approach is to reformulate Eq. (5)
in terms of the momentum change due to the action of
the applied field during the time t, . A modified self-
scattering approach can then be used to explicitly evalu-
ate this change. Details of this approach are given in

tion function at time t, knowing its form at an earlier
time, to. In the Monte Carlo approach, a number of test
electrons are selected to represent the initial distribution
(typically 2000—3000), and their evolution simulated us-

ing statistical methods. The trajectory of a free electron
in the time interval from to to t is viewed as consisting of
a series of "free Bights, " each terminated by a scattering
event. It is assumed that this Aight, however small, ex-
ists. (In the limit of very large scattering rates, where the
Aights become infinitesimal, the free-electron states would
have to be redefined. )

The equation of motion during the free Bights is Eq.
(1), with the electron velocity, v, given by

v=V~e(p) .

As discussed in the previous section, the model chosen
for the energy-momentum relation of a free electron is as
follows:
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For the purpose of extracting information, the simula-
tion is divided into time sections of length t;. Since the
position and momentum of each electron are known (at
any time), the representative assembly is completely
characterized. To compute the energy distribution of the
assembly, the particles are sampled four times during a
time section. An averaged distribution over the section is
thus obtained, whose "coarseness" is determined by t,. (t,
is chosen between 10 ' and 10 ' sec, depending on the
scattering rate in the energy range of interest for a given
applied field). This "averaged" distribution is used in the
calculation of the macroscopic ionization rate.

The mean energy of the electrons is computed by sam-
pling the assembly once at the end of the section, i.e., at
t,-. The center of mass of the electron assembly Z„ the
averaged squared radial deviation from the axis (R ),
and the averaged squared longitudinal deviation from the
center of mass ( (Z —Z, ) ), are also calculated at the end
of the time section. The values for the drift velocity 8',
the transverse diffusion coefIicient DT, and the longitudi-
nal diffusion coefficient DL, are obtained, in steady state,
from the slopes of the least-squares straight-line fit to the
Z„(R ), and ((Z —Z, ) ) versus time data, respective-
ly; that is,

dz8'=
dt

D, = — ((z —z, ) ),=1 d 2
L 2dt

(6a)

(6b)

D,=
4 dt

(6c)

An example of this data is shown in Fig. 2. The max-

1.3

O

O
cj

1.25 E= 10kVlcrn

CD
l.2

cG

CD)
1.15

1.8 1.9

Time (10 s)

FIG. 2. Behavior of the center of mass of the electron assem-
bly, z„versus time in the steady state regime.

Ref. 33. A scattering event in general causes a discon-
tinuous change in the energy and momentum of the elec-
tron. The outcome of the event specifies the initial condi-
tions for the subsequent free flight. This outcome is
determined from the probability distribution for the type
of event and the differential scattering rates for each
event. These rates and probability distribution are given
in Sec. IV.

B. Sampling of information

dr, (p, p, )

1/2
~o+A

S(q (so, fico), fico)cr, (EO, O)v deco,
4m Eo

where Ace is the energy of the quasiphonon, o., is the
differential elastic scattering cross section for the isolated
atom, v is given by Eq. (3), q is the magnitude of the

imum percentage deviation of the data from the straight-
line approximation is less than 0.5% for E =10 kV/cm.
At the very high fields, the deviation in the (R ) data
can be as high as a few percent. The fIuctuation in each
quantity (i.e., variation from time section to section) has
also been computed in the steady-state regime. The Auc-
tuation in mean energy has been calculated to be less
than 3%%uo for all cases. The fiuctuation in the macroscopic
ionization rate is large since the largest field investigated
is near its threshold value and consequently the number
of particles being sampled is small.

IV. SCATTERING RATES IN LIQUID ARGON

The implementation of the approach outlined in Sec.
III requires knowledge of the total scattering rate, I T(E),
the probabilities for the various types of scattering
events, and the changes they cause on the state of the
electron. The total scattering rate is given by

I (E)= g I;(E) (7)

with I;(E) being the rate for event i Con.sequently, the
probability of event i, P;, is given by I;/I T. P; deter-
mines the type of scattering event occurring at the end of
the free Aight.

The rates that have been used for the simulation of
electron behavior in liquid argon are presented bleow. As
mentioned in Sec. II, for the fields of interest in this paper
(above 10 kv/cm), only the free-electron subassembly
need be considered.

At energies above E, (see Sec. III), where the free-
electron states approach those of a dilute gas, the scatter-
ing potential is the complete microscopic potential. The
interaction of these high-energy electrons with liquid ar-
gon result in two types of scattering: (a) difFuse (although
the response of the liquid is neither a true collective mode
nor that of an isolated atom, this type of scattering is
reminiscent of phonon scattering in solids and "elastic"
scattering with recoil in gases. It leads to the emission or
absorption of a "quasiphonon"). And (b) electronic exci-
tation of individual atoms (at threshold energies shifted
from their isolated atom values. At the higher threshold
energies, these are reminiscent of exciton states in solids;
whereas, at the lower energies they correspond to those
of the isolated atom).

The rate for diffuse scattering can be obtained using
the concept of dynamic structure factor introduced by
Van Hove. ' The rate, dI „for emission of a "quasi-
phonon'* of energy Ace resulting from a transition from a
state of momentum pp to a final state with momentum p,
lying in a small solid angle dQ and in the energy interval
cp+d E. is
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change in electron momentum [q=po —p, where po and p
are related to the initial and final energies via Eq. (4)],
and S(q, irico) is the (coherent) dynamic structure factor.
The rate for quasiphonon absorption, d I „can be found
from detailed balance by substituting in Eq. (8)

S( —q, —irido) =S(q, %co)exp( Ace—/kT) .

The scattering rates for electronic excitation to the jth
state, I ., are also obtained from Eq. (8), with cr, replaced
by the corresponding isolated atom excitation rate. The
energy threshold values for excitation have been shifted
from their values in the gas phase to reAect the effect of
the surrounding molecules. The ionization threshold in
argon has been taken to be equal to c.;

—AE;, where Ac.;
corresponds to the bottom of the conduction band in the
liquid relative to its value in the gas phase (see Fig. 1).

The sources for the elastic differential scattering cross
section for argon, o.„are as follows: (i) for energies
below 2 eV, Weyhreter et al. ; above 2 eV and angles
below 100', Srivastava et al. ;" above 10 eV and angles
between 100' and 155', Vuscovic. ' A phase shift expan-
sion has been used to obtain the cross sections for all oth-
er angles and energies, with values normalized to obtain
the total scattering cross sections of Ferch et al. for en-
ergies up to 20 eV and extrapolated to 30 eV using the re-
sults of Jost et al.

The dynamic structure factor has been obtained as fol-
lows. For momentum transfer in the range 1.0—4.4 A
and energy transfer in the range 0—10.6 meV, the experi-
mental data of Skold et ah. has been used. The theory
of Vineyard and Pathak and Singwi has been used to
extend the range of energy and momentum transfer such
that integration over deco yields the structure factor,
S(q), of Eisenstein and Gingrich for momentum
transfer below 2.5 A ', and that obtained from the
Percus-Yevick equation with a hard sphere diameter of
3.4 A for momentum transfers above 2.5 A

The total emission I, rate, for energies c0& E, is ob-
tained by integrating Eq. (8) over all angles and quasipho-
non energies. The total rates for the other processes
(quasiphonon absorption and electronic excitation) are
obtained in a similar fashion. The changes in electron en-

ergy and momentum due to the scattering are determined
by the energy lost in the process and the angle into which
the electron is scattered. Consequently, for diffuse
scattering, the probability for the emission of a quasipho-
non with energy Ac@ is given by

phononlike and (b) disorder scattering. In this work, the
rate obtained by Ascarelli has been used, scaled down by
a factor of 4 in order to obtain continuity at the selected
value for c., =0.075 eV. This value corresponds to the
maximum energy for which the free path for disorder
scattering is calculated. In order to have a smooth transi-
tion at this value of energy, a has been taken to be 20
eV '. For the fields of interest in this paper (above 10
kV/cm), this range of energy was found to play a minor
role in determining the behavior of the assembly. Be-
cause of this, the rates given by Eq. (8) were subsequently
used for the whole energy interval. Presently, the scatter-
ing rates in this energy range and in the transition region
about c., are being reevaluated in order to obtain a
smoother transition and be able to carry out calculations
at lower fields.

The total effective cross section for quasiphonon emis-
sion (defined as r, /¹)is shown in Fig. 3. Also shown
for comparison is the total elastic scattering cross section
in the dilute gas phase from Ferch et aI. and Jost
et al. Note that the Ramsauer minimum is still present
in the liquid phase although slightly less pronounced and
shifted toward lower energies. However, due to the limi-
tations of Eq. (8) for evaluating the rates at the lower en-
ergies, this can only be taken as an indication of the actu-
al behavior. To elucidate the influence of the shape of
the cross-section [o, in Eq. (8)], simulations have also
been carried out with modified sets of cross sections, ob-
tained from those presented (labeled set 1) as follows: (a)
set 2, same as set 1 except that for energies below the
minimum the effective cross section in the liquid phase is
kept constant at its minimum value (i.e., no Ramsauer
minimum); (b) set 3, in Eq. (8), the total gas phase cross
section is used instead of the differential cross section, o.,
For this set, the angular dependence of the scattering in
the liquid phase is entirely due to the dynamic structure
function; and (c) set 4, same as set. 3 except that for ener-
gies below the minimum the effective cross section in the
liquid phase is kept constant at its minimum value (i.e.,

10

1p

p-16

(9)

While the probability for the scattering of an electron
into an angle 8 due to quasiphonon emission is given by

s, =j'j dr, /r, . (10)
0 0

O
O
Q) ) p-17
CO
Q)
O

C3
g

p-1S

Argon at 86 K

liquid: emission

gas: total elastic

The corresponding probabilities for quasiphonon absorp-
tion and electronic excitation are obtained from Eqs. (9)
and (10) by substituting 1 ~ and I, respectively, for I, .

For energies below c„since part of the microscopic po-
tentials have been taken into account in the effective
mass, the remaining perturbing potentials give rise to (a)

q
p-19

o.oo& 0.0 0

Energy (eV)

FICi. 3. Total liquid-phase quasiphonon emission rate, I „
and total gas-phase elastic scattering rate vs energy for Argon at
a temperature of 86 K and density of 2. 12X 10 cm
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no Ramsauer minimum). Other variances have also been
investigated [for example, using the gas-phase momen-
tum transfer cross section in Eq. (8) instead of the
differential cross section] but the results are similar to
those obtained with the above sets. The results obtained
with these four sets of cross sections are discussed in the
next section.

Using Eqs. (1)—(10), a Monte Carlo algorithm can be
developed to simulate the behavior of the electron assem-
bly. Further details for developing such algorithm are
given in Refs. 32 and 33.

V. STEADY-STATE BEHAVIOR OF THE ELECTRON
ASSEMBLY

A. Energy distribution function

where 8'is the drift velocity, 6 is an average energy loss

0 i i i j I I I j i r I ] i i i j i i I 1 I I i j I I I j i I I

10

O

Lt

10

10

—-(~)

10

105— i i I
j

1 I
j

1 I I
j

I I i
j

I I I
j I I I

j
I i i

6 8 10 12 14 16

Energy (eV)

FIG. 4. Normalized electron energy distribution function in
liquid argon, f lc, ), vs energy, with applied field as a parameter.
A straight line corresponds to a Maxwellian distribution. The
fields in kV/cm corresponding to each of the curves are: (a) 10,
(b) 90, (c) 200, {d) 500, (e) 1000, and (f) 2500.

To elucidate the physics of the behavior of the elec-
trons in liquid argon subjected to a constant electric field,
the evolution to the steady state of an initial 5-function
distribution in energy has been simulated. The value tak-
en for the initial electron energy has no effect on the
steady-state results. The liquid temperature in the simu-
lation is 86 K, since experimental data for drift veloci-
ty' ' and transverse diffusion coefficient as a function
of field are available.

The steady-state distribution for various applied fields
is shown in Fig. 4. In the lower range of fields considered
in this paper, as the field increases from its lowest value,
electrons are heated up rapidly due to quasiphonon
scattering and leading to a flattening of the distribution.
The rapidly increasing scattering rate with electron ener-

gy "equilibrates" the tail of the distribution at an
equivalent temperature, TT, given from the average ener-

gy balance equation, by

kTT=qEW/(5v„),

factor, and v„ is a net (quasiphonon) emission rate. For
E =10 kV/cm, v„, 5, and 8'are found from the simula-
tion to be l. 6X 10' sec ' (approximately) 10, and
6. 1 X 10 cm/sec, respectively. Equation (11) yields for
kTT-3. 8 eV. A straight-line fit to the tail of the distri-
bution [curve (a), Fig. 4] yields kTT-4. 4 eV, which is in
reasonably good agreement. Note that Eq. (11) does not
yield the mean energy (see, Fig. 6 below) since the distri-
bution is far from Maxwellian. Further increases in field
(to tens of kV) causes the equilibration to occur at higher
energies, but the tail temperature remains nearly constant
(see Fig. 4). Similar behavior is observed in multivalley
semiconductors as a result of the increase in intervalley
scattering. At a very large field (above 1 MV/cm), the
equilibration occurs near the energy, c —12 eV which
corresponds to the maximum in the total scattering rate.
Consequently, the tail also begins to heat up and Aatten.
At fields above 3 MV/cm, some electrons in the tail are
not equilibrated and become runaways.

B. Transport parameters and mean energy

The transport parameters and mean energy corre-
sponding to the distributions shown in Fig. 4 are shown
in Figs. 5 —7. They have been calculated following the
procedure described in Sec. III. The low-field range (near
and below 10 kV/cm) corresponds to the small (positive)
differential mobility regime (i.e., small d W/dE), dis-
cussed in the literature. The values obtained for the
drift velocity up to 10 kV/cm are in good agreement with
the experimental value' and those obtained by Sakai
et al. , also using a Monte Carlo approach, ' and Cohen
and Lekner using a Boltzmann approach. ' For increas-
ing field, the faster than exponential increase in the total
scattering rate, coupled to the increase in the backscatter-
ing rate with energy, gives rise to drift velocity saturation
and to a regime with negative differential mobility. Al-
though the negative differential mobility obtained in this
work is smaller than that obtained by Sakai et al. ' and
Cohen and Lekner, ' the overall behavior is very similar,
and not in agreement with experiment. This behavior, as
discussed below, is primarily due to the increase in the
backscattering rate with energy, also noted by Sakai
et al. ' Since this behavior has not been observed experi-
mentally and since no assumptions have been made in the
Monte Carlo approach regarding the angular dependence
of the distribution (such as the two-term spherical-
harmonies expansion used by Cohen and Lekner'), simu-
lations have been done with three other cross-section sets
(see Sec. IV) to provide insight into the origin of the cal-
culated negative differential mobility. The drift velocity,
mean energy, and diffusion coefficients for fields of 200
kV/cm and 500 kV/cm (in the regime of negative
differential mobility) and for each set of modified cross
section is tabulated in Table I. Note that the behavior of
the low-energy liquid phase cross sections has little effect
on the results (largest effects are on the diffusion
coefficients) in this range, as can be ascertained by com-
paring the results from set 1 [Eq. (8)], set 2 [Eq. (8) with
cross sections below the minimum at 0.25 eV set equal to
the minimum value], and set 4 [Eq. (8) with total gas
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FIG. 6. Mean, E, and characteristic, eD„/p, energies vs ap-
plied field.

cross section and cross sections for energies below the
minimum set equal to the minimum value]. Moreover,
this observation also applies to the angular dependence of
the gas phase scattering cross sections, as can be seen by
comparing the results from set 1 [Eq. (8) with the gas
phase difFerential scattering cross section] with those
from set 4 (where the total gas phase cross section is used
instead). These results are not surprising since the mean
energy at these fields is well above the energy at the
cross-section minimum. Thus, for a distribution function
that is relatively fiat as a function of energy (see Fig. 2),
electrons with energies below the minimum have little
effect on the average properties of the assembly. The re-
sults also show that the origin of the negative differential
mobility lies with the increase in the backscattering rate
with energy, which behavior stems from the dynamic
structure function, S(x., co). It is not clear at present how
to resolve this discrepancy with experiment. At
sufriciently high fields, a significant number of electrons

FIG. 7. Longitudinal DL and transverse DI diffusion
coefficients vs applied field. Note the reversal in the magnitude
between these coe%cients at fields near 20 kV/cm and 1.5
MV/cm.

in the distribution are found at energies above the max-
imum in the backscattering rate (approximately 6 eV) and
ultimately above E. , so that the difFerential mobility
again becomes positive and the drift velocity increases
rapidly with field.

The mean-electron energy is shown in Fig. 6 to in-
crease monotonically with field. For fields near 10
V/crn, the results for the mean energy presented are in
reasonable agreement with those of Gushchin et al. ,
however, at lower fields the discrepancy becomes
significant (factor of 2 at 10 kV/cm). The characteristic
energies, eDL/p and eDT/p have also been calculated
from the results. For a Maxwellian distribution, these ex-
pressions are equal to the mean energy, and the
differences in their values can be used as a measure of the
departure from such a distribution. For all fields, eDT/p
has been found to be considerably higher than the mean
energy. At 10 kV/cm, eDT/p=3 eV, which is near the
calculated temperature of the tail of the distribution
(namely, 3.8 eV), but considerably higher than the mean
energy of 1.4 eV. However, at higher fields, it also be-
comes considerably higher than the tail temperature (at
70 kV/cm, eDT/@=11 eV, whereas the tail temperature
is nearly constant in this range). Thus, it has not been
possible to ascribe a physical significance to this energy.
In contrast, the ratio eDL/p has a smaller variation with
field for fields below 500 kV/cm, and its value is closer to
the tail temperature. This is in agreement with the obser-
vation that the tail of the distribution is Maxwellian in
character as a result of equilibration in the presence of
the field. At higher fields, it also follows the trend of the
tail temperature. The behavior of this ratio with field is
shown in Fig. 6.

The transverse and longitudinal diffusion coefficients
are shown in Fig. 7. As the field increases, the ratio
DL/DT is observed to become less than one for fields
above 20 kV/cm, again becoming greater than one for
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TABLE I. Comparison of results obtained with cross sections given by Eq. (8) (set 1) with those ob-
tained with the modified cross-section sets (sets 2, 3, and 4, see text).

Cross-section set

8'
(10' cm/sec) {cm /sec)

DT
(cm /sec) (eV)

3.1

3.4
3.3
3.1

5.5
2.5
3.7
4.25

39.7
47.5
40.0
45.0

3.6
3.65
3.64
3.7

E =200 kV/cm

2.7
2.5
2.6
2.7

2.7
2.45
1.4
1.7

18.6
24.7
25.0
27.5

5.0
4.8
5.0
4.9

E =500 kV/cm

fields above 1 MV/cm. Both reversals arise from a com-
bination of having high (low) energy electrons at the front
(back) of the assembly (see Fig. 8, where the radially in-

tegrated mean energy is shown as a function of axial posi-
tion; the fluctuation in energy at the front of the assembly
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FIG. 8. Radially integrated, mean electron energy vs axial
positions with times as parameter for applied fields of 10 kV/cm
and 2.5 MV/cm. The times, t, corresponding to each of the
curves are (a): (a) 0.08 ns, (b) 1.04 ns, and (c) 2.0 ns; in (b): (a) 0.6
ps, (b) 7.8 ps, and (c) 15.0 ps.

are due to the small number of electrons being sampled)
and the energy and angle dependence of the scattering
rate.

At the front, the increase in energy of the electrons
brought about by the electric field acting on the longitu-
dinal diffusion current ' leads to a decrease in the local
drift velocity with increasing field above 10 kV/cm. At
these fields, a large fraction of the electrons are going
through the minimum in the scattering rate with energy.
For increasing fields above 1 MV/cm, the energy increase
leads to an increase in the local drift velocity since the
forward scattering increases with energy (i.e., the distri-
bution becomes more anisotropic toward the front). At
the rear of the assembly, the diffusion current acting
against the field leads to a decrease in energy and a con-
comitant change in the local drift velocity. This velocity
increases with field above 10 kV/cm, whereas it decreases
with increasing field above 1 MV/cm.

As a consequence of the behavior of the local drift ve-
locity at the front and rear, the assembly contracts longi-
tudinally (relative to its radial behavior) with increasing
field above 10 kV/cm resulting in a relative decrease in
D„with respect to DT and thus a decrease in their ratio.
With increasing field above 1 MV/cm, the assembly ex-
pands longitudinally resulting in an increase in the
DL/DT ratio. The behavior of DL/DT with field may be
used as an additional experimental test for the charac-
teristics of the Ramsauer minimum in liquid argon.
There are no measurements of the diffusion coefficients at
these values of field with which to compare the results
presented.

C. Ionization rate

Macroscopic (moment) descriptions of electron dynam-
ics require knowledge of.the rate coefficients that appear
in the corresponding equations. In a one-moment
description (in terms of the continuity equation for elec-
tron density), the necessary rates are the averaged free
electron gain or loss rates. For the applied fields con-
sidered in this paper, the effective loss rate (due to
trapping/detrapping) is essentially zero. The focus in
this regime is on the dependence of the ionization rate on
the applied field. This issue is most important for deter-
mining the breakdown mechanism in the liquid phase.
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TABLE II. Ionization rate in liquid argon.

Applied field
(MV/cm)

1

2
2.5

Ionization rate
(sec ')

2.8X10
1.0X10'
3.4X10'

The ionization rate has been computed from the relation

Nv; = J I;(E)f(E)s' dc, , (12)

where I; is the energy dependent ionization rate obtained
from Eq. (8) with o., replaced by o.;, the ionization cross
section; N is the liquid density; and the threshold energy
for ionization (i.e., the band gap) is taken to be equal to
15.6 eV. The results are shown in Table I.

The threshold field for ionization is found to be slightly
below 2 MV/cm. There are no experimental values avail-
able for ionization rate in liquid argon. Electron
avalanches have been observed in liquid xenon at lower
fields, as would be expected, since the ionization thresh-
old is lower.

VI. CONCLUDING REMARKS

A model for the motion of an electron in a simple
liquid has been presented in Sec. II. This model has been
used to implement a Monte Carlo simulation of the be-
havior of an electron assembly in liquid argon. To ac-
complish this, a set of scattering rates for electrons in
liquid argon have been obtained and presented in Sec. IV.
The steady-state behavior of the assembly in the presence
of a dc electric field has been investigated. The depen-
dence of the energy distribution, transport parameters,
and ionization rate on electric field has been obtained. At
the lower values of field, the calculated value of drift ve-
locity is in good agreement with experiments and previ-

ous calculations. As the field increases above 10 kV/cm,
a region of negative differential mobility has been ob-
served. This behavior, although in qualitative agreement
with previous calculations, is not in agreement with ex-
periments. A positive differential mobility is again ob-
served for fields above 100 kV/cm when a substantial
number of the electron population is in the energy range
above the peak in the backscattering rate. For fields
above 3 MV/cm, a significant number of electrons in the
distribution are found with energies above that corre-
sponding to the maximum in the total scattering rate. A
small percentage of these electrons can gain more energy
from the field than they transfer to the liquid and thus be-
come runaways. This is rejected in the field dependence
of the ratio D L /D T which has been found to become
greater than one above 1.5 MV/cm.

In order to determine the mechanism leading to the
electric breakdown of liquids, it is important to assess the
dependence of the ionization rate with electric field. It
has been shown that for fields above 2 MV/cm, the ener-

gy distribution extends beyond the threshold for electron
impact ionization, yielding a nonzero value for the ion-
ization rate. Thus, above this field, electron avalanches
can develop. Such avalanches have been observed in
liquid xenon (at lower values of field since the ionization
threshold is lower). Presently, there are no experimental
results at the higher fields for the longitudinal and trans-
verse diffusion coefficients with which to compare the re-
sults presented.

As pointed out in the paper, a number of discrepancies
remain to be resolved. To do so will require further im-
provements in the values presented for the scattering
rates and the dispersion equation, Eq (4a), particularly
near the transition region between the gaslike and solid-
like representations.
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