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Size effects of dislocation stability in nanocrystals
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In this paper the size effect of lattice-dislocation stability in nanocrystals (NC’s) caused by a
strong interaction of dislocations with interfaces is analyzed. When the nanocrystallite size / be-
comes less than the characteristic length A, a substantial dislocation redistribution in the nanocrys-
tal may occur. This length is estimated to be dozens of nanometers and depends on the character of
interfaces: coherent or incoherent (slipping), on a difference of elastic moduli of NC phases, etc.
Simple analytical estimations of A on the basis of exact calculations have been obtained.

INTRODUCTION

When the dimensions of solids are comparable with the
correlation length of some physical phenomena (e.g., the
Cooper-pair length, an exciton size, a dislocation pileup
length, etc.), a detailed revision of all physical properties
of solids becomes necessary, usually referred to as size
effects. Size effects may also occur for structural ele-
ments of massive solids (crystallites, pores, etc.).

When the size of crystallites is very small (of the order
of nanometers), most physical properties of the polycrys-
tals should suffer a noticeable change. Usually such poly-
crystals are called nanocrystals (NC’s) (see, for example,
Ref. 1).

Mechanical properties of solids are, in most cases,
structure sensitive, so an influence of size effects on the
behavior of lattice defects in crystals ought to drastically
change their physicomechanical characteristics. One of
the most important crystal defects determining mechani-
cal properties are lattice dislocations.

For individual small crystals, as were shown earlier,?
lattice dislocations tend to leave the crystals when the
crystal size is less than the characteristic length
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Here G is the shear modulus, b is the Burgers vector of
the dislocation, and o , is the Peierls or friction stress. In
the case of NC’s (especially in the case of heterogeneous
ones), the dislocation behavior is much more complicat-
ed. This paper presents a theoretical analysis of the prob-
lem of lattice dislocation stability in NC’s.

RESULTS

Situations realized for dislocations in NC’s may be
considered as intermediate between several cases with the
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idealized dislocation geometry and crystallite shape.
Here two model situations are analyzed: a prismatic cir-
cular dislocation loop axially arranged in a spherical
crystallite, and a straight-line edge dislocation parallel to
the axis of an infinite cylinder (see Fig. 1).

The elastic properties of a real NC are taken into ac-
count as follows: the nanocrystallite has the isotropic
elastic moduli GV, vV, where G'!' is the shear modulus
of the nanocrystallite and v'! is its Poisson’s ratio. The
effective matrix around the nanocrystallite has the elastic
moduli G,y M =y M=y, G'™ is estimated by means of
the rule of the mechanical mixture:*
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here f; are the volume fractions of NC constituents. The
state of the NC interfaces may be described by two
different models—a coherent boundary (the intercrystal-
lite sliding is constrained) and a slipping boundary (slid-
ing may be provided by the high mobility of grain bound-
ary structures, particularly at high temperatures; such a
boundary does not transmit shear stresses).

A mathematical formulation of the boundary condi-
tions is described in the following.

(1) A coherent boundary: vV, =ulm|,,
o'V, =0'™]s. Here i=1-3, the index n corresponds to
the normal to the interface s, indices (1) and (m) denote
the elastic fields in the considered nanocrystallite and in
the isotropic matrix, correspondingly, and U; and o ;; are
displacement and stress tensor components, respectively.

2) A slipping interface: U =U™|, o'}l
o, o™, =0, jn.

For an arbitrary lattice defect in a nanocrystallite, the
elastic fields may be represented by the sum*
05-}(‘)‘” +0§;‘)im, k=1,m. The first term stands for the
stresses generated by the defect in an infinite solid. The
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second one corresponds to “image” stress fields providing
the fulfillment of the boundary conditions written above.
For the analysis of the dislocation stability in NC’s, it
is necessary to evaluate the force that affected a disloca-
tion inside the nanocrystallite. This force corresponds to
the image stresses o{"™.°> For the geometries illustrated
by Fig. 1, the force component (per unit dislocation
length) acting in its glide plane is as follows: F,=b,o (™
for the model of the sphere [Fig. 1(a)] and F, =b, o)™
for the model of the cylinder [Fig. 1(b)]. Here b, and b,

U;i,)im=G(m)G(”(G(M)"‘G(”)—I[ZW(l—v )2]*1(bx /a)

are the magnitudes of the Burgers vector of the prismatic
dislocation loop and the edge dislocation, corresponding-
ly.

In the case of the cylinder with a coherent interface,
the simple formula for the image force obtained in the pa-
per® has been used in our analysis. In the case of the
cylinder with the slipping interface, the boundary prob-
lem has recently been exactly solved® by means of the
Kolosov-Muskhelishvili method.” The image stress for
the present case has the following form:

Xpcosp{sing[®(n,p?)p "As;p*+s5,p%+53)+5,/(1—p?)+ssp>+s6)]

+cosp[@(n,p)p ~H(s1p*tsgpitsg)ts o/ (1=p?)+sypits ),

=[G V3 +4v)+G™]/[20(1—v NG+ G"™)] .

Here p =p/a [see Fig. 1(b)], ®(n,p?) is the hypergeome-
trical function

D(x,y)= 3 yn+x)"1,

n=1

and s; are cumbersome combinations of elastic moduli.

One should note that an analogous inverse problem for
the case of a cylindrical inclusion and an edge dislocation
near the latter was analyzed in detail in Ref. 8.

The force F, for the model of the sphere and both
types of interfaces has been obtained by means of a
method developed in Ref. 9. (For details of the deriva-
tions of image forces F, and F,, see Ref. 6.)

To analyze the stability of glissile dislocations in NC’s,
the obtained elastic forces should be compared with the
friction forces acting on a dislocation in the crystal lat-
tice. As a rule, the Peierls stress o, gives a dominant
contribution in dislocation friction processes. It is useful
to introduce two parameters characterizing the disloca-
tion stability in NC’s. The first one, A=V, /V, is the rel-
ative volume of dislocation equilibrium, where V is a
nanocrystallite total volume and ¥, is a volume of the re-
gion of the dislocation equilibrium in this nanocrystallite,
corresponding to the fulfillment of the condition

—b,,0,<F,,<b, 0

xX,z=p

The second parameter is the characteristic length A
defined here as the radius of the cylindrical or spherical
nanocrystallite having A=1. Thus, A can be called the
characteristic size of the dislocation stability. Exact
dependencies of A and A on the NC characteristics are
very awkward; therefore, here they are represented
graphically by Figs. 2 and 3.

It is worth mentioning that, when the effective elastic
moduli of the external matrix are substantially less than
the elastic moduli of the nanocrystallite, the behavior of
the dislocations is similar to their behavior in the case of

AT
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FIG. 1. Models of nanocrystallites containing dislocations.
(a) A prismatic circular dislocation loop with the Burgers vector
b, in an elastic isotropic sphere having elastic moduli G'V,p"
and- located in an effective matrix having elastic moduli
G',v'™. (b) A straight-line edge dislocation with the Burgers
vector b, in an elastic isotropic cylinder with elastic moduli

GV and located in an effective matrix with moduli
G(m) v(m)
,0im,
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FIG. 2. Relative volume A of the dislocation equilibrium in a
nanocrystallite in dependence on the parameter Q=2Icg,/G"b,
characterizing the nanocrystallite size and its material, and the
elastic modulus ratio '=G'"/G'™. (a) A spherical nanocrys-
tallite with a coherent boundary, (b) a spherical one with a slip-
ping boundary, (c) a cylindrical nanocrystallite with a coherent
boundary, and (d) a cylindrical one with a slipping boundary.
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FIG. 3. The dependence of the characteristic length of dislo-
cation stability in nanocrystallites A on the parameter
3=2log,(G'"/o,) and the ratio of the elastic moduli
I'=G"/G'™. (a) A spherical nanocrystallite with a coherent
boundary, (b) a spherical one with a slipping boundary, (c) a cy-
lindrical nanocrystallite with a coherent boundary, and (d) a cy-
lindrical one with a slipping boundary.
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free nanoparticles.2 However, for screw dislocations, an

additional factor of stability, provided by the Eshelby tor-
sion, may arise.'®

DISCUSSION

Generally speaking, dislocations are thermodynamical-
ly non-equilibrium (metastable) objects. Their presence
in crystals is provided by the friction forces constraining
the dislocation exit from crystals. When the interaction
of dislocations with polycrystal interfaces in NC’s be-
comes comparable with the Peierls force, an essential
dislocation redistribution should occur. In particular,
these regions in nanocrystallites can appear from where
glissile dislocations are being expelled.

Figure 2 displays the dependence of the relative
volume of dislocation equilibrium A on the crystallite size
I, the Peierls stress o,, and the elastic modulus ratio
r=G6'"/G'™. One can see from this figure that A de-
creases with /; it has an especially steep change when [ is
less than ~G'Vb /0 ,. This dependence expresses the
size effect of dislocation stability. Besides, A nonmonoto-
nously alters with T'; although, in the case of nanocrystal-
lites with slipping boundaries, this tendency is less pro-
nounced. An accurate analysis of the tensile stresses
shows that they are caused by the following effect: the
image force F, , changes its sign in the crystallite volume
even when I'=1 for these boundary conditions. Thus, in
this case one may introduce three conventional regions:
a region of a dislocation equilibrium (—b, 0, <F,,
<b,,0,), a region of a dislocation expelling
(F,,>b, ,0,), and a region from where dislocations are
being removed to the first one (F,,<—b,,0,). In-
coherency of the interface means that the crystallite is
less sensitive to the elastic-field features of its matrix (one
may imagine that atomic bindings across the interface are
cut) in comparison with the case of the coherent bound-
ary conditions. Thus, volumes of the regions alter less
noticeably with a change of elastic moduli I'" than in the
latter case.

It is clear for the coherent boundary [see Figs. 2(a) and
2(c)] that dislocations in crystallites are absolutely stable
when I'=1 as one may expect (small deflections from the
strict equality ¥, to ¥ at T =1 is caused by the numerical
averaging procedure).

As follows from the definition of A that the above-
described size effect of the dislocation stability in NC’s

takes place when / <A. The dependence of the charac-
teristic length A on o, and I is presented in Fig. 3. A is
always inversely proportional to the Peierls stress o, as it
follows from the equality of the Peierls stress o, and the
image stress which is proportional to G'Vb /I. An impor-
tant feature of all the dependencies is the presence of a
peculiar fold. In other words, there exists such a value
T, of the ratio I that the size effect becomes very weak
(or disappears at all in the case of coherent boundaries
[Figs. 3(a) and 3(c)]. For coherent boundaries the critical
ratio I', is equal to 1 for any geometry, while in the case
of slipping boundaries I', =0. 6 for the geometry illustrat-
ed by Fig. 1(a) and T',=1.4 in another case [Fig. 1(b)].
When I' > T, the dislocations are expelled from the NC
and the dislocation density decreases; when I' <T., the
opposite situation takes place.

In a number of physically important situations, one
may assume that G''=~G'™ (as in case of homogeneous
NC’s) and obtain the following approximation:

A=[6+6,(T—1)1Gb /a, . 2)

Here 0,=0, 0,=0.1sgn(I'—1) for the sphere with a
coherent boundary; 6,=0.06, 6,=0.17 for the sphere
with a slipping boundary; 6,=0, 6;~0.08 sgn(I"—1) for
the cylinder with a coherent boundary, and 6,~0.04,
6,= —0.05 for the cylinder with a slipping boundary.

The parameter A corresponds to a dramatic change of
lattice dislocation density in NC’s and can be measured
experimentally. Theoretically predicted values of A for
some homogeneous metal NC’s with slipping boundaries
are presented in Table I.

In reality, the magnitude of A should be somewhat
higher since dislocations may be bound with boundaries
with stacking faults or may intersect the boundaries, etc.
In the first case, an additional force proportional to y at-
tracts partial dislocations to the interface (where y is the
specific energy of the stacking fault). In the second case,
the presence of a conjugated boundary step gives an addi-
tional force proportional to G''b?/I stimulating the
dislocation exit from the nanocrystallite. For an arbi-
trary geometry one should also take into account the
effect of the shortening of the dislocation length. These
forces may intensify the process of the dislocation redis-
tribution.

One should mention that, in the case of precipitations
of ordered alloys constituting nanocrystals, the antiphase

TABLE 1. Characteristic length A of dislocation stability for metal nanocrystals with slipping inter-
faces. The data for o,, G'", and b can be found in Refs. 2 and 4.

Cu Al Ni a-Fe
G (GPa) 33 28 95 85
b (nm) 0.256 0.286 0.249 0.248
o, (1072 GPa) 1.67 6.56 8.7 45.5
A (nm), sphere 38 18 16 3
A (nm), cylinder 24 11 10 2
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boundaries may play the same role as the stacking faults
discussed above. The antiphase boundary energy, as a
rule, is two or three times more than the stacking fault
energy (for instance, in the Cu;Au, see Ref. 11), thus the
considered interaction must be more intensive.

The reasons considered above show that, if the condi-
tion [ < A is fulfilled, all glissile dislocations in elastically
stiffer phases of heterogeneous NC’s will come to the in-
terfaces in some time, while in elastically softer phases,
dislocations will be confined in the central part of the
nanocrystallites.

For aged NC’s with I < A, internal stresses may appre-
ciably relax due to dislocation redistribution. Plastic
shear in such NC’s should be localized near the inter-
faces.

CONCLUSIONS

(1) When the size of the grains in nanocrystals becomes
less than the characteristic length A, the dislocation ar-

rangement and density drastically change. This effect
can occur even for homogeneous nanocrystals having
mobile boundary structures (slipping boundaries). Glis-
sile dislocations are predominantly arranged near inter-
faces. (2) There exists such a value I', of the elastic
modulus ratio I' for a heterophase nanocrystal that the
size effect of the dislocation redistribution essentially
weakens. In the case of coherent boundaries, I", always
equals 1, while for slipping boundaries I', depends on the
geometry of crystallites and dislocations.

(3) For nanocrystals with the crystallite size less than
the characteristic length A, a peculiar aging process
occurs.
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