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The discrepancy, found in a recent numerical study, in the temperature dependence of the cross-
section formula resulting from a suggested modification of the impulse approximation is shown to origi-
nate in a spurious factor of = T present in the third central moment of the proposed dynamic structure
factor.

In a recent paper Mayers et al. ' consider the
modification, proposed by Stringari, of the impulse ap-
proximation (IA) to the incoherent dynamic structure
factor S(tc, E) of neutron scattering. They find that this
prescription, denoted by SIA in the following, "works
well for two systems" at low temperatures and this, to-
gether with some general arguments, "provides strong
support for its validity. "

Their numerical comparison of the exact S, the stan-
dard impulse approximation S,A and the proposed S»A
in the case of a harmonic crystal proves, in any case, that
the temperature dependence of the SIA formula is corn-
pletely erroneous: Ss&~ shows a markedly wrong behav-
ior for all not too low temperatures T ~ AcoD even at arbi-
trary large recoil energy R =A tc /2M [Figs. 2(a)—(c) in
Ref. 1], whereas the "unmodified" S,~ for R &&A'coD be-
comes a fairly good approximation to S at intermediate
or high temperatures. (Here tc and c. are momentum and
energy transferred to the scatterer and ~~ is Debye fre-
quency; since IA has a sense only for the "deep inelastic"
scattering R )A~D, ' and SIA is meant for the same
domain, our discussion is limited to this range. ) Noticing
this failure, Mayers et al. define a "crossover tempera-
ture" T, =0.3ficoD below which SIA would be preferable
to IA.

The aim of this Comment is to point out that, though
SIA is principally wrong in its prediction for S for all
temperatures, the error manifests itself most spectacularly
in the increasingly large asymmetry of S»A as the temper-
ature augments. This is demonstrated by the explicit T

dependence of the skewness of S discussed below, ex-
plaining the numerical findings of Ref. 1.

Why and how SIA must fail to describe the variation
of the asymmetry of S with T is immediately seen by
looking at the third central moment sz of S, a general
measure of its asymmetry about (E)=R. The known
sum rule for s3 gives

s~ =f (8—R) S(a., s)de=Rid' (b V)/3M, (1)

where b. V is the Laplacian of the (isotropic) potential
binding the scattering nucleus of mass M in the con-
densed state; ( b, V) = 3M ( co ) is an "average force con-
stant" for a harmonic system. The skewness, in energy
units, is conveniently defined as s, =s3/s2, where
sz= —', R (Ei,;„) is the second central moment. (The di-
mensionless coefficient of skewness usually defined is
a3=c, /sz which diminishes, in our case, with increas-
ing R. We are interested here, however, in the behavior
of S as a function of c. at a given sc and not as a function
of the reduced variable E/sz~ . ) By Eq. (1) and the quot-
ed value of s2 one has

E, =s /s =A' (b, v)/4M(E„;„) .

Before comparing the T dependence of s, in Eq. (2) with
that predicted by SIA, we look at a related quantity 5@0,
the shift, with respect to R, of the energy value co, where
S has its maximum. The relation between 6co and skew-
ness c, is found on the basis of the Nelkin-Parks expan-
sion for S: '

S(K,E)= 1/(2''~ a)exp
—(~~ —&~~&&) 1+ y P (tc)H

7i =3

(e —R)
2(x

(3)
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5EO—=Eo
—R = —s3/2s2= —A' (b, V) /SM(Ek;„) . (4)

To arrive at this result, 5Eo/2a (1 has been assumed at
the outset, which is indeed consistent with the solution
Eq. (4), since 5EO is seen to be independent of R, as is e, in
Eq. (2), and u-R '~ . The contribution of the omitted
terms with HS, H7, . . . to 5co is not easy to estimate in
general, when all of them effectively contain terms first
order in 1/R ', but for a harmonic crystal this is not the
case, the expansion Eq. (3) is asymptotic in powers of this
parameter so that Eq. (4) is seen to hold in O(1/R' ).
Further, with (b V)/3M=(co ) and (E„;„)= —,'T(1
+Pi (co )/12T ), we —obtain

5EO ———E, /2= —irt (co )/4T+O(1/T )

for a harmonic system.
The above expressions for c., and 5co show how the

asymmetry of S disappears with increasing T: that is why
the symmetric S,A can become at all a reasonably good
approximation to S at higher temperatures (Fig. 2 of Ref.
1). By the proposed SIA prescription, however, the max-
imum occurs at Fp si~=R (E„;„),and a direct calcula-
tion gives s3 s,~ ———',R (Ei,;„) in O(1/R). Thus, since

(Ek;„)—,'T for T/Picots 1, b—oth $3,sIA and 5EO, sIA con-

where the first, exponential factor is S,A for systems with
Gaussian momentum distribution, and subsequent terms
with even- and odd-parity Hermite polynomials H„build
up the symmetric, respectively antisym metric com-
ponents of S. Here a=(s2/2)'~ =(—', R(Ek;„))'~, and
g„'s are algebraic expressions of the central moments s„;
for example, (3=2' s3/3s2 =E, /3a, which is 2' /3
times just the coeKcient of skewness o.3 defined above.
For a Gaussian system g„'s are, for n even, of the order of
= 1/R, and gz, g7, . . . contain, generally, terms with first
and higher powers of 1/R ' . For a system with an arbi-
trary, non-Gaussian momentum distribution a partial
summation leading to S&z can first be done, and the g„'s
in the remaining series have the above property. By
equating the derivative of S in Eq. (3) to zero and retain-
ing only the leading antisymmetric term H3 we find

tain, as compared to Eqs. (1) and (4), an additional factor
—T, leading to an increase instead of a reduction of the
skewness of Ss,A as T rises.

Although completely wrong in its temperature depen-
dence, the SIA prescription might still work for T=O,
i.e., for T «AcoD, as proposed and suggested also very
recently. To be sure, the symmetrical S&A becomes, in
this range, insufficient even for relatively large R s; in
fact, an "antisymmetric" component (with respect to
e =R ) of S was observed, at momentum transfers ic= 10
0
A ', for low temperature liquids like helium and
neon, ' so that the possibility to obtain new informa-
tion on the dynamics of the scatterer via Eq. (2) or (4)
arises.

Can this information be obtained by the SIA? As not-
ed above, this prescription shifts the position of the max-
imum of S by 5EO s&A= —(Ei,;„), which is of the right
sign, but it does not correspond to Eq. (4) [for example, for
low temperatures s3 s,~/s3=3(co) /2(co ) in O(1/R)
for the harmonic crystal]. On trying to describe width
and skewness of S with a single parameter (E„;„),the
SIA necessarily requires 8M ( E„;„) to stand . for
fi (b, V)t, a procedure with no justification even at low
temperatures.

On the other hand, lower-T high-R data are usually in-
terpreted on the basis of Eq. (3), where the correction
terms complementing S&A insure that the sum rules, in-
cluding Eq. (1), are exactly satisfied. On lowering T the
g„'s increase and, for a general system, terms with n ~ 4
in Eq. (3) may be important indeed for any T. In spite of
this practical difficulty, Eq. (3) represents a sound basis
for data analysis even at low temperatures. ' '"

In conclusion, E, =s3/s2 characterizing the skewness
of S is proportional to the quantity iit (5 V)/ M( E„;„);
this determines in leading order also 6co and varies for
T~ficoD as 1/T for a harmonic system, in contrast to
c., s&A or 5co s&A which increase linearly with T. This
gross violation of the third (and, for the matter, also the
higher) sum rules by the SIA follows from its enforced
one-parameter description of the dynamics of the scatter-
er, which amounts to the loss of the dynamical informa-
tion contained in Eqs. (2) and (4).
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