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The most important elements of ab initio calculations of x-ray-absorption fine structure (XAFS) are
studied. To obtain accurate results without ad hoc adjustable parameters, we find it essential to include
(i) curved-wave effects, (ii) a complex, energy-dependent self-energy, (iii) an approximate molecular po-
tential, and (iv) a fixed energy reference for the photoelectron wave number. Based on these findings, an
automated code has been developed for ab initio calculations of single-scattering XAFS, in which
curved-wave effects are treated exactly in terms of effective backscattering amplitudes, inelastic losses
and self-energy shifts are incorporated with use of a Hedin-Lundqvist self-enegy, an automated relativis-
tic overlapping-atom muffin-tin potential is used, and the energy threshold is estimated from electron-gas
theory. The efficiency of the code is made possible by analytic expressions for the Hedin-Lundqvist self-
energy. This code replaces existing tables of XAFS phases and scattering amplitudes and yields reliable
theoretical XAFS standards for arbitrary pairs of atoms throughout the Periodic Table (Z <94). These
results are comparable to those from self-consistent calculations and are valid to within about 20 eV of
the absorption edge. Comparisons with experiment are presented for Cu, Ge, Pt, Br,, and GeCl,. The
calculated XAFS amplitudes are found to be accurate to within 15%; XAFS phases are accurate to
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within 0.2 rad; and nearest-neighbor distances are typically accurate to within 0.02 A.

I. INTRODUCTION

X-ray-absorption fine structure (XAFS), i.e., the oscil-
latory structure in the x-ray-absorption coefficient, con-
tains much quantitative information about the local
atomic structure surrounding an absorbing atom. This
information includes near-neighbor distances R, coordi-
nation numbers Ny, and structural and vibrational disor-
der in bond distances o2, i.e., the structural quantities ap-
pearing in the curved-wave XAFS equation,
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Here, fog(mk,R)=|f q(m, k,R)Ield)'“T is the effective
curved-wave backscattering amplitude,! &° is the final-
state /-wave central-atom phase shift, A is the mean free
path of the photoelectron, and S3 is a many-body ampli-
tude reduction factor, all of which must be taken into ac-
count to extract structural information from experiment.
Thus XAFS analysis always requires a comparison with
an accurately known reference system, either experimen-
tal or theoretical.

Heretofore, theoretical standards have usually been
less successful than experimental standards because of the
approximations and ad hoc parameters needed in theoret-
ical models.>® Tables of extended x-ray-absorption fine
structure (EXAFS) phases and amplitudes are the most
commonly used theoretical standards,>* and each of the
previously available tabulations has its drawbacks: The
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tables of Teo and Lee® are based on a theory appropriate
to the EXAFS regime, which takes into account inelastic
losses and self-energy shifts but neglects curved-wave
effects. The tables of McKale et al.* take curved-wave
effects into account but neglect inelastic losses. Both of
these tabulations require the use of the energy reference
or “inner potential” E as a free fitting parameter. Since
such ad hoc parameters compensate for other errors in
the theory, such as those caused by the plane-wave ap-
proximation (PWA) or errors in the scattering potential,
they need not have a direct physical interpretation. Our
goal in this work is to develop a more complete theoreti-
cal model, which remedies the above drawbacks and
reduces as much as possible the need for such fitting pa-
rameters.

There are several key factors in the theory. The impor-
tance of curved-wave corrections in XAFS has been ad-
dressed by several authors.’®>71 It is found that the
PWA introduces errors of up to 1 rad in the XAFS phase
and up to 25% in the amplitude, even at energies above
70 eV from the edge.’ Moreover, the high-energy regime
appropriate to EXAFS is not the PWA, but rather an
asymptotic theory that includes important spherical-
wave corrections.! As curved-wave corrections are now
well understood, we focus our attention on the other im-
portant ingredients in the theory. The need in XAFS cal-
culations for scattering potentials, which include a com-
plex, energy-dependent self-energy, has also been dis-
cussed.>®'>12 Ground-state potentials can introduce er-
rors of 0.1 A in nearest-neighbor distance determina-
tions.? These phase errors remain even if inelastic losses
are included phenomenologically, in terms of a mean free
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path. Such errors can be partially corrected with a shift
in E,, but only at high energies. The construction of the
scattering potential is another important consideration,
and approximations such as nonrelativistic- or
renormalized-atom potentials have limited validity. Fi-
nally, a consistent energy reference E, when comparing
theory and experiment is important to render physical
significance to shifts in E,. One of the main goals of this
work is to assess the relative importance of these factors
in a quantitative theory of XAFS. We do not discuss
multiple-scattering corrections in this paper; however, we
may expect that the same considerations for the scatter-
ing potential and self-energy will apply in more complete
applications that include multiple scattering.

The remainder of this paper is outlined as follows. In
Sec. IT we describe each step in the calculation of XAFS
spectra. Section III details different prescriptions for the
scattering potential and their effects on XAFS phases and
amplitudes. Section IV contains a brief discussion of our
ab initio code FEFF based on the results of III. Section V
contains several comparisons with experiment, and Sec.
VI contains a summary and conclusions. A brief descrip-
tion of FEFF, which focuses on the results for the new
XAFS phases and amplitudes, rather than the underlying
theory, will be published elsewhere.'?

II. Ab initio XAFS CALCULATIONS

In this section the basic steps in the calculation of
XAFS are described.

A. Atomic charge densities

The importance of relativistic calculations of atomic
charge densities in the generation of XAFS scattering po-
tentials has been stressed by Teo and Lee,? especially for
heavy atoms. They find, for W, for example, that non-
relativistic charge densities lead to errors as big as 0.8 rad
in the EXAFS phase and 10% in the amplitude, at ener-
gies as high as k =5 A ~!. Such errors are comparable to
those caused by the PWA. Consequently, we use a self-
consistent Dirac-Fock-Slater atom code. Our atom code
is adapted from the Hartree-Fock program of Desclaux.!*
We have automated the code to calculate charge densities
for any atom in the Periodic Table up to americium, with
a single input parameter, the atomic number Z. In the
case of the absorbing atom, the atomic configuration is
chosen as that with a hole in a given core-hole state (X,
L, etc.) and an extra electron in the first unoccupied lev-
el of its electron configuration. This corresponds to the
electronic configuration of a neutral (i.e., screened) atom
of atomic number Z + 1 with a core hole and local atom-
ic screening. Screening of electrons in neighboring atoms
is ignored. This is an approximation to a fully relaxed
final state. By comparison, Lee and Beni? and Teo and
Lee® approximate the absorbing atom with (Z + 1)-atom
charge densities. We feel that our prescription is an im-
provement, since it is based on self-consistent calcula-
tions and since the XAFS is dominated by the fully re-
laxed primary channel.’

The starting point of the charge-density calculation is
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the self-consistent solution of the Dirac equation for all
occupied electron states in the spherical potential,
Vau(r)=Ve(r)+V, (p.(r)). Here V(r) includes the
Coulomb potential of the nucleus and the Hartree poten-
tial, and V, (p) is the von Barth—Hedin local-density ap-
proximation to the exchange-correlation potential.!>~!’
The spherically averaged atomic charge density is calcu-
lated from the radial parts of the spinor components for
each electron in the atom, summed over all occupied
states.

B. Ground-state muffin-tin potential

Given the atomic charge densities and atomic poten-
tials, we construct the scattering muffin-tin potential
following one of several prescriptions, including
renormalized-atom potentials, overlapped-atom poten-
tials, and self-consistent potentials. Details are discussed
in Sec. III below. We find that an overlapped-atom po-
tential yields XAFS phases and amplitudes comparable
to those from self-consistent molecular potentials.!®!®
The renormalized atom is found to be unreliable in poly-
atomic materials. In addition to the ground-state
muffin-tin potential, V(r)=V(r)+V,  (p(r)), a muffin-
tin charge density p(r), and interstitial potentials ¥V,
and charge densities p;,,, are generated.

C. Electron self-energy

To obtain excited-state wave functions, the
Schrodinger equation must be replaced by a Dyson equa-
tion in which the role of the ground-state exchange-
correlation potential V,  is taken by the electron self-
energy =(E,p).> Our self-energy, which is intended for
energetic photoelectrons, is constructed within the local
density approximation,'® using the ground-state local
charge density. Because the self-energy is not as well un-
derstood as ground-state V., we have considered several
commonly used forms. Besides the complex-energy-
dependent Hedin-Lundqvist (HL) self-energy,’®?! one
may use the real-valued, energy-dependent Dirac-Hara
(DH) potential,”> or energy-independent ground-state
V,.»'® together with a constant imaginary part. In our
formulation we define the excited-state self-energy such
that it reduces to the ground-state V. (p) at threshold
E=pu. For the HL potential, for example,

S(E,p)=2y(E,p)—Zui(u,p)+V,.(p) . (2)

D. Energy reference E,

As an approximation to the energy threshold, we iden-
tify the energy reference E, with the chemical potential
of a homogeneous electron gas at the interstitial density
with density parameter 7,

“z%k%(rs)+Vint(M:pint) ’ (3)

where k;(r,)=1.9192/r, is the local Fermi momentum,
ro=(3/4mp,,)'"3, and V,,(u,p) is the interstitial potential
at threshold. This approximation introduces tolerable er-
rors of a few eV in the estimated chemical potential com-
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pared with self-consistent calculations, the latter yielding
a slightly lower value. In the case of Cu, u—V,, differs
by about 4 eV from the result of self-consistent band-
structure calculations.!®?

When comparing with experiment it should be noted
that the value of the chemical potential i depends on the
density of states near the threshold and generally does
not correspond to the midpoint of the absorption edge.
Thus it is desirable to fix the experimental energy refer-
ence by matching the peaks observed in measurements of
the total x-ray-absorption curve u(E) to near edge calcu-
lations.

E. Partial-wave phase shifts

The calculation of XAFS requires the solution of a
scattering problem in which the excited photoelectron
moves freely in a background interstitial potential V,  (E)
and is scattered by muffin-tin potentials,

AV(E,r)=V(E,r)—V(E),

that vanish outside the muffin-tin radii. Thus we deter-
mine complex partial-wave phase shifts for every atom by
integrating the Dirac equation (neglecting the spin-orbit
coupling) up to the muffin-tin radius with the scattering
potential AV(E,r) and matching to decaying free spheri-
cal waves with wave vector

p=V?2[E+iT/2—V, (E)].

We determine /_,,(p) phase shifts at each energy, where
Imax ~PRyr, i€, up to about 20 phase shifts for
k<20 AL

F. Curved-wave XAFS calculation

We determine the exact, curved-wave, single-scattering
XAFS spectrum, x;(E) from!

Y (E)=—Im3 NRS%f(‘fT,P;R ) (2R +25‘)e—202p2 @
R PR
In Eq. (4) it is assumed that only a single final-state angu-
lar momentum, / =/, is important, which is generally a
good approximation.?* Thus for L or Ly; absorption
we only include transitions to a d final state. For K-shell
absorption in a polycrystalline sample, for example, the
effective scattering amplitude

Fm,p,R)=|F(m,p,R)|e’®
is

Flmp,R)== (—D 2l +1)

1

P
, (I +1)c (pR)+Ic}_;(pR)
! 21 +1

(5)

Here c¢;(x)=i'xe "*h,(x) is the polynomial part of the
spherical Hankel functions, which is calculated exactly
by recursion. For polarized x rays we still can use Eq.
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(4),2>26 for K-shell absorption in a single crystal, provided
we replace f(m,p,R) by

F(m,p,R,0,)=cos*0 f Om,p,R)+sin’0y f V(m,p,R),
(6)

where 65 is the angle between the bond vector R and the
polarization vector €, and

f(O)(ﬂ,p,R)'—’% > 21 +1)(—1)
!

[(I +1)¢; 4 (pR)+1Ic,_,(pR)]?

Xt >
! (20 +1)
(7a)
2
F(1) o 1 1 I(I+1) C[(pR)
(mp,R)=—=F QI +1N—-1)t)————
(7b)

Expressions for absorption from an arbitrary shell have
been given by Benfatto et al.?’” We remark that although
Eq. (1) and Eq. (4) give the same results for Y;, the quanti-
ties appearing in these equations are not the same, since
the complex photoelectron momentum p, which is refer-
enced to Vj,, is not the same as the wave number k,
which is referenced to threshold.

It is essential that the extrinsic loss of the photoelec-
tron be adequately taken into account. These losses can
be assigned to three physical processes: (i) inelastic
scattering by a uniform electron gas of density equal to
the average interstitial density, which is represented by
exp(—2R Imp), i.e., by a mean free path for the photo-
electron A=1/Imp, (ii) inelastic scattering in backscatter-
ing atoms contained in f(m,p,R), and (iii) inelastic
scattering within the absorbing atom given by
exp(—Im26°). Since the imaginary part of the scattering
muffin-tin potential, Im[Z(E,p(r))—Z(E, p;, ], is positive
deep within an atom where Im2(E,p) vanishes (see Fig.
1), terms (ii) and (iii) can also contain inelastic gains.

-0.25 -

-0.50 —

-0.75 -

Im £ (Ry)
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-1.25
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FIG. 1. Imaginary part of the Hedin-Lundqyvist self-energy
for photoelectrons with E=64 Ry (dashed line), E=25 Ry
(thick solid line), and E=1 Ry (thin solid line), in a Cu atom.
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However, the inclusion of all three terms prevents double
counting of inelastic losses.
We note that the definition of

p=V2[E+il/2—V(E)]

and the fact that V;,(E) is energy dependent implies that
our definition of the XAFS phase is different from other
formulations where the vacuum or another fixed energy is
taken as the energy reference. The effect of a real energy
reference, as in Refs. 2 and 3, on the backscattering am-
plitude and phase was discussed by Tran Thoai and
Ekardt in the context of plane-wave calculations.?® They
observed differences in the phase of up to 1 rad and
differences in amplitude of up to 20%.%°

Other inelastic losses must also be considered. Inelas-
tic processes related to the relaxation of the core hole
give rise to the many-electron overlap reduction factor S3
and a core-hole lifetime broadening, i.e., E—E +i(I" /2).
This broadening also gives a contribution to the mean
free path discussed above. In our program default values
for T are interpolated from the tables in Ref. 30. Values
for S2 are taken from independent calculations or experi-
mental measurements.®332  Typical values are
S$3=0.85-1.1. This simple prescription seems to remain
a reasonable approximation even when interference be-
tween intrinsic and extrinsic losses is included.!> Howev-
er, a more complete treatment of the energy dependence
of S2 is desirable,® and its use as a constant fitting param-
eter is one of the least satisfactory aspects of our present
work.

III. SCATTERING POTENTIAL IN XAFS

Motivated by the need to understand what constitutes
an adequate treatment of the scattering potential in
EXAFS, we have compared several different prescrip-
tions. In this section we study their effect on calculated
XAFS amplitudes and phases. First we discuss prescrip-
tions for the Coulomb potential V- and second prescrip-
tions for the self-energy =(E,p). We also present a new
explanation for the energy scaling that was observed to
give agreement between experiment and band-structure
calculations of x-ray absorption.

A. Coulomb potential

Although chemical effects may be well approximated
by self-consistent calculations of the potential,'®!? it is as
yet impractical to carry out such calculations routine-
ly. Thus the accuracy of less precise approximations
must be assessed. To this end we considered the fol-
lowing prescriptions for the Coulomb contribution
to the scattering potential: free-atom potentials,
“renormalized-atom” potentials, overlapped-atom poten-
tials, and a self-consistent potential obtained from band-
structure calculations. For the moment the self-energy
will be ignored. The total ground-state scattering poten-
tial is then calculated by adding to the Coulomb contri-
bution V(r), the ground-state exchange-correlation po-
tential, of von Barth and Hedin.!”
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All the XAFS calculations were performed following
the outline in Sec. II. For calculations using free-atom
potentials, phase shifts were computed with the scatter-
ing potential set to zero outside the Wigner-Seitz sphere.
The renormalized-atom potential was generated by trun-
cating the charge density outside the Wigner-Seitz radius,
rws and reintroducing it inside as a constant charge den-
sity. The contributions ¥V and V,_ were then calculated
from this renormalized-charge density. The interstitial
potential and charge density were taken to be the values
at the Wigner-Seitz radius. The overlapped-atom poten-
tial is constructed according to the Mattheiss prescrip-
tion:3* In this method atomic charge densities are over-
lapped and spherically symmetrized around each site. In
our approach the muffin-tin radii around each atom are
chosen according to the Norman prescription,** in which
the charge around each atom of atomic number Z is in-
tegrated up to the Norman radius 7, defined as the ra-
dius of a neutral sphere containing Z electrons. This is
analogous to the unit-cell charge neutrality requirement
in the Wigner-Seitz method. The muffin-tin radii are
then obtained by scaling the 7y by a constant factor until
the muffin-tins touch. Overlapping by 10% does not
significantly change the XAFS, so we do not consider this
effect here. The interstitial averages are determined by
averaging the charge and potential between the muffin-tin
and Norman radii.®> While the renormalized-atom
method gives results for monatomic materials compara-
ble in accuracy to those based on the Mattheiss prescrip-
tion (see Fig. 2), its use in polyatomic materials ignores
chemical bonding effects and leads to unacceptable
discontinuities in muffin-tin zeros.?>3* For this reason an
overlapped-atom potential is generally preferable. Final-
ly, to assess the importance of self-consistency, we used a
self-consistent potential obtained from linear muffin-tin
orbital band-structure calculations.!’

In Fig. 2 we compare the phase of filtered k*y XAFS
from Cu experiornent32 at 190 K and from calculations
with R=2.540 A using the above prescriptions. We also

25c + ¢ (rad)

k(A)

FIG. 2. Filtered XAFS phase (26°+ ®) for the first coordina-
tion shell of Cu (K edge) with ground-state potentials: (a) tables
of Ref. 4, (b) atomic potential, (c) self-consistent potential, (d)
“renormalized-charge” potential (indistinguishable from over-
lapped potential curve), and (e) experimental data.



4150

present a curve based on the tables of Ref. 4. Since the
ground state V. was used in this comparison, no extrin-
sic losses were included, and all calculated amplitudes
were larger than the experimental amplitude. In the
phase comparisons, a factor 2kR was subtracted from the
total XAFS phase in Eq. (1). The experimental energy
reference E,, was chosen by comparing the total absorp-
tion curve of experiment with near edge band-structure
calculations,!® and no shifts in E, were allowed [see Fig.
6(a)].? To avoid ambiguity, both calculated and experi-
mental XAFS were filtered in an identical manner, with a
filtering window 1.68 <R <2.79 A and a Hanning func-
tion on the edges of width 0.2 A.

As seen from Fig. 2 self-consistency is only important
for k <3 A 7! (i.e., within about 30 eV of threshold) with
all calculated curves giving similar results in the high-
energy region. The finding that self-consistency is gen-
erally unnecessary for ab initio XAFS calculations per-
mits an important simplification. Although self-
consistent potentials may be needed at lower energies, the
differences with experiment observed in Fig. 2 for k >3
A 7! cannot be eliminated by better prescriptions for V.
This discrepancy indicates that the errors incurred by the
use of ground-state self-energies calculations can be as
large as those due to the PWA and hence that excited-
state self-energies and other many-body corrections are
essential in XAFS calculations.

B. Self-energy in XAFS

The use of an excited-state self-energy in the scattering
potential for XAFS calculations was first discussed by
Beni, Lee, and Platzman.’® Subsequently Lee and Beni?
found that the GW plasmon-pole self-energy of Hedin
and Lundqvist’®?! can give good agreement between
theoretical and experimental XAFS phases. However,
this comparison was done in the context of plane-wave
calculations, using E, and S3 as fitting parameters. Oth-
ers have found that a Dirac-Hara form?? for the self-
energy can also lead to good agreement.’” To assess the
accuracy of these self-energies more precisely, it is there-
fore necessary to perform comparisons with experiment
using both a correct curved-wave formulation and an
unambiguous energy reference. To this end we have ex-
amined the effect of several self-energy prescriptions on
XAFS phases and amplitudes: namely the HL (Refs. 20
and 21) and DH (Ref. 22) energy-dependent self-energies
as well as the ground-state Slater'® X, and von
Barth—Hedin!” v,

To compare calculated amplitudes with experiment, it
is necessary to account for inelastic losses.® These in-
clude inelastic losses associated with the relaxation of the
core hole (intrinsic processes), inelastic losses suffered by
the photoelectron (extrinsic processes), and interference
between these two processes. The intrinsic processes are
included in the passive electron overlap factor S and in
the core-hole lifetime, while the extrinsic processes are
contained in the imaginary part of the self-energy. In
Ref. 12 it was found that the effect of the interference be-
tween extrinsic and intrinsic losses was an approximate
cancellation of the passive electron overlap factor S and
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the imaginary part of the dynamical correction to the
central-atom phase shift in the outgoing path of the pho-
toelectron &3, i.e.,

S3(E)exp[ —(Im8%™) =1 .

Thus we have simply approximated S§=const=1 and
neglected dynamical interference effects. Ground-state
V,. and the DH self-energy are real and thus do not in-
clude extrinsic losses; for these potentials a mean free
path term is introduced using a constant imaginary po-
tential. In contrast, the complex HL self-energy au-
tomatically includes extrinsic losses. Heretofore, the cal-
culation of the HL self-energy was the computational
bottleneck in XAFS calculations, as the simplest repre-
sentation consists of one-dimensional integrals. Tabula-
tions are also available,®® but they do not cover the range
of energies and densities necessary for XAFS calcula-
tions. To circumvent this difficulty, we have introduced a
fast, analytic approximation to the HL self-energy as dis-
cussed in the Appendix.

In Fig. 3, we compare the XAFS phase calculated us-
ing the above self-energies with Cu K-edge experimental
data.®?> Both experimental and calculated XAFS were
filtered in the same way as the results of Fig. 2, i.e., with
a filtering window 1.68 <R <2.79 A and Hanning func-
tion edges of width 0.2 A. The calculation with the HL
potential is observed to have the best agreement with ex-
periment, with an error in phase less than 0.2 rad even at
k=2.5 A ~!. The increased deviation at k > 14 A ~
likely due to the error in the near-neighbor distance and
to experimental noise. The calculations using ground-
state potentials have differences with experiment of at
least 1 rad. The curve representing the DH calculation
can be brought to a closer agreement with experiment in
the range 4 <k <12 A ~1if a shift of —9 eV is applied to
the experimental data. However, the maximum energy
shift consistent with the uncertainty in E; in our calcula-

25¢c + ¢ (rad)

2 4 6 8 10 12 14 16 18
Kk (A)

FIG. 3. Filtered XAFS phase (26°+ ®) for the first coordina-
tion shell of Cu (K edge) calculated with various exchange-
correlation potentials and self-energies: (a) Xa potential, (b)
von Barth—Hedin potential, (c) HL self-energy, (d) DH self-
energy, and (e) experiment; similarly for the first coordination
shell of Pt (L edge): (a) HL self-energy, (b) DH self-energy,
and (c) experiment.
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tion is less than 4 eV. The discrepancy between experi-
ment and the HL result has two likely origins: an error
in our estimate of the Fermi level (about 4 eV in our cal-
culation) and an inadequacy of the HL self-energy itself.>
We found similar trends in other cases (Ge, Br,, Pt), i.e.,
the experimental phase is usually closer to the HL result
but lies between the HL and DH curves.?® The result for
the XAFS phase in Pt at 190 K is also shown in Fig. 3.
In this case we set R=2.778 A and the energy reference
E, was chosen as the peak of the white-line in the absorp-
tion spectrum. As band-structure calculations of x-ray
absorption were not available for Pt, this choice was
based on calculations for Pd, which has a similar valence
electronic configuration.*’ In these comparisons, experi-
mental and theoretical XAFS were filtered over the
ranges 2.5<k <18 A "!'and 1.5<R <2.5A.

A comparison of XAFS amplitudes is shown in Fig. 4.
It should be noted that the falloff of the total atomic ab-
sorption coefficient p, will introduce a correction in the
experimental XAFS, defined using edge-step normaliza-
tion as

X(E)=[w(E)—uo(E)]/Auo(Eo)

of about 10-20 % at high k;*? however, this correction
was not included in Fig. 4. In this comparison we used
the atomic value S3=0.7, given in Refs. 31 and 32.
From Fig. 4 it is apparent that the curve computed with
the HL self-energy is again closest to experiment. This is
mainly due to the neglect of extrinsic losses in the other
self-energies, but also indicates that the HL potential
gives a good approximation to the extrinsic losses. We
also observe that S;=0.7 is too small; in the next section
(see Table I) it is shown that values 0.85<S2 <1.1, lead
to reasonable agreement between theoretical (using the
HL self-energy) and experimental XAFS amplitudes.

We conclude that ground-state exchange-correlation
potentials lead to XAFS phase errors as large as those in-
troduced by the PWA. The HL self-energy yields better

AMPLITUDE k2y
N
o

k (A

FIG. 4. Filtered total XAFS amplitude of k2y(k) for the first
coordination shell of Cu (K edge) calculated with various
exchange-correlation potentials and self-energies: (a) Xa poten-
tial, (b) von Barth—Hedin potential, (c) HL self-energy, (d) DH
self-energy, and (e) experiment.
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agreement with experiment than the DH self-energy, but
the experimental phase typically lies in between. A study
of possible corrections to the plasmon-pole HL self-
energy is currently underway.*!

C. Energy scaling in x-ray-absorption calculations

As pointed out above, the HL self-energy leads to
reasonable agreement between calculated and experimen-
tal XAFS phases and amplitudes. We also found that
calculations of the XAFS phase using ground-state V.
do not agree with those results even when a shift of E, is
added.” However, Materlik, Muller, and Wilkins ob-
served® that band-structure calculations of x-ray absorp-
tion using ground-state V¥, could be brought into reason-
able agreement with experiment in the energy range
0-100 eV simply by rescaling the theoretical energy axis
as E—E'=qE, where 1.04 <a <1.07. In particular they
found @=1.05 for Ly; absorption in Gd.** We offer
below an alternative explanation of this observation.

In Fig. 5 we plot the quantity E'=FE + A(E) for Gd in
the energy range 0—8 Ry (0-108 eV). Here

A(E)=Re[3(E,p;n.) — Z(,pin)] 5

where =(u,p;,) is the self-energy contribution to the
muffin-tin potential at threshold, E=pu. For the case in
which a HL self-energy is used, we found E'=E + A(E)
can be approximated as a straight line, E'=1.05E, which
is in accord with the result of Ref. 40. We also found
that the DH self-energy yields E'=FE +A(E)=1.101E,
which is inconsistent with the observed scaling.

The observed scaling can thus be understood simply as
a consequence of the energy dependence of the muffin-tin
zero, i.e., as the energy dependence arising from the slow
turning off of the exchange-correlation hole with increas-
ing energy. Evidently the linear form of rescaling is only
valid at low energies. Our explanation also suggests a
simple but reasonably accurate way to correct XAFS cal-
culations that use ground-state correlation potentials,
without the need for linearization. One simply redefines
the energy scale to be E—E'=FE + A(E), with A(E) cal-
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FIG. 5. Energy rescaling E'=E+A(E) in Gd, where

AE =Re[2(E,piy) — 2Z(,pin) ], using the HL self-energy (solid
line, E'=1.05E) and using the DH self-energy (dashed line,
E'=1.001E).
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culated using the HL self-energy. This requires the eval-
uation of the self-energy only at the interstitial density.
Moreover, the amplitude can also be corrected approxi-
mately by using a Lorentzian broadening that includes
the imaginary part of the self-energy, i.e., with a width

[(E)=T—2Im3(E,p;,,)

where T is the full linewidth associated with the core-
hole lifetime.

IV. Ab initio XAFS CODE FEFF

With the approximations determined in the above
studies, we have developed an automated code for
efficient, ab initio curved-wave XAFS calculations. The
complete code is termed FEFF for the role of the effective,
curved-wave scattering amplitude in the theory. The
code is arranged in primary subroutines that correspond
to the main steps in the calculation of XAFS: (i) calcula-
tion of atomic potentials and densities, (ii) generation of a
muffin-tin scattering potential that includes the excited-
state self-energy and calculated energy reference, (iii) cal-
culation of complex partial wave-scattering phase shifts,
and (iv) the calculation of curved-wave-scattering ampli-
tudes and phase shifts, together with the exact, single-
scattering curved-wave XAFS spectra.

A summary of the ingredients in the code follows; for
additional detail see the foregoing discussion and Ref. 13.
Our atomic potentials and charge densities are based on
the relativistic Dirac-Fock-Slater atom code of Des-
claux,' which we have automated for all atoms through
americium (Z=295). This relativistic code is a notable im-
provement over the tabulated Clementi-Roetti Hartree-
Fock atomic wave functions of Ref. 3 or the nonrelativis-
tic Xa-based Herman-Skillman wave functions of Ref. 4.
Our scattering potential is based on the overlapping atom
prescription of Mattheiss together with an automated
Norman prescription for calculating the muffin-tin ra-
dii.33’34

This scattering potential also includes a complex,
energy- and density-dependent self-energy, 2(E,p), which
leads to significant improvements in the XAFS phase
compared with ground-state V,..'*?° Our self-energy is
based on the GW formulation of Hedin and Lundqvist®
with the plasmon-pole approximation for the electron-gas
dielectric function. This is the same self-energy as intro-
duced by Lee and Beni? and incorporated into the tables
of Teo and Lee.®> However, their implementation is com-
putationally time consuming; indeed the main reason that
improved self-energies have not been used more generally
is their difficulty of calculation. To circumvent this
difficulty, we have introduced a fast, analytic approxima-
tion for the real part and an exact expression for the
imaginary part, as discussed in the Appendix. The
efficiency of our code is due largely to this improvement.
Note that because the self-energy is energy dependent,
the muffin-tin zero of the scattering potential is also ener-
gy dependent. This implies that the concept of the “inner
potential,” which is often invoked in XAFS analysis, is
ambiguous. To circumvent this ambiguity, we have
chosen the photoabsorption energy threshold (i.e., the
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Fermi level in a metallic solid) as the fixed-energy refer-
ence E,. From this reference the photoelectron wave
number is defined as k =1 2(E —E,) in atomic units,
i.e., k in inverse Bohr and E in hartrees. In the code, the
value of E, is estimated from electron-gas theory, based
on the average interstitial electron density. Finally,
single-scattering contributions to XAFS are calculated
using the exact curved-wave formulation based on
effective scattering amplitudes,' yielding y in the stan-
dard form of Eq. (1). We stress that the quantity
fes(mk,R) in Eq. (1), which is defined with respect
to a_ well-defined photoelectron wave number £k
=1/2(E —E,) for comparison with experiments, is not
the same as the curved-wave scattering amplitude
f(m,p,R) of other treatments. 46,10 The relation between
these is

fer={k/plexp[i2(Rep —Kk)R]F ,

where the (complex) photoelectron momentum p defined
with respect to the complex interstitial potential V,  (E)
is given by

p=V2[E+iT/2—V(E)],

and T is the full linewidth of the core-hole state.

Besides x; as a function of k, FEFF yields all of the am-
plitudes and phases appearing in Eq. (1), thus removing
the “black-box” aspect of ab initio codes. Thus these am-
plitudes and phases may be used in experimental fits the
same way as present XAFS tables are. More precisely,
the factor exp(2ipR)/pR? in Eq. (4) is replaced by
exp(2ikR)/kR?, and f is replaced by f.q. Therefore we
give as output |f.g(mkR)|, @47k R); Red,
s3=S52% exp(—2Im&°), and A=1/Imp all tabulated as a
function of k. The code also has a provision for a
Debye-Waller factor ¢ ~2°°%* and an additional reduction
factor S g, which may be determined from known values
or simply used as fitting parameters.3’#?

An added advantage of the FEFF code over tables of
XAFS amplitudes and phases is the flexibility of altering
atomic and structural parameters to simulate the chemi-
cal environment around an absorbing atom, rather than
simply assuming identical, independent atoms and de-
pending on the hypothesis of chemical transferability.
Furthermore, the efficiency of FEFF makes possible ab
initio calculations of XAFS even on workstations or
many personal computers. Thus, these ab initio stan-
dards can be used as routinely as current tables. For ex-
ample, the total CPU time on a Digital Equipment Cor-
poration VAX 3100 workstation is about 3.5 min for 400
energy points between 0 < k <20 A~

V. COMPARISON WITH EXPERIMENT

In this section we present comparisons between XAFS
spectra generated using the ab initio code FEFF, as dis-
cussed in Sec. IV, and experiment in a number of test
cases, namely, Cu, Ge, Pt, Br,, and GeCl,. The first shell
contributions to the experimental data were isolated us-
ing the following filtering windows: 1.68 =R =2.69 A
for Cu, 1.70<R <2.50 A for Ge, 1.80<R <2.93 A for



IR

Ab initio CURVED-WAVE X-RAY-ABSORPTION FINE STRUCTURE

TABLE I. Input parameters in XAFS calculations and estimated errors with respect to experiment:
N is the coordination number of the absorbing atom, R the nearest-neighbor distance, o the mean-
square vibrational amplitude, 80? the “McMaster correction” (Ref. 43) (see text), AR and Ac?
discrepancies between theoretical and experimental values, S3 an overall amplitude factor needed to fit

experiment, and E, the position of our calculated energy reference.

2

R o 802 AR Ac? E,

Compound, edge N (A) (A? (A? (A) (A? S3 (eV)
Cu KX (190 K) 12 2.552% 0.00530% 0.00058 0.0178 0.00019 0.845 8982
Pt Ly; (190 K) 12 2.7715%  0.00321%% 0.00040 0.0023 0.00045 0.893 11568
Ge K (300 K) 4 2.450% 0.003 592 0.00032 0.0011 0.00008 1.09 11088
GeCl,Ge K (300 K) 4 2.110% 0.00212% 0.00032 0.0029 0.00153 1.11 11082
Br, K (300 K) 1 2.280% 0.001 988 0.00032 0.0056 0.00045 1.08 13456
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Pt, 1.73<R <2.22 A for Br,, and 1.00=R =2.00 A for
GeCl,. Hanning functions of width 0.2 A were used at
the edges of all filtering windows. The filtering range in k
space is shown in Fig. 7. To avoid ambiguities the calcu-
lated XAFS were filtered in identical manner. The
structural parameters are given in Table I. The quality of
agreement between theory and experiment was then
quantified by (i) the discrepancy between the observed
nearest-neighbor distance from experiment and the crys-
tallographic value used in the calculations (AR in Table
I), (ii) the discrepancy between the Debye-Waller factor
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FIG. 6. Measured x-ray-absorption coefficient u(E) for (a)
Cu K edge at 190 K, (b) Ge K edge at 300 K, (c) Pt L edge at
190 K, (d) GeCl, K edge at 300 K, and (e) Br, K edge at 300 K.
The vertical lines indicate the position of the energy reference
E, corresponding to our calculation.

from the fit and the known values (Ao in Table I), and
(iii) the value of the reduction factor S3 needed to fit ex-
perimental amplitudes. The values of E; were chosen to
correspond to near-edge absorption data and are shown
in Fig. 6 and listed in Table I. Also the calculated XAFS
were modified to correct for the edge-step normalization
of the experimental spectra**~46 by introducing a small
positive ‘“McMaster correction,”®® 802, to the Debye-
Waller factor, as listed in Table 1.

As seen in Fig. 7 the overall agreement between theory
and experiment is very good in all cases. From Table I,
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FIG. 7. Filtered XAFS k2y(k) calculated (solid line) and
measured (dashed line) for the first coordination shell of (a) Cu
K edge at 190 K, (b) Ge K edge at 300 K, (c) Pt Ly edge at 190
K, (d) GeCl, K edge at 300 K, and (e) Br, K edge at 300 K.
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the accuracy in the nearest-neighbor distance determina-
tion is always better than 0.02 A, and the discrepancy in
the Debye-Waller factor is better than 0.0015 A 2. Values
of the amplitude reduction factor indicate that the use of
FEFF with $3=0.9 leads to uncertainties in the deter-
mination of nearest-neighbor coordination numbers
smaller than 15%.

VI. SUMMARY AND CONCLUSIONS

We have elucidated what we believe are the most im-
portant factors needed for quantitative calculations of
XAFS. Curved-wave effects and relativistic potentials
are well known to be important. In addition, from com-
parisons of theoretical and experimental XAFS phases,
we find that it is essential to use an energy-dependent
complex self-energy to account for inelastic losses and
self-energy shifts. We find that the HL self-energy leads
to phases that agree better with experiment than those
calculated with the DH potential. However, the experi-
mental phase is usually slightly shifted from the Hedin-
Lundqvist result in the direction of the DH result, indi-
cating the need to explore possible corrections to the
self-energy.3>*! A good overlapped-atom potential and a
fixed-energy reference are next in importance. We have
found that an automated prescription based on the Nor-
man prescription for determining muffin-tin radii can
give results for XAFS comparable to those obtained with
self-consistent potentials, except very close to the absorp-
tion edge. The use of the HL self-energy can also explain
the empirical energy scalings®® observed in band-
structure calculations of x-ray-absorption spectra,
without the need for more elaborate explanations. The
HL self-energy at the interstitial density also provides a
simple prescription for correcting XAFS calculations
that used a ground-state V..

Based on our findings, we have developed an automat-
ed code FEFF to calculate single-scattering XAFS. The
code takes into account all of the important features out-
lined above, including spherical wave corrections, over-
lapping relativistic-atom scattering potentials, an
excited-state self-energy, and an unambiguous energy
reference, and is fast enough to be used in routine experi-
mental analysis in much the same way as current tabula-
tions. The XAFS phases obtained agree with experiment
to better than 0.1 rad, even at energies as low a 10 eV
from the absorption edge. Nearest-neighbor distances
are predicted with errors less than 0.02 A. Amplitudes
are predicted with an accuracy of 15%, leading to the
same accuracy in coordination number determination.
The error in the energy origin Ey=4 eV is attributed to
errors in the construction of the scattering potential and
in our estimate of the chemical potential; however, this
effect appears to be less important than the need for an
energy-dependent self-energy.

In order to achieve better accuracy in the XAFS phase
close to threshold, it may be necessary to use better
scattering potentials and self-energies at low energies and
also to improve our estimate of E,. To improve the accu-
racy of the XAFS amplitude it is probably necessary to
calculate the energy dependence of the amplitude reduc-
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tion factor S3(E), including dynamical corrections to the
inelastic losses. Efforts along these lines are in progress.
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APPENDIX: HEDIN-LUNDQVIST SELF-ENERGY
APPROXIMATION

As shown by Lundqvist,?! the electron-gas self-energy
in the GW-plasmon-pole approximation of Hedin and
Lundgqvist, can be expressed as a sum of one-dimensional
integrals, which depend on the quasiparticle energy
E =p?/2 and momentum p. For an atom (where the elec-
tron density is nonuniform) p is taken to be the density-
dependent local momentum, ie., p-—p(r)=[2E
+kZ(p(r))]'/%. Evaluating the numerical integrals for
every energy and local momentum p(r) leads to a compu-
tational bottleneck. To avoid this difficulty, we fit the
real part of = to a three-term polynomial in r!”?,

ReX

E, (A1)

=a,(x)r,+a,(x)rd?+as(x)r?,

where r, = (3 /4mp)'/? is the density parameter, x =p /kg,
and Ep=k2/2 is the Fermi energy. We then fit the
coefficients a, (x) to polynomials in x or 1/x, i.e.,

dl+d" +dix*+dix?,

T lerx) (e /x?), x>x, .

<
x=x,

a,(x) (A2)

The point x, corresponds to the value at which the real
part of = exhibits a cusplike dip (Fig. 8), and is the onset
of the imaginary part. It is determined by the threshold
for plasmon emission: €,,,=w,+€, where €, is the
energy of the initial electron, w, is the plasmon energy
(A=1), and €, is the electron final energy. Numerically
this corresponds to the real solution of the equation
0*(q)=(x2—1)?, where w(q) is the plasmon dispersion
relation,?®

0’ (x)=0) +Ef($x*+x%), (A3)
where @, =(4mp)!/? is the plasma frequency. The elec-
tron density in an atom varies from metallic densities in
the outer part r;~4 to r;~0.001 in the core region. To
fit this entire range, we found it useful to make four parti-
tions covering successive density regimes: 0<r;<0.2,
0.2<r,<1.0,1.0<r,<5.0,and r, > 5.0.
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For the imaginary part, we have shown that the in-
tegrals can all be evaluated analytically, yielding for
p>kp,

Im2 o (Of(gs)—F(14x)]
E F
+0,(0[f(g)—f(x —1)]
+O_(X[f(x —1—flg_)]. (A4)
Here

O,(x)=06(g, —(1—x)),

0,=06(q,—(x—1)),

O_(x)=O6((x—1)—gq_),
where

O(x)={1(x >0) or 0(x <0)}
is the unit-step function,

q,(x)=min{q;(x),1+x}

where g, /ky is the positive solution of the quadratic
equation w*(x)=(x2—1)2, g, (x) are the positive roots of
the cubic equation a)g +(4—4x 2)q2+4xg*=0, and the
function

f(x)=(w, /4kpx )ln[[a)(x)+a)p]/x2+%wp} .

In Figs. 8 and 9 we compare the self-energy obtained
from the fit with the numerical integral expression for the
self-energy for both a homogeneous electron gas and for
atomic Ni. We find that the XAFS scattering phase
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FIG. 9. Real part of the HL self-energy times r in atomic
units, for a photoelectron with energy E—p=16 Ry, in a Ni
atom. Numerical calculation (solid line) and analytic fit from
Eq. (A1) (dashed line).

shifts and the backscattering amplitude calculated nu-
merically or with our fit agree to better than 1%.

Having devised an efficient method to generate the
Hedin-Lundqvist self-energy, we need to ensure that the
excited-state self-energy 2(p, E) will reduce to the correct
ground-state self-energy potential in the limit E—pu,
where p is the chemical potential. To this end we have
follc;wed the prescription introduced by Wang and Pick-
ett

2(p,E)= ch(p)+EHL(p’E7p)_2HL(kF’:u"p)
=V, (p)+A(p,E,p), (AS)

Here, =y (p,E,p)=3%(p,E —u+Eg) is the HL self-
energy and V, (p) is the ground-state exchange-
correlation potential. Thus we compute A using

A(p,E,p)=2k(p,E —p+Ep,p)—Zh(kp, ki /2,p) -
(A6)

The local momentum p is obtained using the local density
equations, that give?

pi=k}+2(E—p)+2A(p,E —p) . (A7)

In Ref. 2 the contribution 2A in Eq. (A7) is ignored. We
evaluate Eqgs. (A6) and (A7) using two iterations: First
we evaluate Eq. (A6) using p?=k2+2(E —p). This
yields a value for A, which is used in Eq. (A7), leading to
a new value of p, which is inserted in Eq. (A6); we then
evaluate =(p, E) using Eq. (AS5). This approach leads to a
small correction of 0.8 eV (in Cu) in the value of the self-
energy at E =y, and avoids a discontinuity at threshold.
The same approach is used for the DH self-energy.
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