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Density of states and dc electrical conductivity in an order-disorder ternary alloy
in a generalized coherent-potential approximation
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By using a generalized version of the coherent-potential approximation, we investigate the efFect of
long-range order on the electronic properties of a model ternary alloy. Previous considerations by
Plischke and Mattis of a second-order phase transition in a three-dimensional order-disorder binary al-

loy necessitated the introduction of a bipartite lattice in which each atom occupies its own sublattice
in perfect order. The present case, in particular, contains the influence of a completely random third
atom on the density of states and the dc electrical conductivity of the binary system. Numerical results,
in the form of plots of these properties for representative values of the scattering strengths and the atom-
ic concentrations, over the range of the order parameter, are presented. Calculation of the temperature
dependence of the order parameter shows that at and above the critical temperature, as this parameter
approaches zero, the model reduces to the disordered ternary alloy. For comparison, it is shown that
this behavior also follows from the traditional order-disorder transition picture of the Bragg-Williams
approximation.

I. INTRODUCTION

The subject of the electronic properties of disordered
alloys has received extensive, if not exhaustive study over
the past several decades. This is due in large part to the
success of the coherent-potential approximation (CPA)
introduced by Soven' and others. Subsequently, several
advanced techniques have been combined with the CPA.
One of the more ambitious of these approaches is the
Korringa-Kohn-Rostoker coherent-potential approxima-
tion (KKR-CPA). Examples of this method may be
found in the works of Butler, Stocks, and Winter. '

More recently, -many-body theory has been incorporated
with the CPA by Vignale et al. and Joubert and Ink-
son. Clearly, these methods significantly raise the com-
plexity (both analytically and computationally) of the
order-disorder problem to be considered here and thus
will not be considered further. Not long after the intro-
duction of the CPA did efforts turn toward the use of this
band-model picture of a description of long-range order-
ing in binary alloys. This was first done in one dimension
bp Foo and Amar and later by Plischke and Mattis,
who calculated the density of states (DOS) for a three-
dimensional binary alloy with a second-order phase tran-
sition. Within the same context, the dc electrical conduc-
tivity was investigated by Paja, ' Borodachev et al. ,

"
and Kudrnovsky and Velicky. '

The DOS and the dc conductivity of a disordered ter-
nary alloy have been calculated, respectively, by Scar-
fone' and Wysokinski and Pilat. ' Similar work is per-
formed here for a ternary alloy which may be thought of
as an order-disorder binary alloy with a completely ran-
dom third atom on a bipartite lattice. ' Section II briefIy
reviews the traditional order-disorder transition picture
of the quasichemical Bragg-Williams approximation' in
the framework of the ternary system. The temperature

dependence of the long-range order (LRO) parameter is
obtained in a form identical to the binary result of
Brouers et al. ' As expected, a second-order phase tran-
sition from the ordered to the disordered binary state
occurs. However, an element of disorder persists in the
system since the third atom is random over both sublat-
tices at all stages of ordering. Section III introduces the
CPA in the generalized description of the bipartite lat-
tice. This requires the use of two coherent potentials and
leads to a pair of coupled, nonlinear complex equations
for their determination. The solutions to these equations
constitute the bulk of the numerical analysis. Section IV
is concerned with the band-model calculation of the tem-
perature dependence of the LRO parameter through the
use of moments of the DOS for the ternary alloy. The re-
sults coincide with those obtained in the Bragg-Williams
approach, thus providing satisfactory contact between
these two mean-field theories. Section V deals with the
CPA electrical conductivity problem within the order-
disorder framework. The expression for this quantity is
seen to reduce to two integrals which can be evaluated in
closed form in the complex energy plane. Section VI
presents numerical examples and discussion of the DOS
and the dc conductivity for the ternary a11oy. Although a
wide range of values of the input data are possible, we
select only those permitting a convenient comparison
with results in the literature. Finally, concluding re-
marks are given in Sec. VII.

II. BRAGG-WILLIAMS APPROXIMATION AND
THE ORDER-DISORDER PHASE TRANSITION

IN THE TERNARY ALLOY

As a way of establishing the relevant concepts and
variables, as well as providing a general picture of the ter-
nary alloy thermodynamics, we brieAy review the order-

4135 1991 The American Physical Society



4136 WILLIAM KARSTENS AND LEONARD M. SCARFONE

We assume a structure such that each a(13) site has only
P(cz) sites as nearest neighbors, thus creating a CsC1-type
lattice. For the ternary alloy, three types of atoms are
distributed over these sites such that

(2.2)

where Xz, XB, and Nc are the numbers of 3, 8, and C
atoms, respectively. Their fractional concentrations are
then given by

X~ XB
(2.3)

disorder problem in the context of the Bragg-Williams
approximation. We first imagine a simple cubic lattice,
within sites, divided into two equal sublattices labeled by
cz and /3. The number of sites on each sublattice is

(2.1)

directly for each configuration, we employ the Bragg-
Williams approximation which consists of obtaining the
average (E ), for each value of i). Thus

«) = ——y„~.„(N.„),2

m, n

(2.7)

where we have normalized this expression using the coor-
dination number I and the factor of 2 because of the two
sublattices. Expressions for the (N „) are easily found
using the probability factors. For example, (N~„)
=(N„)(I P~~)=lN P„P~~. This is a reasonable result
since there are X~ 3 atoms on the o: lattice, each sur-
rounded by 1 nearest neighbors (which are all elements
of the P lattice by construction) whose probability of be-
ing another 3 atom is equal to P~~. The others follow
similarly, and we find the total average energy becomes

(E(rj) ) =E(0) NX~ V—xiii) (2.8)

N~ —E~~

N~ +iV~~ P+P~ ' (2.4)

In general, a complete ordering of all three atoms re-
quires the use of three sublattices. Since we have only
two sublattices it should be clear that we are considering
a restricted form of ordering. In particular, while the 3
and 8 atoms participate in the ordering process the C
atom will always remain completely random. Thus, we
may imagine our system as an order-disorder binary alloy
with a random third atom. To this end we define a LRO
parameter, g, in the following way. For Xz XB,

where E (0) is the configurational energy in the complete-
ly disordered state and VzB is the ordering energy
defined by V~B =2@~B—D„~—EBB. To obtain the tem-
perature dependence of the LRO parameter we minimize
the free energy, given by

V( i), T)= Vl( i), T) TS( i), T—) . (2.9)

When we consider the free energy expressed in terms of
the partition function of the ternary system, it follows
from a common procedure that the internal energy,
8'(il, T), is identified with (E(g) ) and the lattice entropy
is given by

where, for example, A~z and P~&represent the number
and probability of an A atom occurring on the I3 lattice.
The former are defined by N„=N P„ for o H Ia, PI and
n C I 3,B,C I, while the latter are explicitly given by

XkB
$(il, T)= (P„ lnP„+Pg 1nP~+Pg lnPg

2

+Pg 1nPg ) NksXc lnXC, —(2.10)

Pg —XA +XA 71, PB XB XA l7

Pq~=X~ —X~g, P~~=XB+X~q .
(2.5)

@mn Nmn (2.6)

where the N „are the number of m npairs (counting-
N~ii and Nsz only once), and 6' „ is the related interac-
tion energy. As a necessary alternative to calculating E

Since the C atom is random, we also have P& =P&~=XC.
To obtain results for X~ ~XB simply replace 3 with B
and exchange a with P in the LRO parameter definition,
and let X~ ~XB in the g coefficients in the above proba-
bility factors. Notice that, for g=O, these probabilities
reduce to the ordinary fractional concentrations while for
g= Ik, the P„put all of the 3 atoms on the a lattice and
all of the 8 atoms on the P lattice (for equal concentra-
tions of A and 8 atoms). For unequal concentrations, the
factors describe the excess of one ordering atom on the
other lattice.

The first step in providing a quantitative picture of the
thermodynamics is to construct the configurational ener-

gy associated with the interaction between nearest-
neighbor pairs. We write this as

1+f 4Xw Vaarl
ln

1 f k~ T— (2.11)

where f =(X~ +Xi' )ill(X~ +Xiii) ). Taking the limit as

g —+0 gives the critical temperature, for any concentra-
tion of the three constituents,

T.=
Xq +XB kB

(2.12)

The binary results of Brouers et al. ' correspond to the
special case Xz =X& for which the expressions for f and
Eq. (2.11) yield

X~ V~Bn
rI( T) =tanh

kBT
(2.13)

and the critical temperature

X3 VAB

kB
(2.14)

The phase transition is second order, thus, as the temper-
ature is increased past the critical point, the LRO param-

where kii is the Boltzmann constant. Minimization of 9'

yields the equilibrium condition
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eter smoothly approaches zero. However, as the temper-
ature is decreased below the critical point, the LRO pa-
rameter approaches its maximum value of one. Formally
speaking, as the critical temperature is approached from
above, the system is accompanied by an increase (toward
infinity) of some correlation length. In the present case
this would simply be the occurrence of an alternating pat-
tern of 2 and B atoms over larger and larger distances on
the lattice.

III. GENERALIZED CPA AND
SUBLATTICE ORDERING

This section develops the band-model approach to the
order-disorder ternary alloy in the generalized CPA. The
periodic and random parts of the alloy Hamiltonian are
related to an efFective periodic part and scattering correc-
tions, respectively. Since there are two sublattices, two
coherent potentials, or equivalently, two electronic self-
energies X and X& are required for this purpose. It re-
sults, then, that the periodic part of the Hamiltonian is
nondiagonal in the Bloch representation. This complica-
tion is overcome by means of a nonunitary transforma-
tion connecting the Bloch representation to a diagonal
basis in which the formalism simplifies. Vanishing of the
average scattering matrix for sublattice a (P) yields a
self-consistent equation for X (Xt3) and F (I'tt) where
the latter quantity is the diagonal matrix element of the
effective periodic Green s function on the bipartite lat-
tice. The alloy density of states is expressed in terms of
one-half the sum of F and F&.

We assume that the one-electron alloy Hamiltonian has
the tight-binding form

u=g lk&s„&kl+g nl&E„&n l

With the above definitions, it is clear that Hp is not diag-
onal in the Bloch basis. In fact, it may be written as

H, =y lk&(s„+U, )&kl+y lk&U, &k+ql . (3.4)

The following nonunitary transformations

ld, &
= ~, lk& —~, lk+g&,

ld, +, & =~„lk &+ ~, lk+g &,

where the transformation coefBcients are given by
1/2

1+1

QE +U

1

QEk+ U2

(3.5)

(3 6)

diagonalize the effective periodic Hamiltonian:

Ho=+ ldll&,
l

Qei, +U +U, &d„ (3.7)

where the quantity in parentheses shall henceforth be
called E&.

Calculation of the configurational average alloy
Green's function & G(z) & with the CPA is facilitated by
the methods of multiple scattering theory. In that for-
malism, an average total scattering operator & T & is
defined by the relation

& G (z) &
=Go(z)+ Go(z) & T & Go(z) .

Here, Go(z) is the Green's function of the effective
periodic Hamiltonian Hp. The scattering operator may
be expressed in terms of itself in a standard way by

Ho+ V (3.1)
T= V+ VGoT . (3.9)

R +1, nba
—1, nEP. (3.2)

In addition, we require that c&+&= —E.k, which makes
the above assumption compatible with a simple cubic or
body-centered cubic lattice in the tight-binding approxi-
mation. The alloy Hamiltonian is restructured as the
sum of an effective periodic part Hp Hp+ U and a ran-
dom perturbing part V= V —U which provides scattering
relative to Hp. We have

Here, lk& represents an electron Bloch state, while the
ln & are Wannier states for an electron with energy s„.
The requirement of two sublattices for the description of
ordering necessitates the use of two coherent potentials,
U, and U2. To dea1 with this mathematically we assume
the existence of a vector Q, defined such that

Iteration of Eq. (3.9) leads to an infinite series for T in
terms of Go and the random perturbation V. The CPA
takes the viewpoint that the vanishing of & T & is a self-
consistent condition for the unknown U. In this way, the
second term on the right-hand side of Eq. (3.8) makes no
contribution and & G(z) & coincides with Go. Because V
assumes the form of a sum of localized site contributions,
it follows that T may be written as the sum of contribu-
tions T„due to individual sites. In the single-site approx-
imation, the vanishing of & T & is equivalent to requiring
that & t„&=0 since & T„& may be shown to be a product
of & t„&, the average atomic transition operator for the
nth site, and an average effective wave originating from
all other sites.

Application of the basic CPA procedure to each sub-
lattice independently yields equations for the determina-
tion of the coherent potentials U, and U2. We obtain

H, =glk&Ek&kl+& ln &(U, + U, e' ")
& nl . (3.3)

P~ t~ +PI, t~+Pctc =0,
P~ t~ +P~~t~+P~~tc —0 .

(3.10)

The coherent potentials, as functions of the complex vari-
able z, obey the refiection property, Ui 2(z*)= Ui 2(z),
and real z will always be taken to mean z +i@with @~0.

The t„ in Eqs. (3.10) are matrix elements of t„ in the
%'annier representation. Explicitly, the latter quantity is
found to be (with n H I A, B,C I )
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t„=/n)(E„—U, —U~e ")[1—(e„—U, —U2e ")F„] '(n/ .

The diagonal efFective Green's functions F„(z) are given by

(3.1 1)

F„(z)= (n ~(z H—0) '~n ) =(z —U, + U2e ")—g [(z —U, ) —Uz —ek] (3.12)

where, now, n E t a, /3I. In terms of the self-energies, X =
U& + U2 and Xp= U&

—Uz, Eq. (3.10) yields a system of two,
nonlinear complex equations:

X3F —EscX F +2X F +EpEcX F —(Esc+e )X F +X +PgcE~EcF —e =0 (3.13a)

and

XpFp EBcXpFp +2XpFp+ eg EcXpFp (Esc +Ep)XpFp+ Xp+ PIC Es ecFp —Ep=0 (3.13b)

where we have defined, for convenience,

~BC EB+~C

~aP PB ~B +PC EC
a, p O.,p

pa, p pe, p+ pa, p
BC B c

(3.14)

Use of the Hubbard, semicircular model DOS given by'

I

purpose we consider values of the 8-atom energy cB
greater than 2. This allows us to approximate the elec-
tronic free energy through the use of moments of the ter-
nary alloy density of states. Although we obtain an
asymptotic form for the temperature dependence, the re-
sults coincide with those found in the Bragg-Williams ap-
proach.

In general, we define the moments of the DOS by'

—(1—z )', ~z~~l
7Tg()= () (3.15)

oo 1
p =I dz z~g(z) =—Tr(H~) .

oo
(4.1)

yields, for the F functions,

F0(z) =2[z —(z —I )'~ ]

and

(3.16)

g(E)= — ImF+(E) . —1 (3.18)

Fa(g) F0(g)F =(z —Xp), Fp=(z —X ), (3.17)

with g =(z —X )(z —Xp). Equations (3.13) and (3.17)
show that the a and P sublattice variables are coupled.
As in the case of the disordered ternary alloy, to obtain a
form useful for numerical solutions, we eliminate the
self-energies in favor of the F functions which satisfy two,
coupled fifth-order nonlinear complex equations. For
further numerical simplicity, these equations are ex-
pressed in terms of new variables F+ and F given by
one-half the sum and di6'erence of F and Fp respective-
ly. The alloy density of electron states is related to the
former quantity by

po= 1 ~ p& ~» p2 ~2+pz

p3=63+3h, p2 ',
=6 +45 "'+26' "'+P4 4 &2 &Pe P4

(4.2)

where

—Xg C g +XBEB +XCCC

~ i=~i —X~(E~ Ea)'n'. — (4.3)

The reference crystal moments, p' ', are similarly defined
by replacing g (z) and H by g0(z) and H0, respectively, in
the above expression. In particular, if the reference crys-
tal DOS, g0(z) is symmetric, then p' ' vanishes for odd
values of p. For the order-disorder ternary alloy, the
relevant moments are, with the exception of the tilde-
term in Eq. (4.2) which contains the LRO parameter,

Equations (3.13) are reminiscent of the mixed polyno-
mial in F and the self-energy X of the disordered ternary
alloy on a single lattice. Indeed, when the LRO parame-
ter vanishes, the entire formalism reduces to this limiting
case where F and F+ become zero and F, respectively,
and the a and P self-energies coincide with X.

IV. MOMENTS OF THE DOS AND TEMPERATURE
DEPENDENCE OF THE jLRO PARAMETER

This section provides a band-model calculation of the
temperature dependence of the LRO parameter. For this

When ~Es ~
is much larger than maxe& —minE&, two well-

defined, nonintersecting regions are formed. One cen-
tered around Es and the other around E=(X&ez
+Xcec )(Xz +Xc ) ', the center of gravity of the A and
C atom energies. This is called the singly split band limit
of the alloy. A doubly split band limit also exists for the
ternary alloy but it does not aftect the LRO-dependent
terms that we wish to consider. We now write the DOS
as a sum of two parts: a lower subband and an upper
subband. Thus g(z)=gI (z)+gU(z), which allows us to
express the moments as
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p, = f dzzi'g(z)

= f dz(z —e~+eii Pgr (z)

+ d'z z —c.+c ~gU z

i I:esp„ i+ep, I].-/ L I U

j=o
(4.4)

Here, we have used the binomial expansion and defined
the moments relative to the subbands by

p = f dz(z —e~) gL(z),

p = f dz(z —e) gU(z) .
(4.5)

P,&(r), T)= ——f dz g(z)ln(1+e ~') .X
(4.7)

At temperatures such that kiiT(( a~I, the lower sub-
band is full while the upper subband remains empty.
This permits us to approximate the free energy by

P„(il, T)=N f dzgI (z)+O(e )

=N f dz(z+ leg I )gg(z)

—Nle~l f dzgL(z)

=Np, N I cii I po
—. (4.8)

Substitution of the expressions for po and p& into Eq.
(4.8) yields

V,i=A'(0) —Nx p 'i) Ic.~ I
(4.9)

&(0)= —Nl Xe(1 —Xg )p~" le~ I
'+X~ les I ].

Comparison of this result for the electronic free energy
with the Brag g-Williams form of the average
configurational energy [Eq. (2.8)] shows that the associa-
tion

pq (4.10)

brings these two quantities into coincidence. The critical
temperature may now be written as

The infinite set of equations resulting from Eq. (4.4) must
be solved by truncation. However, one runs into the ap-
parent problem of having twice as many variables (p„and
p„) as there are equations. This difficulty is resolved by
recognizing that, for large c~, only its highest powers in
the expressions are significant. In our case we will sys-
tematically neglect all terms of order cz and higher. Us-
ing the moment expressions obtained in Eq. (4.2) we find

p =X p =X~(1—Xs)p2' 'sic'+X i) p' 'e ', (4.6)

which is all we require for the subsequent analysis.
The electronic free energy may be written

V. ELECTRICAL CONDUCTIVITY AND
ORDER-DISORDER ON A BIPARTITE LATTICE

WITH CUBIC SYMMETRY

In this section we employ the generalized CPA to
study the dc electrical conductivity of the order-disorder
ternary alloy. This application follows previous'"' cal-
culations of the transport properties of disordered alloys
in the single-site approximation. The ordering effect is
incorporated, as in the binary case, ' by making use of
complex transformations that diagonalize the one-
electron Green's function. The conductivity is expressed
in terms of two integrals which may be evaluated in
closed form by contour integration in the complex energy
plane. The analytical results are identical with those re-
ported for the disordered binary alloy, except that the
input self-energy is specific to the order-disorder ternary
alloy.

We begin by introducing the well-known Greenwood-
Peierls ' formula for the electrical-conductivity tensor:

(5.1)

with p and v representing cartesian coordinates. This
closed formal expression for o.„ is the result of calculat-
ing the current density to first order in the applied elec-
tric field. Kubo has given a more general expression for
o„„which reduces to Eq. (5.1) for the case of a nonin-
teracting electron gas at zero temperature, as shown by
Verboven. Here, H is the alloy Hamiltonian of Eq.
(3.1), f denotes the Fermi function, e and m are the elec-
tron charge and mass, respectively. 0 is the crystal
volume, and p„are components of the linear momentum.
The prefactor of 2 takes into account the two spin states
of the electron. The angular brackets denote the
configurational average. The following procedure paral-
lels Ref. 5 in showing that vertex corrections to the elec-
trical conductivity vanish in the order-disorder ternary
model. These corrections were first found to vanish for
both the disordered binary and ternary' cases. The al-
loy Hamiltonian H and therefore its corresponding
Green's function G, are not diagonal in the Bloch repre-
sentation. Thus, in general, the Green's function matrix
elements connect different sublattices, making zero vertex
corrections not an immediately obvious result.

It follows from the definition of the alloy Green's func-
tion that

G (E ) —G (E+ ) =2mi6(E H), . —(5.2)

where E* is an abbreviation for E+i F. By applying this
identity to Eq. (5.1), the conductivity tensor may be given
the compact form

o„= fdE — Tr(p 5(E H)p, o(E —H) ), —
m20 dE

X&X& 2pz
T

Xg+Xg kg leal
(4.11)

2

f dE — I,(E) . (5.3)

This result reduces to that of Plischke and Mattis when
the A and B atom concentrations are equal. The quantities I„(E)have the expression
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where the K are terms of the form

K (z, z')=(G(z)p G(z')), (5.5)

which describe the averaged propagation of two elec-
trons, or in other words, the motion of correlated elec-
tron pairs. Many of the following results, in reducing K,
may also be derived on the basis of more elegant func-
tional techniques. These make use of an alternate form
of the Green's function, in terms of the random potential,
as a starting point. The procedure here is more tradition-
al. First, we recall from Eq. (3.8) that G(z) may be con-
veniently expressed without the averaging brackets as

I„(E)= Tr{p„[K (E+,E )+K (E,E )
4m

K—(E+,E+ ) K—(E,E ) ]I,
(5.4)

vertex corrections due to simultaneous averaging of both
Green's functions in Eq. (5.7). On the other hand, the
first term on the right-hand side of Eq. (5.7) comes from
independent averagings. The determination of K now
rests on an approximation for the vertex correction,

1 (z,z') = ( TGp„G 'T'), (5.8)

+g g (t„G(t Gp G't' )G't'„)+
n mWn

consistent with the development of the electron self-
energy and G on the bipartite lattice.

By repeated use of the single-site approximation we
systematically reduce the vertex term to a sum of expres-
sions involving the atomic scattering operator t„. The re-
sult is

1.(z,z')=g (t„Gp,G 't„')

G(z)=G(z)+G(z)TG(z) . (5.6) (5.9)

Combining Eqs. (5.5) and (5.6), and invoking the CPA
condition, we find that K becomes

K (z,z')=Gp, G '+Gl (z, z')G ', (5.7)

where G is short for (G ). The complex energy variables
z and z' have been suppressed in G and G ', respectively.
The quantity I defines the function which gives rise to

The single-site approximation is maintained by averaging
after each step in the series. The exclusions in the sum
represent an absence of two electrons returning to the
same site. Clearly, evaluation of the vertex equation re-
quires us to deal with the common term (t„Gp G 't „' ).
Writing the scattering matrix explicitly as an operator in
the Wannier representation (i.e., t„=~n ) t„(n

~
) we find

( t„Gp G 't '„)=
~
n ) I ( t„(n

~ Gp G '
~

n ) t„' ) I ( n
~

=
[ n & & t„g & n

I
G

I
m & & m

Ip. I
l & & l

I
G '

I
n & t„' & & n

I
.

m, I

(5.10)

Evaluation of the matrix elements of the Green s function in Eq. (5.10) requires some care since it is not diagonal in
the Bloch basis. However, we may insert a complete set of the diagonal basis introduced in Eqs. (3.5) and (3.6). The re-
sult is

(n ~Gp, G '~n ) = g g e ' p, (k)g e ' " M(ki, R„)M(ki, R„)M(ki, R )(z Ez )—
&'m~ k kj

X g e ' ' " M(k2, Rt )M(k2, R„)(z Ek )—
k2

iQ R
Here, we have defined, for convenience, M(k, R„)=( Ai, Bke ").—The momentum matrix elements are

(5.11)

(m ~p. ~l ) =—g e' ' p.(k)
k

(5.12)

and p, (k)=(k p ~k). The transformation coe(Iicients Ak and Bk, and the dispersion formula Ek only depend on k
through Ek. In view of the fact that the velocity U (k) and Ei, are antisymmetric and symmetric, respectively, under time
reversal, we find that the entire expression of Eq. (5.11) vanishes. This remarkable simplification also means that the
vertex term vanishes and we are left with the simple result that K (z, z ) is equal to the first term on the right-hand side
of Eq. (5.7).

Going back to the trace expression in Eq. (5.4), we must now obtain, explicitly, terms of the form

Tr(p„K ) =Tr(p Gp, G ') =g g p„(k)p (k')(k~G ~k') (k'~G '~k) .
k k'

Once again, insertion of the diagonalized basis on the Green's functions gives

(k~G~k') =(AkAk Gk+BkBk Qk)5k k+BkAk Gi, 6k k+g k k k5i, k+g,
where we have defined

(5.13)

(5.14)
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G„=(d„lG Id„)= A,
—

p QQ ~ dQ+Q I
G ldg+Q &

= ~+ p (5.15)

and A, =z —U1, p = (ek+ U2 )'/ . Substitution of the Green's function matrix elements into Eq. (5.13) then gives

Tr(pp+ ) ypp(k)P (k)[( A gGg+BkQk )( A g Gk+Bk Qg ) A/Bk(Gg Qg )A gBk(Gg Qk )]
k

We may combine all four terms in the trace expression to give the conductivity of Eq. (5.3) the form

2

m.Q
JdE — g vp(k)v„(k)[lm (A1,G1, +BkQk) —Im A1,B1,(Gk —Qk)],dz

(5.16)

(5.17)

where use has been made of the identity Im f=—'(f f*
) an—d all points are now taken at z =E +i e

In and effort to simplify Eq. (5.17) we introduce the fol-
lowing function:

finally have

2Umm
)Mv 3 pv ~ (5.23)

N„(g)= —g v (k)v (k)5(g' —e1, ) .=1

This permits us to write the conductivity as
r

o„= jdE — J d(C1 (g)L(g),

(5.18)

(5.19)

where U is the maximum velocity in the band. By in-
serting the expressions for N„(g) and L(g) into the
preceding form of the conductivity, and using the ap-
proximation that replaces the negative energy derivative
of the Fermi function by a 5 function centered at the Fer-
mi energy, it follows that

o =oo[ A J 1 (E)+8C J2(E)], (5.24)
where Q, =Q/N and L (g) = [Im( AG+B Q)]—[ImAB(G —Q)] . We may further reduce the results
by using the density-of-states expression

where o.o=e v iri/3' II, . The quantities J, and J2 are
given by the integrals

go(C) =—X 5(k —&k»
1

k

and constructing the average squared velocity

v'(g) = [go(g)] ' g v (k)5(g —E„) .
k

(5.20)

(5.21)

( 1 P2)3/2
l, (E)= d

(B g2)2+C2

( 1 P2)3/2
J2(E)= d

[(B g2)2+C2]2

(5.25)

For systems with cubic symmetry, these results may be
combined to reexpress Eq. (5.18) as

= 1@„(g)= g v (k)5(g —E„)5„
k

with A =41m(X )Im(X&), B =Re(z —X )(z —X&),
C = Im(z —2 )(z —2&). Evaluation of the above in-
tegrals may be done in closed form by performing con-
tour integrations in the complex plane. With branch
points at /=+I we find

=
—,'go(g)v (g)5„, . (5.22)

Upon using the semicircular model DOS for go(g) and
the Velicky expression for the squared velocity term we

I

and

J (E)=~+ r 1/2 3/2 o
3~f~ —8

ICI
(5.26a)

J2(E)= r '/ p'/
I
cl (2 —5B)sin ' 51cl cos

2

3
+p 2B cos

2

—3IClsin
2

(5.26b)

where we have made the definitions

(B2+ C2)1/2 [( 1 B2)2+ C2]1/2

C

tang=, O~g~vr .B

(5.27)

I

At this point, it is straightforward, although tedious, to
show that Eq. (5.24) reduces to the expression for o' of
the disordered ternary alloy when the LRO parameter
vanishes. Actually, Eq. (5.17) is a more convenient point
at which this limiting case may be realized with U2 =0,
Ak = 1, and Bk =0. Numerical examples of the DOS and
conductivity versus energy plots are presented in the fol-
lowing section.
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VI. NUMERICAL RESULTS

The solution of the coupled equations in F and E&
was accomplished using a routine in the International
Mathematical and Statistical Libraries, Inc. (IMSL)
called NEgNJ. This solves n coupled nonlinear complex
equations with a user-supplied Jacobian. To fully charac-
terize the alloy we require, as input parameters, the con-
centrations X~ and Xc; the scattering strengths c.~ and
E~ (recall, E„=O);and the order parameter, g. To reduce

&. s

this wide range of choices, we have selected c.c = 1

throughout and used Xc=0.005, 0.05, and 0.50 as a fair-
ly representative range of the eA'ect of the C-atom con-
centration on the DOS and conductivity. Also, the value
of the B-atom concentration is usually chosen to be as
close to an even mixture with the A atom as the numerics
will allow. This is done because only the A and B atoms
are involved in the ordering process and the eftects of this
ordering are most pronounced when the two concentra-
tions are equal.

In Figs. 1(a)—1(c) and 4(a)—4(c) the front graph corre-
sponds to the completely disordered ternary case (i.e., or-
der parameter, q=O). An increase in ordering is then
found by moving "inward" until the maximum is attained
(g = 1). The energy axis is in units of the half-bandwidths
of the reference crystal. Figure 1(a) represents a DOS for
a C-atom concentration of 0.005 and hence, it is this
graph that most closely resembles binary alloy results. In
particular, a valley, in the center of the band, begins to
form and becomes more pronounced as order is in-
creased. At g=1, the DOS is almost zero over the range
bounded by the A-atom potential (E~ =0) and the 8
atom potential (E~ =0.25, in this case). The only excep-
tions are two small band structures due in part to the fact
that we do not have a perfectly even mixture of A and B
atoms and in part to the random presence of the C atom.
Perhaps the most obvious new feature the third atom in-
troduces at these concentrations is the small satellite
band to the right of the larger band. It also shows the de-
velopment of a valley as order is increased. Figure 4(a) is
the corresponding conductivity and it is plotted as a func-
tion of Fermi energy and ordering parameter. The con-
ductivity shows the same characteristic shape as the
DOS—the formation of a valley at the center accom-
panied by an increase in the conductivity on either side of

(-) W I DTH) 2. p

I 0TH) &-0

FIG. 1. Density of states as a function of energy and ordering
with (a) X& =0.005, X~ =0.48, c& =0.25; (b) Xc=0.05,
Xa —0.49, ca 0.75; (c) Xc 0 50, Xa =0.25, Ez =0.50.

FIG. 2. Density of states as a function of energy and B-atom
concentration. c.& =0.25; q=0. 60.
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VII. CDNCI. USIQNS

FIG. 5. Condductivity as a function of Fermi ener
n. c~= . 5; q=0. 60.
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