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By using a generalized version of the coherent-potential approximation, we investigate the effect of
long-range order on the electronic properties of a model ternary alloy. Previous considerations by
Plischke and Mattis of a second-order phase transition in a three-dimensional order-disorder binary al-
loy necessitated the introduction of a bipartite lattice in which each atom occupies its own sublattice
in perfect order. The present case, in particular, contains the influence of a completely random third
atom on the density of states and the dc electrical conductivity of the binary system. Numerical results,
in the form of plots of these properties for representative values of the scattering strengths and the atom-
ic concentrations, over the range of the order parameter, are presented. Calculation of the temperature
dependence of the order parameter shows that at and above the critical temperature, as this parameter
approaches zero, the model reduces to the disordered ternary alloy. For comparison, it is shown that
this behavior also follows from the traditional order-disorder transition picture of the Bragg-Williams

approximation.

I. INTRODUCTION

The subject of the electronic properties of disordered
alloys has received extensive, if not exhaustive study over
the past several decades. This is due in large part to the
success of the coherent-potential approximation (CPA)
introduced by Soven! and others.? Subsequently, several
advanced techniques have been combined with the CPA.
One of the more ambitious of these approaches is the
Korringa-Kohn-Rostoker coherent-potential approxima-
tion (KKR-CPA).> Examples of this method may be
found in the works of Butler, Stocks, and Winter.*’
More recently, many-body theory has been incorporated
with the CPA by Vignale et al.® and Joubert and Ink-
son.” Clearly, these methods significantly raise the com-
plexity (both analytically and computationally) of the
order-disorder problem to be considered here and thus
will not be considered further. Not long after the intro-
duction of the CPA did efforts turn toward the use of this
band-model picture of a description of long-range order-
ing in binary alloys. This was first done in one dimension
by Foo and Amar® and later by Plischke and Mattis,’
who calculated the density of states (DOS) for a three-
dimensional binary alloy with a second-order phase tran-
sition. Within the same context, the dc electrical conduc-
tivity was investigated by Paja,'® Borodachev et al.,!!
and Kudrnovsky and Velicky. '?

The DOS and the dc conductivity of a disordered ter-
nary alloy have been calculated, respectively, by Scar-
fone'? and Wysokinski and Pilat.!* Similar work is per-
formed here for a ternary alloy which may be thought of
as an order-disorder binary alloy with a completely ran-
dom third atom on a bipartite lattice.!> Section II briefly
reviews the traditional order-disorder transition picture
of the quasichemical Bragg-Williams approximation'¢ in
the framework of the ternary system. The temperature
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dependence of the long-range order (LRO) parameter is
obtained in a form identical to the binary result of
Brouers et al.!” As expected, a second-order phase tran-
sition from the ordered to the disordered binary state
occurs. However, an element of disorder persists in the
system since the third atom is random over both sublat-
tices at all stages of ordering. Section III introduces the
CPA in the generalized description of the bipartite lat-
tice. This requires the use of two coherent potentials and
leads to a pair of coupled, nonlinear complex equations
for their determination. The solutions to these equations
constitute the bulk of the numerical analysis. Section IV
is concerned with the band-model calculation of the tem-
perature dependence of the LRO parameter through the
use of moments of the DOS for the ternary alloy. The re-
sults coincide with those obtained in the Bragg-Williams
approach, thus providing satisfactory contact between
these two mean-field theories. Section V deals with the
CPA electrical conductivity problem within the order-
disorder framework. The expression for this quantity is
seen to reduce to two integrals which can be evaluated in
closed form in the complex energy plane. Section VI
presents numerical examples and discussion of the DOS
and the dc conductivity for the ternary alloy. Although a
wide range of values of the input data are possible, we
select only those permitting a convenient comparison
with results in the literature. Finally, concluding re-
marks are given in Sec. VII.

II. BRAGG-WILLIAMS APPROXIMATION AND
THE ORDER-DISORDER PHASE TRANSITION
IN THE TERNARY ALLOY

As a way of establishing the relevant concepts and
variables, as well as providing a general picture of the ter-
nary alloy thermodynamics, we briefly review the order-
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disorder problem in the context of the Bragg-Williams
approximation. We first imagine a simple cubic lattice,
with N sites, divided into two equal sublattices labeled by
a and 8. The number of sites on each sublattice is

N,=Ng=4iN . (2.1
We assume a structure such that each a(f) site has only
PBla) sites as nearest neighbors, thus creating a CsCl-type
lattice. For the ternary alloy, three types of atoms are
distributed over these sites such that

N, +Nz+No=N, (2.2)

where N 4, N, and N are the numbers of 4, B, and C
atoms, respectively. Their fractional concentrations are
then given by

N, Np N¢
X4=— BT N “c N
In general, a complete ordering of all three atoms re-
quires the use of three sublattices. Since we have only
two sublattices it should be clear that we are considering
a restricted form of ordering. In particular, while the 4
and B atoms participate in the ordering process the C
atom will always remain completely random. Thus, we
may imagine our system as an order-disorder binary alloy
with a random third atom. To this end we define a LRO
parameter, 1, in the following way. For X , =X,

_Ni-NG_Pi-P]
N$+N&  Pe+Ph

(2.3)

n , (2.4)

where, for example, N ﬁ and Pﬁ represent the number
and probability of an A atom occurring on the 3 lattice.
The former are defined by N =N°Py for o € {a,B} and
n € { 4,B,C}, while the latter are explicitly given by

Pi=X,+X,m, Pg=Xp—X,m,
(2.5)
Ph=X,—X,m, Pf=Xp+X,m.

Since the C atom is random, we also have P¢=PS=X_.
To obtain results for X , =2 X simply replace 4 with B
and exchange a with 3 in the LRO parameter definition,
and let X , — X5 in the 5 coefficients in the above proba-
bility factors. Notice that, for =0, these probabilities
reduce to the ordinary fractional concentrations while for
n=1, the P/ put all of the 4 atoms on the « lattice and
all of the B atoms on the f3 lattice (for equal concentra-
tions of A and B atoms). For unequal concentrations, the
factors describe the excess of one ordering atom on the
other lattice.

The first step in providing a quantitative picture of the
thermodynamics is to construct the configurational ener-
gy associated with the interaction between nearest-
neighbor pairs. We write this as

E=_—E émnNmn ’

m,n

(2.6)

where the N,,, are the number of m -n pairs (counting
N 4,5 and Ny, only once), and &, is the related interac-
tion energy. As a necessary alternative to calculating E
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directly for each configuration, we employ the Bragg-
Williams approximation which consists of obtaining the
average ( E ), for each value of 7. Thus

2.7)

=2
(E)= r %6mn(Nmn> ,

where we have normalized this expression using the coor-
dination number I" and the factor of 2 because of the two
sublattices. Expressions for the (N,,, ) are easily found
using the probability factors. For example, (N,,)
=(Ng)TPH)=TNPSPE. This is a reasonable result
since there are N§ A4 atoms on the « lattice, each sur-
rounded by I' nearest neighbors (which are all elements
of the B lattice by construction) whose probability of be-
ing another 4 atom is equal to P5. The others follow
similarly, and we find the total average energy becomes

(E(n))=E(Q)—NX%V ;zm*, (2.8)

where E (0) is the configurational energy in the complete-
ly disordered state and V,p is the ordering energy
defined by V 3 =26 53— & 4,— 6 5. To obtain the tem-
perature dependence of the LRO parameter we minimize
the free energy, given by

Hy, T)=Uy, T)— TSy, T) . (2.9)

When we consider the free energy expressed in terms of
the partition function of the ternary system, it follows
from a common procedure that the internal energy,
U(x, T), is identified with ( E(7)) and the lattice entropy
is given by

NkB a a B B a a
$(n, T)=—=(P§ InP§+ P InP4 + P InP§

+PEInPE)—NkpyXoInX. , (2.10)

where kj is the Boltzmann constant. Minimization of F
yields the equilibrium condition
_ 4X 4V 487

kB T ’

1+f
1—f
where f =(X ,+Xp)n/(X 4 +Xzn?). Taking the limit as

n—0 gives the critical temperature, for any concentra-
tion of the three constituents,

T = X4Xp 2V
¢ X, +Xp kg

In

(2.11)

(2.12)

The binary results of Brouers et al.!” correspond to the
special case X 4 =X for which the expressions for f and
Eq. (2.11) yield

X4V
n(T)=tanh (2.13)
kgT
and the critical temperature
X4 Vap
=4 A7 2.14
¢ Ky ( )

The phase transition is second order, thus, as the temper-
ature is increased past the critical point, the LRO param-
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eter smoothly approaches zero. However, as the temper-
ature is decreased below the critical point, the LRO pa-
rameter approaches its maximum value of one. Formally
speaking, as the critical temperature is approached from
above, the system is accompanied by an increase (toward
infinity) of some correlation length. In the present case
this would simply be the occurrence of an alternating pat-
tern of 4 and B atoms over larger and larger distances on
the lattice.

III. GENERALIZED CPA AND
SUBLATTICE ORDERING

This section develops the band-model approach to the
order-disorder ternary alloy in the generalized CPA. The
periodic and random parts of the alloy Hamiltonian are
related to an effective periodic part and scattering correc-
tions, respectively. Since there are two sublattices, two
coherent potentials, or equivalently, two electronic self-
energies 3, and 2g are required for this purpose. It re-
sults, then, that the periodic part of the Hamiltonian is
nondiagonal in the Bloch representation. This complica-
tion is overcome by means of a nonunitary transforma-
tion connecting the Bloch representation to a diagonal
basis in which the formalism simplifies. Vanishing of the
average scattering matrix for sublattice a (B) yields a
self-consistent equation for 2, (25) and F, (Fg) where
the latter quantity is the diagonal matrix element of the
effective periodic Green’s function on the bipartite lat-
tice. The alloy density of states is expressed in terms of
one-half the sum of F,, and Fpg.

We assume that the one-electron alloy Hamiltonian has
the tight-binding form

H=3 |K)ek|l+3|n)e,(n]
k n

=H,+V . (3.1)

Here, |k) represents an electron Bloch state, while the
|n) are Wannier states for an electron with energy ¢,.
The requirement of two sublattices for the description of
ordering necessitates the use of two coherent potentials,
U, and U,. To deal with this mathematically we assume
the existence of a vector Q, defined such that

,‘Q.Rn +1, neEa (3 2)

—1, nEB. :
In addition, we require that g, o= —¢, which makes
the above assumption compatible with a simple cubic or
body-centered cubic lattice in the tight-binding approxi-
mation. The alloy Hamiltonian is restructured as the
sum of an effective periodic part H,=H,+ U and a ran-
dom perturbing part ¥ =¥ — U which provides scattering
relative to H,. We have

Hy=SIK)e (k| +3 In YU, +Uye' T )] . (3.3)
k n

The coherent potentials, as functions of the complex vari-
able z, obey the reflection property, U} ,(z*)=U, ,(z),
and real z will always be taken to mean z +ie with € —0.
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With the above definitions, it is clear that H, is not diag-
onal in the Bloch basis. In fact, it may be written as

Hy=3 k) (g, +U{(k|+ 3 [k)U,(k+Q] . (3.4)
k k

The following nonunitary transformations
ldy)=A4,lk) =B, [k+Q) ,
ldk+Q)=Bk|k>+Ak|k+Q) R

where the transformation coefficients are given by
1 172

V2

€k

Ak 2 7
Vel + U3

n (3.6)

1 &

B, = %
k \/5 IER]

-
Vg +U3

diagonalize the effective periodic Hamiltonian:

(dyl, (3.7)

Hy=3 ld) |2/ G+ U3 +U,
K 18k|

where the quantity in parentheses shall henceforth be

called E,.

Calculation of the configurational average alloy
Green’s function (G(z)) with the CPA is facilitated by
the methods of multiple scattering theory. In that for-
malism, an average total scattering operator (T ) is
defined by the relation

(G(2))=Gy(2)+Gy(2){T)Gy(2) . (3.8)

Here, G,(z) is the Green’s function of the effective
periodic Hamiltonian H,. The scattering operator may
be expressed in terms of itself in a standard way by
T=V+VG,T . (3.9)
Iteration of Eq. (3.9) leads to an infinite series for 7 in
terms of G, and the random perturbation ¥. The CPA
takes the viewpoint that the vanishing of (T') is a self-
consistent condition for the unknown U. In this way, the
second term on the right-hand side of Eq. (3.8) makes no
contribution and {G(z)) coincides with G,. Because V
assumes the form of a sum of localized site contributions,
it follows that 7' may be written as the sum of contribu-
tions T, due to individual sites. In the single-site approx-
imation, the vanishing of { T') is equivalent to requiring
that (7, ) =0 since (T, ) may be shown to be a product
of (7,), the average atomic transition operator for the
nth site, and an average effective wave originating from
all other sites.
Application of the basic CPA procedure to each sub-
lattice independently yields equations for the determina-
tion of the coherent potentials U, and U,. We obtain

PGt +Pgty+PEt-=0,
(3.10)
P8t +PBty+PEt.=0.

The ¢, in Egs. (3.10) are matrix elements of 7, in the
Wannier representation. Explicitly, the latter quantity is
found to be (withn €{ 4,B,C})
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fo=In e, — Uy — Upe [ 1= (e, — U, — Upe T)F, 17 1(n | .

The diagonal effective Green’s functions F,(z) are given by

F”(z):<n‘(z ‘ﬁo)ﬁl|n >:(Z—U1+UzeiQ.R” 1

k
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Iy 2E=U = U517,

kS

(3.11)

(3.12)

where, now, n € {a,B}. In terms of the self-energies, 2,=U,+ U, and 2;= U, — U,, Eq. (3.10) yields a system of two,

nonlinear complex equations:

33F2 —epc S F2+232F  +tepec 3 F2—(egc +e,)2 F+ 3, +PhcegecF,—€,=0

a

and

SIF%—epcSEF+232F ptegecSpFp—(epc +eg)3pF g+ 35t PhcegecF—eg=0,

where we have defined, for convenience,
€pc —€ptec,
€qp=P5Pey +P&Pec

PgP=pPgB4+pPEP .

(3.14)

Use of the Hubbard, semicircular model DOS given by!®

—2—(1—22)1/2, Iz] <1
m

golz)= 0, lz>1 (3.15)
yields, for the F functions,
Fo(z)=2[z —(z*—1)1/?] (3.16)
and
Fy(§) Fy(&)
F,=(z—3) °§§, FB=(z—>:a)~9§i, (3.17)

with §2=(z —3,)(z —3p). Equations (3.13) and (3.17)
show that the a and f3 sublattice variables are coupled.
As in the case of the disordered ternary alloy, to obtain a
form useful for numerical solutions, we eliminate the
self-energies in favor of the F functions which satisfy two,
coupled fifth-order nonlinear complex equations. For
further numerical simplicity, these equations are ex-
pressed in terms of new variables F, and F_ given by
one-half the sum and difference of F, and Fg respective-
ly. The alloy density of electron states is related to the
former quantity by

g(B)=—LImF (E).
o

(3.18)

Equations (3.13) are reminiscent of the mixed polyno-
mial in F and the self-energy X of the disordered ternary
alloy on a single lattice. Indeed, when the LRO parame-
ter vanishes, the entire formalism reduces to this limiting
case where F_ and F, become zero and F, respectively,
and the a and f3 self-energies coincide with =.

IV. MOMENTS OF THE DOS AND TEMPERATURE
DEPENDENCE OF THE LRO PARAMETER

This section provides a band-model calculation of the
temperature dependence of the LRO parameter. For this

(3.13a)

(3.13b)

l
purpose we consider values of the B-atom energy €g
greater than 2. This allows us to approximate the elec-
tronic free energy through the use of moments of the ter-
nary alloy density of states. Although we obtain an
asymptotic form for the temperature dependence, the re-
sults coincide with those found in the Bragg-Williams ap-
proach.
In general, we define the moments of the DOS by!®

up=f_:dzz"g(z)=7ir—Tr(H") . 4.1)

The reference crystal moments, ,uI(,O), are similarly defined
by replacing g (z) and H by g,(z) and H, respectively, in
the above expression. In particular, if the reference crys-
tal DOS, g,(z) is symmetric, then ,u},m vanishes for odd
values of p. For the order-disorder ternary alloy, the
relevant moments® are, with the exception of the tilde-
term in Eq. (4.2) which contains the LRO parameter,

Ho=1, u;=A4A,, #2:A2+M(20),

w3 =As+3A,uL (4.2)
= B0+ 2B P+
where
A =X, e, +Xpep+Xcec,
4.3)

When |eg| is much larger than maxe, —ming,, two well-
defined, nonintersecting regions are formed. One cen-
tered around ez and the other around e=(X e,
+Xcec)(X ,+Xc)7!, the center of gravity of the 4 and
C atom energies. This is called the singly split band limit
of the alloy. A doubly split band limit also exists for the
ternary alloy but it does not affect the LRO-dependent
terms that we wish to consider. We now write the DOS
as a sum of two parts: a lower subband and an upper
subband. Thus g(z)=g;(z)+gy(z), which allows us to
express the moments as



I

pp=f_:dzz"’g(z)
Zf_w dz(z —ep+ep Vg, (z)
+ [ 7 dz(z —e+egylz)

[813#5_1'1‘81[1[5]_1] . (44)

-1

Here, we have used the binomial expansion and defined
the moments relative to the subbands by

wp=J" dzz—ep Ve (2),

© (4.5)
=f_ dz(z —e)Pgy(z) .

The infinite set of equations resulting from Eq. (4.4) must
be solved by truncation. However, one runs into the ap-
parent problem of having twice as many variables (,ulJ and
,up) as there are equations. This difficulty is resolved by
recognizing that, for large €z, only its highest powers in
the expressions are significant. In our case we will sys-
tematically neglect all terms of order €5 and higher. Us-
ing the moment expressions obtained in Eq. (4.2) we find

pe=Xp, pi=Xp(1—Xpuez'+Xin’ulez', (4.6)

which is all we require for the subsequent analysis.
The electronic free energy may be written

&

€

(o, T)=~%f°° dz g(D)n(1+e %) . 4.7)
At temperatures such that k7T <<|ep|, the lower sub-
band is full while the upper subband remains empty.
This permits us to approximate the free energy by

“BJEB‘)

Fa(n, =N [~ dz g (z)+O0(e

=N [7 dz(z +1e5)igL(2)
—Nlegl [ dzg,(2)

=Nul—Nleglub . (4.8)

Substitution of the expressions for uf and uf into Eq.
(4.8) yields

Fa=U0)—NX3uneg| 1, (4.9)

where UO0)=—N[Xz(1—Xp)u ey 1+ Xglez! ).
Comparison of this result for the electronic free energy
with the Bragg-Williams form of the average
configurational energy [Eq. (2.8)] shows that the associa-
tion

uPleg| 1=V ,p, (4.10)

brings these two quantities into coincidence. The critical
temperature may now be written as

_ XAXB 2#(0)
X, +Xp kglegl

(4.11)

This result reduces to that of Plischke and Mattis when
the 4 and B atom concentrations are equal.
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V. ELECTRICAL CONDUCTIVITY AND
ORDER-DISORDER ON A BIPARTITE LATTICE
WITH CUBIC SYMMETRY

In this section we employ the generalized CPA to
study the dc electrical conductivity of the order-disorder
ternary alloy. This application follows previous'#?° cal-
culations of the transport properties of disordered alloys
in the single-site approximation. The ordering effect is
incorporated, as in the binary case,'® by making use of
complex transformations that diagonalize the one-
electron Green’s function. The conductivity is expressed
in terms of two integrals which may be evaluated in
closed form by contour integration in the complex energy
plane. The analytical results are identical with those re-
ported for the disordered binary alloy,?° except that the
input self-energy is specific to the order-disorder ternary
alloy.

We begin by introducing the well-known Greenwood-
Peierls®">?? formula for the electrical-conductivity tensor:

2
= e h” de Tr(p# (E—H)p,8(E —H)) ,
(5.1)
with u and v representing cartesian coordinates. This

closed formal expression for o, is the result of calculat-
ing the current density to first order in the applied elec-
tric field. Kubo?® has given a more general expression for
0,, which reduces to Eq. (5.1) for the case of a nonin-
teracting electron gas at zero temperature, as shown by
Verboven.?* Here, H is the alloy Hamiltonian of Eqg.
(3.1), f denotes the Fermi function, e and m are the elec-
tron charge and mass, respectively.  is the crystal
volume, and p,, are components of the linear momentum.
The prefactor of 2 takes into account the two spin states
of the electron. The angular brackets denote the
configurational average. The following procedure paral-
lels Ref. 5 in showing that vertex corrections to the elec-
trical conductivity vanish in the order-disorder ternary
model. These corrections were first found to vanish for
both the disordered binary?® and ternary'* cases. The al-
loy Hamiltonian H and therefore its corresponding
Green’s function G, are not diagonal in the Bloch repre-
sentation. Thus, in general, the Green’s function matrix
elements connect different sublattices, making zero vertex
corrections not an immediately obvious result.
It follows from the definition of the alloy Green’s func-
tion that
G(E")—G(E™*

=27id(E —H) , (5.2)

where E* is an abbreviation for E+ie. By applying this
identity to Eq. (5.1), the conductivity tensor may be given
the compact form

wlE) . (5.3)

V

_2e ﬁﬂ' de

The quantities 1, (E) have the expression
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I1,(E)=

1 _ _
v mTr{p#[KV(EﬂE )+K (E",E™)

-K/(ET,E")-K (E",E)]},
(5.4)
where the K, are terms of the form

K (2,2)={G(2)p,G(z")) , (5.5)

which describe the averaged propagation of two elec-
trons, or in other words, the motion of correlated elec-
tron pairs. Many of the following results, in reducing K,
may also be derived on the basis of more elegant func-
tional techniques.?> These make use of an alternate form
of the Green’s function, in terms of the random potential,
as a starting point. The procedure here is more tradition-
al. First, we recall from Eq. (3.8) that G (z) may be con-
veniently expressed without the averaging brackets as

G(z2)=G(2)+G(z)TG(z) . (5.6)

Combining Egs. (5.5) and (5.6), and invoking the CPA
condition, we find that K, becomes

K (z,2')=Gp,G'+GT (2,z')G ", (5.7)

where G is short for (G ). The complex energy variables
z and z' have been suppressed in G and G ’, respectively.
The quantity I',, defines the function which gives rise to

(t,Gp,G'T:)=In){{t,{(n|Gp,G |n)t.)}{n]

=|n)t, 3 (n|Gm ) (mlp |I)I|G'|n)t;,){n] .
m,l
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vertex corrections due to simultaneous averaging of both
Green’s functions in Eq. (5.7). On the other hand, the
first term on the right-hand side of Eq. (5.7) comes from
independent averagings. The determination of K, now
rests on an approximation for the vertex correction,

' (z,z)={(TGp,G'T") , (5.8)

consistent with the development of the electron self-
energy and G on the bipartite lattice.

By repeated use of the single-site approximation we
systematically reduce the vertex term to a sum of expres-
sions involving the atomic scattering operator 7,. The re-
sult is

I'(z,z)=3 (7,Gp,G'T,)

+3 3 (7,G(7,Gp,G'T,)G'T, )+ - .

n m¥%n
(5.9)

The single-site approximation is maintained by averaging
after each step in the series. The exclusions in the sum
represent an absence of two electrons returning to the
same site. Clearly, evaluation of the vertex equation re-
quires us to deal with the common term (7,Gp,G 't/ ).
Writing the scattering matrix explicitly as an operator in
the Wannier representation (i.e., 7, =|n )t,{n|) we find

(5.10)

Evaluation of the matrix elements of the Green’s function in Eq. (5.10) requires some care since it is not diagonal in
the Bloch basis. However, we may insert a complete set of the diagonal basis introduced in Egs. (3.5) and (3.6). The re-

sult is
(n|Gp,G'In)= 7v1~; mzl % KR 7R1)pv(k)k2 " TR M (k) R, IM (K, R, M (KR, Nz —Ey )7
, 1
X3 e T b (0, R M (K, R, )z — By ) (5.11)
kZ
Here, we have defined, for convenience, M (k,R,)=(4, —BkeiQ.R” ). The momentum matrix elements are
<m1pv|1>=—11\7}k;e“‘““m_""pv(k) (5.12)

and p,(k)=(k|p,|k). The transformation coefficients A4, and B,, and the dispersion formula E, only depend on k
through g,. In view of the fact that the velocity v (k) and g, are antisymmetric and symmetric, respectively, under time
reversal,’® we find that the entire expression of Eq. (5.11) vanishes. This remarkable simplification also means that the
vertex term vanishes and we are left with the simple result that K (z,z’) is equal to the first term on the right-hand side
of Eq. (5.7).

Going back to the trace expression in Eq. (5.4), we must now obtain, explicitly, terms of the form

Tr(p#KV)=Tr(p#(—;pv(—} n=> EPH(k)pv(k')<k|(_}|k')(k’l(_} k) . (5.13)
kK kK
Once again, insertion of the diagonalized basis on the Green’s functions gives
(k|Glk')=(A, A G, +B,B,.Q, By i+ By A Gy Oy k1T Ak By GOy k4 q » (5.14)

where we have defined
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-1 -1
— € — €
Gk=<dk'G|dk>= }\._|—E'Tp , Qk=<dk+Q|G|dk+Q>= +mp N (515)
k k
and A=z —U,, p=(eg+ U%)!/2 Substitution of the Green’s function matrix elements into Eq. (5.13) then gives
Tr(p,K,)=23 p.(k)p,(k)[( AiG,+BiQ ) A2GL+B2Q)— A By (G, — Q) A B1 (G — Q)] . (5.16)
k
We may combine all four terms in the trace expression to give the conductivity of Eq. (5.3) the form
_2’% 2 2 2
qu—v—ﬂfd zu K)[ImX A2G, +B2Q,)—1Im*4,B, (G, —Q,)], (5.17)
[
where use has been made of the identity Im?f  finally have
=1(f—f*)? and all points are now taken at z=FE +ie. 22
In and effort to simplify Eq. (5.17) we introduce the fol- @,,= (1 —g,‘2)3/2§,W , (5.23)
lowing function: 37
where v,, is the maximum velocity in the band. By in-

1
(é‘):F%v“(k)vv(k)S(g—ek) . (5.18)

This permits us to write the conductivity as

_ 2% _df
=a. Jag|——% | [deo, (L&), (5.19)

Oy

where Q,=Q/N and L(&)=[Im(A42G+B?*Q))?
—[ImAB(G —Q)]>. We may further reduce the results
by using the density-of-states expression

5)_—28 —&y) (5.20)
and constructing the average squared velocity
v2(§)=[g0(§)]_1Evz(k)S(é—sk) . (5.21)
k

For systems with cubic symmetry, these results may be
combined to reexpress Eq. (5.18) as

g)———— 2 AKIB(E— )5,

serting the expressions for ®,,(§) and L(§) into the
preceding form of the conductivity, and using the ap-
proximation that replaces the negative energy derivative
of the Fermi function by a § function centered at the Fer-

mi energy, it follows that
o=o0,[ AJ,(E)+8C?J,(E)], (5.24)

where o,=e?,,#%/37*Q,.. The quantities J; and J, are
given by the integrals

+1 (1_ 2)3/2
JW(E)= [ d§—~—£-——B e

ol (1_§2)3/2
LE= [ Tt

(5.25)

’

with  4=4Im(Z,)Im(Z5), B =Rel(z —Z,)z 23)
C=Im(z —2,)(z —Zg). Evaluation of the above in-
tegrals may be done in closed form by performing con-
tour integrations in the complex plane. With branch
points at £==*1 we find

=1 2 v—o
380(EWEBy,, . (5.22) JU(E)=m+ %r_l/zpy2 cos |2 5 (5.26a)
Upon using the semicircular model DOS for g,(£) and
the Velicky expression for the squared velocity term?® we and
_J
J— p— 3 —
JL(E)= 7 r~12p1723(C| |(2—5B)sin y—¢ —5|C| cos =9 +p 2B cos Y—¢
4|C)? 2 2 2
—3|Clsin i‘f”zi‘fs— ] l . (5.26b)
[
where we have made the definitions At this point, it is straightforward, although tedious, to
show that Eq. (5.24) reduces to the expression for o of
=(B>+C?»'?, p=[(1—B**+C?]'/?, the disordered ternary alloy when the LRO parameter
|| vanishes. Actually, Eq. (5.17) is a more convenient point
tany=—"—o, —7=¢=0, (5.27)  at which this limiting case may be realized with U, =0,
A, =1, and B, =0. Numerical examples of the DOS and
tand = 1cl 0<¢p<m conductivity versus energy plots are presented in the fol-
B’ T lowing section.



4142

VI. NUMERICAL RESULTS

The solution of the coupled equations in F, and Fj
was accomplished using a routine in the International
Mathematical and Statistical Libraries, Inc. (IMSL)
called NEQNJ. This solves n coupled nonlinear complex
equations with a user-supplied Jacobian. To fully charac-
terize the alloy we require, as input parameters, the con-
centrations X; and X; the scattering strengths €5 and
€ (recall, € ;, =0); and the order parameter, 77. To reduce
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FIG. 1. Density of states as a function of energy and ordering
with (a) Xc=0.005, X;=0.48, €3=0.25; (b) X=0.05,
Xp=0.49, €5 =0.75; (c) X =0.50, X3 =0.25, 5 =0.50.
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this wide range of choices, we have selected e-=1
throughout and used X, =0.005, 0.05, and 0.50 as a fair-
ly representative range of the effect of the C-atom con-
centration on the DOS and conductivity. Also, the value
of the B-atom concentration is usually chosen to be as
close to an even mixture with the A4 atom as the numerics
will allow. This is done because only the 4 and B atoms
are involved in the ordering process and the effects of this
ordering are most pronounced when the two concentra-
tions are equal.

In Figs. 1(a)-1(c) and 4(a)—4(c) the front graph corre-
sponds to the completely disordered ternary case (i.e., or-
der parameter, 7=0). An increase in ordering is then
found by moving “inward” until the maximum is attained
(p=1). The energy axis is in units of the half-bandwidths
of the reference crystal. Figure 1(a) represents a DOS for
a C-atom concentration of 0.005 and hence, it is this
graph that most closely resembles binary alloy results. In
particular, a valley, in the center of the band, begins to
form and becomes more pronounced as order is in-
creased. At n=1, the DOS is almost zero over the range
bounded by the A-atom potential (¢ ,=0) and the B-
atom potential (€5 =0.25, in this case). The only excep-
tions are two small band structures due in part to the fact
that we do not have a perfectly even mixture of 4 and B
atoms and in part to the random presence of the C atom.
Perhaps the most obvious new feature the third atom in-
troduces at these concentrations is the small satellite
band to the right of the larger band. It also shows the de-
velopment of a valley as order is increased. Figure 4(a) is
the corresponding conductivity and it is plotted as a func-
tion of Fermi energy and ordering parameter. The con-
ductivity shows the same characteristic shape as the
DOS—the formation of a valley at the center accom-
panied by an increase in the conductivity on either side of

0.80

0.64

A
(A

LT
Illlm,Z’,',zll

FIG. 2. Density of states as a function of energy and B-atom
concentration. g3 =0.25; n=0.60.
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this valley. The absence of the smaller satellite is due to
the resolution of the numbers. Since the Fermi energy is
related to the electron concentration, these plots may be
thought of as revealing variations of the conductivity for
different electron concentrations.

Figure 1(b) shows a DOS for a C-atom concentration of
0.05, a B-atom potential of 0.75, and a B-atom concentra-
tion of 0.49. At this energy the larger band has essential-
ly enveloped the smaller band making its presence all but
invisible except at y=1. In this case, as 7 approaches 1,
the central part of the valley beings to reveal more struc-
ture than the previous case. As before, at perfect order,
the small band structures in the center of the valley are
there because of the unavoidable overlap of B atoms on
the a lattice and because of the C atom (the two humps
are of different sizes). Similarly, Fig. 4(b) is the conduc-
tivity associated with the above parameters. Note the
change in scale; the overall conductivity is lower since
there are now more (random) C atoms.

Figure 1(c) is a DOS plot with a C-atom concentration
of 0.5 and equal concentrations of 4 and B atoms at 0.25;
the B-atom energy is 0.50. The major part of the band is
now primarily around the C-atom energy of 1.00 and
hence, a much smaller valley forms as order is increased
among the A and B atoms. This, of course, is due to the
greater dominance of the C atom. Again, Fig. 4(c) is the
corresponding conductivity however, the scale now is
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only up to 100. As we mentioned before, this overall de-
crease in the conductivity is to be expected when we in-
crease the C-atom concentration since the element of dis-
order has been increased.

Figures 3(a) and 3(b) show plots of the DOS with a C-
atom concentration of 0.05. Both of the graphs use equal
concentrations of 4 and B atoms (0.475) as input param-
eters. In particular, Fig. 3(a) uses a B-atom energy at
0.50 and the order parameter is set at 0.98. Inside the
valley (for both figures) the small, left-hand band struc-
ture and the little notch in the right-hand structure are
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FIG. 3. Density of states as a function of energy. The order
parameter is set at (a) n=0.98 and X=0.05, Xz=0.475,
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due to the still present 4 and B atoms on the “wrong”
lattice (we are not at perfect order). These structural
features vanish at perfect order in the binary case and are
expected to do so here as evidenced by a diminishing
height as order is increased. what remains unchanged,
however, is the larger right-hand band which can only be
attributed to the C atom. Figure 3(b) is a similar plot as
before, but now with a B atom energy at 0.75 and order
parameter 7=0.95. The smaller 4- and B-atom band
structures in the valley center have coalesced in this case
and, as before, are expected to disappear altogether at
perfect order. The far right band hump is a phenomenon
of the C atom.

The surface plots in Figs. 2 and 5 are designed to ac-
centuate what happens to the DOS and conductivity as
the B-atom concentration is varied while fixing the value
of the order parameter (in this case at 0.6). The C-atom
concentration is 0.005 (i.e., near binary) and the B-atom
energy is 0.25. The main feature to notice is the variation
of the peak as one goes from low to high values of X;. In
particular, at low Xp, the peak is sharp and pronounced
on the A-atom energy side while the other side of the val-
ley shows a more rounded form. As one moves to equal
concentrations of 4 and B atoms (i.e., X, =Xj), two
peaks are seen on both sides of the valley. Finally, as one
moves on toward higher values of X, the peak shifts to
the B-atom energy side of the valley while the graph be-
comes more rounded on the other side.
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VII. CONCLUSIONS

In this paper we have investigated a ternary alloy mod-
el by adding a completely random third atom on a bipar-
tite lattice of an order-disorder binary alloy. Calculation
of the temperature dependence of the long-range ordering
parameter using moments of the ternary alloy density of
states, shows that the order-disorder phase transition is
second order (no discontinuous change in entropy) in
agreement with the statistical thermodynamic approxi-
mation of Bragg and Williams. It is not surprising, as
noted in the binary alloy considerations of Ref. 12, that
the quasichemical and band methods reach a common re-
sult since they are both molecular field theories.

The density of states and the dc electrical conductivity
of the ternary alloy have been expressed, in the frame-
work of a generalized coherent-potential approximation,
as a function of energy for various concentrations and
scattering strengths of the constituents, over the domain
of the long-range-ordering parameter. Numerical results
show, for both of these quantities, that an increase in the
concentration of the third atom generally diminishes the
influence of long-range ordering on the formation of the
diatomic crystal. It is of interest to note that this behav-
ior is not only seen in the main structural elements of the
density of states and conductivity, but also in impurity
subbands characteristic of the ternary alloy. The depen-
dence of the conductivity on the density of states at the
Fermi energy is revealed in the obvious correlation be-
tween corresponding plots of these quantities, over the
range of the ordering parameter. Since the electron con-
centration has a direct bearing on the Fermi energy, we
may also view this similarity in terms of increasing or de-
creasing the number of electrons per atom. Thus, for
particular values of the electron concentration, the con-
ductivity of the ternary alloy becomes larger (and in some
cases infinite) as the order parameter (temperature) in-
creases (decreases) while for other values it decreases un-
der the same conditions. These trends in the conductivi-
ty are weakened (and in some cases washed out) by the
disorder of the third atom.

Although this model does not purport to be representa-
tive of any particular material, it may be that its proper-
ties reflect some features of a real system.
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