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First-principles study of the structural properties of Sn under pressure
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The structural properties of Sn at normal and high pressures are investigated using a self-consistent ab
initio pseudopotential method. The structural stability of various phases including a-Sn, P-Sn, simple
hexagonal (sh), hexagonal close packed (hcp), body-centered tetragonal (bct), body-centered cubic (bcc),
and face-centered cubic (fcc) is examined. The T=0 scalar relativistic calculations show that a-Sn un-

dergoes a phase transition into P-Sn at 0.8 GPa. As pressure increases, we find successive phase transi-
tions from P-Sn to bct at 19 GPa, to bcc at 46 GPa, and to hcp at 61 GPa. The transition sequence P-
Sn —+bct~bcc is consistent with experiment while bcc Sn was observed to be stable at room temperature
up to 120 GPa. Examining two internal structural parameters, which induce a hcp-bcc transition, a
small energy barrier that is less than thermal vibrational energy is found between bcc and hcp. This re-
sult suggests that the entropy term may be significant for the bcc phase at high pressures.

I. INTRODUCTION

Among group-IV-A elements in the periodic table, C,
Si, and Ge tend to form a diamond structure with strong
covalent bonds. Since the valence s and p states in these
elements are very close in energy, tetrahedrally coordi-
nated bonding is preferred energetically via the change of
hybridization from s p to sp . At normal pressure, al-
though C was shown to be more stable in the graphite
structure than in the diamond structure, the difference of
energy ( —= 1 —3 mRy) between these two structures is ex-
tremely small. ' Up to about 20 Mbar, no structural tran-
sition has been suggested for C. For Si and Ge, many
theoretical and experimental studies have shown that the
semiconducting diamond phase transforms into the me-
tallic P-Sn phase at similar pressures around 10 GPa.
Up to 1.25 Mbar, both Si and Ge undergo similar
structural transformations from P-Sn to simple hexagonal
(sh) to double-hexagonal close packed (dhcp). However,
the transition pressures between the metallic phases were
found to be much higher in Ge than in Si. In Si a succes-
sive transition from dhcp to hexagonal close packed (hcp)
and then to face-centered cubic (fcc) was found, while the
hcp and fcc phases have not been identified for Ge.

For heavier elements, however, the stable phases at at-
mospheric pressure are metallic; Sn and Pb are known to
crystallize in the P-Sn and fcc phases, respectively, which
appears as the high pressure phases in Si and Ge. " In Sn
the diamond (a-Sn) structure is more stable below 13' C
and its band gap is actually zero. ' Since cohesive energy
decreases going down in the group-IV A column of the
periodic table, the tetrahedral bonds of the diamond
structure become relatively weakened in the heavier ele-
ments. Thus these bonds are e6'ectively equivalent to
those of the lighter elements at high pressures. Further-
more, since the energies of the valence s electrons in the
heavier elements are much lower than those for the
valence p states, the diamond phase with sp hybridiza-
tion is less likely to occur and highly coordinated struc-
tures are favored. ' In a previous pseudopotential calcu-

lation, the temperature-induced a- to P-Sn transition in
Sn was attributed to the significant entropy contribution
to the free energy of the P-Sn phase. ' As pressure in-
creases, it has been observed that f3 Sn transf-orms into a
body-centered-tetragonal (bct) phase at 9.5 GPa. ' At
pressures between 40 and 50 GPa, a bct to body-
centered-cubic (bcc) transition occurs and the bcc phase
remains stable at room temperature up to 120 GPa. '

However, there is little theoretical work on the high-
pressure behavior of Sn.

In this paper we present the results of the ab initio
pseudopotential calculations for the structural properties
of Sn under pressure. The structural stability of the u-Sn,
P-Sn, sh, bct, bcc, hcp, and fcc phases is investigated for
T=0. We also calculate the axial ratios for non cubic
phases and find good agreement with available experi-
mental data. The o,-Sn phase is found to be stable up to
0.8 GPa where a transition into P-Sn occurs. Although
the energies of the P-Sn and sh phases are similar as pre-
viously found in Si and Ge, ' no structural transition ex-
ists between the two phases. The P-Sn phase transforms
into the bct phase at 19 GPa and then into the bcc phase
at 46 GPa. This transition sequence is consistent with ex-
perimental observations. We find a further structural
transition from bcc to hcp at 61 GPa, while the hcp
phase has not been identified experimentally. Since the
energies of the bcc and hcp phases are very close and a
small energy barrier between bcc and hcp exists, its
structural stability may be aff'ected by temperature.

In Sec. II we brieAy describe the method of calculation.
In Sec. III the results of the calculations are presented
and compared with other theoretical and experimental
results. Conclusions are made in Sec. IV.

II. METHOD

In the present calculations we use the first-principles
total-energy pseudopotential method' within the local-
density approximation. ' The exchange and correlation
potentials are approximated by the Wigner interpolation
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formula. ' This total-energy method using norm-
conserving nonlocal pseudopotentials has been success-
ful in predicting the structural and dynamical properties
of the group-IV elements C, Si and Ge. ' "' ' ' To in-
clude relativistic corrections, we use the method pro-
posed by Bachelet and Schliiter; the angular-
momentum- average pseudopotentials are employed in
bulk calculations. Although spin-orbit interactions are
significant in the electronic structure of Sn, we do not at-
tempt to include these interactions because the calcula-
tions are extensive and the structura1 properties were
shown to be insensitive to spin-orbit eAects in other calcu-
lations.

The total energy is calculated self-consistently in
momentum space. The (pseudo)wave functions are ex-
panded in a plane-wave basis set with a kinetic energy
cutoff (E~ii, ) of up to 12.0 Ry. Increasing EI,~ up to 25
Ry does not change the structural stability and relative
energies are estimated to be accurate to within 0.1

mRy/atom. The summation of the charge density over
the Brillouin zone is done using a uniform grid of k
points. Since the crystal structures considered here are
a11 metallic, a large number of k points are necessary to
represent well the Fermi surfaces. Samplings of 10, 159,
150, 288, 120, 126, and 146 k points in the irreducible
Brillouin zone are chose for a-Sn, P-Sn, sh, bct, bcc, hcp,
and fcc, respectively. Compared with the bcc phase, the
bct phase needs more k points because this lattice is less
symmetric. Testing difT'erent samplings of k points, the
maximum error in the total energy is estimated to be
within 0.5 mRy/atom. For the noncubic p-Sn, sh, bct,
and hcp structures, the total energies are optimized by
varying the c/a ratio for a given volume. The axial ratio
is found to vary as volume changes.

The ground-state properties, such as latticed constants,
bulk moduli, and pressure derivatives of the bulk moduli,
are obtained by Gtting the computed total energies for
various volumes to the Murnaghan's equation of state.
In this case the fitted energies are accurate to within 0.1

mRy/atom. By comparing the Gibbs free energies be-
tween two structures, we determine the structural stabili-
ty and estimate the transition pressures and volumes for
phase transformations.

We examine the transverse-acoustic (TA) phonon mode
at the % point in the Brillouin zone of the bcc structure.
This phonon mode is of particular interest because it is
related to the bcc-hcp phase transformation, accom-
panied by uniform strain along the [001] direction.
Since the polarizations at the high-symmetry point are
completely determined by symmetry, the frequency is
evaluated with the use of the frozen-phonon approxima-
tion. ' Within the harmonic approximation the pho-
non frequency is determined from the second-order
coe%cient at the phonon displacement.

III. RESULTS

The equilibrium properties for a-Sn and P-Sn are listed
and compared with experiments in Table I. For both the
phases, the calculated lattice constants (ao) and bulk
moduli (Bo) are in good agreement with the measured

TABLE I. Comparisons of the calculated lattice constants
(ao), bulk moduli (Bo), and their pressure derivatives (Bo) for
various phases of Sn with other theoretical and experimental re-
sults.

o.-Sn

bct
bcc

hcp
sh
fcc

a, (A)

6.40
6.471
6.483
5.70
5.733
5.812
4.79
4.62

3.27
3.13
4.64

Bo (GPa)

51.2
45.6
53'
60.5
62.9
57.9'
57.8
57.5
76.4
59.1

60.1

57.4

Bo

4.0

4.3

4. 1

4.2
4.04
4.0
4.1

4.0

Present calc.
Other calc. '
Expt.
Present calc.
Other calc. '
Expt.
Present calc.
Present calc.
Expt. '
Present calc.
Present calc.
Present calc.

'Reference 14.
Reference 28.

'Reference 29.

"Reference 30.
'Reference 31.
Reference 16.

values ' to within less than 2% and 4%, respectively.
For the pressure derivative of the bulk modulus (Bo), we
find a value of 4.0 and 4.3 for a-Sn and /3-Sn, respectively,
while experimental values are not available. Compared
with a previous nonrelativistic calculation, ' we obtain
similar results for ap, while improvements for Bp are not-
ed. For other metallic bct, bcc, hcp, sh, and fcc phases,
the calculated results foI ap Bp and Bp are also given in
Table I. For bcc Sn the value of Bp is underestimated by
about 30%, while a good agreement is found for Bp,
compared with the measured values. '

Figures 1(a) and 1(b) show the total energies semirela-
tivistically calculated for T=O as a function of volume
for various phases considered here. At zero pressure the
o.-Sn phase is found to be the most stable and this struc-
ture changes into the /3-Sn phase at a pressure of 0.8 GPa.
The difference of the minimum energies for the a- and P
Sn phases is about 2.5 mRy/atom, and this value is close
to the previous nonrelativistic result of 2.9 mRy/atom. '

It is known that the a- to p-Sn transition takes place at
atmospheric pressure just below room temperature
(13'C). Since the Debye temperature of a-Sn is higher
than that for P-Sn, the larger zero-point vibrational ener-

gy for o.-Sn reduces the transition pressure by 0.2 GPa.
Furthermore, because the entropy term increases more
rapidly for the P-Sn phase, ' the pressure-induced a- to
/3-Sn transition is expected to occur at lower pressures as
temperature increases from zero.

The P-Sn phase is stable up to 19 GPa where a phase
transition into a bct phase occurs with a volume change
from 0.82VO to 0.79 Vo (see Table II), where Vo is the cal-
culated equilibrium volume of the /3 Sn phase. Althoug-h
this structural transition is consistent with experiment,
the calculated transition pressure overestimates the ex-
perimental value given in Table II by about 10 GPa. Be-
cause of this higher transition pressure, the transition
volume is shown to be smaller than the measured value of
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0.88Vo. In both Si and Ge, the P-Sn phase was found to
transform into a simple hexagonal phase. As is shown in
Figs. 1(a) and 1(b), the total-energy curves for the /3-Sn
and sh phases lie very close in energy for volumes down
to 0.65 Vo. This proximity of the energy curves was sug-
gested to result from the structural similarity between the
/3-Sn and sh phases, which can be transformed via displa-

cive atomic motions. However, the sh phase does not
appear as a high-pressure phase in Sn.

Although the bct phase is more stable relative to the
bcc and hcp structures below 19 GPa, their total energies
shown in Fig. 1(a) are very close to within 0.7 mRy/atom
for all volumes considered. It was shown that the atomic
displacements specified in terms of optical phonon modes
in /3-Sn induces a change of phase from /3-Sn to simple
body-centered tetragonal. In this case the axial ratio of
the bct lattice is 0.77. As pressure is applied, since the
crystal tends to form a close-packed structure, the /3-Sn
phase with coordination number (CN) 6 is likely to trans-
form into the bct phase with CN =8. Then the bct phase
has to have an increased axial ratio. Above 19 GPa,
where the bct phase is more stable with respect to the /3-

Sn phase, the axial ratio of the bct phase is indeed found
to be 0.9. As a consequence, the bct phase is expected to
be stabilized prior to the formation of the bcc structure
with the same CN and the larger axial ratio of c/a = 1.

At a higher pressure of 46 GPa, a phase transition
from bct to bcc is found, which is consistent with the ex-
perimental observations. ' ' Experiments showed a
phase mixture of bct and bcc at pressures between 40 and
50 GPa, and above 50 GPa pure bcc Sn was observed. '

For this transition the transition volume is estimated to
be 0.69VO and this value is in good agreement with the
measured value of 0.70V0. ' In Fig. 2 the energy varia-
tion of the bct phase is plotted as a function of c/a and
shows two local minima at c/a =0.9 and 1.0, which cor-
respond to the bct and bcc phases, respectively. At
V=0.76Vo the bct phase is more stable by about 0.35
mRy/atom than the bcc phase and the energy barrier for
the bct-bcc transition is estimated to be about 0.5
mRy/atom. As volume decreases, the energy di6'erence
between bct and bcc decreases and becomes 0.1 mRy at
V =0.7VO. At a more compressed volume of 0.69VO, the
bcc phase is more stable over the bct phase; however, a
small energy barrier still exists between the two struc-
tures.

Our calculations show a phase transition from bcc to
hcp at 61 GPa. In this case the transition volume is cal-
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FIG. 1. (a) Crystal energies vs volume normalized by the cal-
0 3

culated equilibrium volume of 25.295 A /atom for P-Sn. (b) De-
tailed structure of the curves in (a) near the phase transitions.
The arrows indicate the transition volumes for the /3-Sn to bct,
the bct to bcc, and the bcc and hcp transitions.
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1.00

FIG. 2. Energies vs the axial ratio for the bct phase of Sn. A
0

volume of 19.26 A /atom is chosen.
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TABLE II. Transition pressures (P, ) and transition volumes ( V, ) for T =0. Volumes are normalized
0 3

by the equilibrium volume for the P-Sn phase ( Vo =25.295 A !atom).

V, (o.—Sn) V, (P-Sn) V, (bct) V, (bcc) V, (hcp) P, (GPa)

Present calc. 1.28

Other calc."

Expt. '

0.99

P-Sn
0.73

P-Sn
0.88

0.79
0.69

bct

bct
0.68
bct
0.88
bct
0.70

0.69
0.65

bcc
0.70

0.65

hcp

0.8
(o.6)'
19
46
61

9.5

40-50

'Zero-point motions are included (see text).
Reference 33.

'Reference 15.
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culated to be 0.65Vp. The stability of the hcp phase at
high pressures was also suggested in other theoretical cal-
culations. However, there has been no experimental in-
dication of the hcp phase at room temperature up to 120
GPa. ' We find the hcp phase to be stable up to a max-
imum pressure of about 100 GPa considered here. Al-
though a hcp phase was found to transform into a fcc
phase in Si, the energies of the fcc phase in Sn lie higher
than those for the hcp phase. Since our calculated ener-
gies for the bcc and hcp phases are too close, it is dificult
to determine precisely the structural stability within our
calculational accuracy. In addition, above 100 GPa, the
d cores of Sn are likely to overlap. Thus, neglecting
core-core interactions in the present calculations may
afFect the stability of the bcc and hcp phases.

In Fig. 3 the calculated equation of states is shown and
compared with experiment. Except for pressures be-
tween 10 and 20 GPa, where a discrepancy between the
calculated and measured transition pressures is found for
the P-Sn to bct transition, generally good agreement is
found between theory and experiment. The calculated
c/a ratios for noncubic phases are given in Table III.
For P-Sn, the calculated value of 0.545 is in good agree-
ment with the measured value of 0.546." For the bct
phase, we find the c/a ratio to vary with volume; the ra-
tio increases from 0.87 to 0.9 as volume changes from Vp
to 0.7 Vp compared with the experimental values ranging
from 0.914 to 0.94. ' ' For the hcp and sh phases, we
find the c/a ratio to be 1.632 and 0.95, respectively.
These values are very close to those previously found in
Si and Ge. '

At atmospheric pressure, a temperature-induced hcp-
bcc transition was found in Li, Na, ' and Zr. ' In
these elements a hcp phase is more stable at low tempera-
tures. As temperature increases, a phase changes into a
bcc phase at 72, 36, and 1135 K for Li, Na, and Zr, re-
spectively. In Sn, since the stable bcc phase up to 120
CzPa was found at room temperature, it will be interest-
ing to examine the stable phase at low temperatures. If
the entropy term increases more significantly with tem-

TABLE III. Comparisons of the calculated c/a ratios for the
/3-sn, bet, hcp, and sh phases of Sn with experimental values.

I i I

40 60

Pressure (GPa)
100 Calc.

Expt.

P-Sn

0.545
0.546'

bct

0.87—0.90
0.914"

0.92—0.94'

1.632 0.95

FIG. 3. Equation of state of Sn. Solid lines are our calcula-
tional results, while dotted lines denote the experimental results
from Refs. 15 and 16. The arrows indicate the transition points.

'Reference 11.
Reference 34.

'Reference 15.
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perature for the bcc phase, the hcp phase can be a low-
temperature phase as in Li, Na, and Zr.

By examining two internal structural parameters which
induce a hcp-bcc phase transition, the energy barrier be-
tween bcc and hcp is calculated. Figure 4 shows displa-
cive transformations from bcc to hcp. One of two
structural degrees of freedom is characterized by displac-
ing every second (110)b„planes by about (&2/6)a, where
a is the bcc lattice constant, along the [110] direction,
corresponding to a transverse-acoustic- (TA-) phonon
mode at the X point in the bcc Brillouin zone. Then
the (110)b„planes become the (001) planes of the hcp
phase. The other parameter involves a contraction of the
bcc lattice along the [001] axis until the bond angle (9) on
the basal planes changes from 70.53 to 60'. In Fig. 5 the
variation of energy is plotted as a function of TA-phonon
displacement 5 in units of (&2/24)a for various strains
along the [001] direction. Without a strain (8=70.53'),
the energy curve a corresponding to the N-point TA-
phonon mode of the bcc phase, which is well fitted to a

quadratic form, shows a minimum at zero phonon dis-
placement. As strain increases, the bcc phase becomes
unstable with respect to the displacive motion of the
atomic positions. For a strain giving 0=64, the
minimum energy in curve b is found at an intermediate
position between bcc and hcp. If 0 becomes 60, which
equals that of the hcp phase, the minimum energy in
curve c is located at the phonon displacement of 5=4.28,
which induces exactly the hcp structure. In the curves a
and c, the frequencies for the bcc and hcp phases are cal-
culated to be 0.57 and 2.30 THz, respectively. As is
shown in Fig. 5, for V =0.62Vo the energy difference be-
tween bcc and hcp is less than 1 mRy/atom. Along the
lowest-energy curves, the energy barrier for the martensi-
tic transformation from bcc to hcp is estimated to be
about 1 mRy/atom, which is less than room-temperature
energy. Although the entire phonon spectrum is required
to see the entropy term, one-phonon-mode calculations
indicate that the phonon mode of bcc Sn is softer than
that for hcp. Then a larger entropy term at high temper-
atures may stabilize the bcc phase with respect to the hcp
phase, as is found in experiments.

IV. CONCLUSIONS

We have shown that the T =0 scalar relativistic pseu-
d opotential calculations produce successfully the
pressure-induced transition sequence P-Sn —+bct~bcc in
compressed Sn. The calculated ground-state properties
of a-Sn and i33-Sn are in good agreement with experiment.
For the f3 Sn and b-ct phases, the axial ratios also agree
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FIG. 4. A structural relationship between the bcc and hcp
phases is shown in (a). The arrows indicate atomic displace-
ments for the transverse-accoustic-phonon mode at the X point
in bcc Sn. In (b) the bond angle is shown for the bcc plane.
With the strain along the [001] direction, the bond angle is re-
duced to 60 to induce the hcp plane.

phonon displacement

FICx. 5. Energy barriers from the bcc to the hcp phases for a
0 3

volume of 15.56 A /atom where 6 is phonon displacement in
units of (V2/24)a. As strain is applied along the [001] axis, the
bond angle decreases from 70.53' (curve a) to 64' (curve b) and
to 60 (curve c).
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well with experiment. Although experimentally bcc Sn
was shown to be stable at room temperature up to 120
Gpa, our calculations for T =0 have predicted a bcc-hcp
transition at a lower pressure. Because the energy
di6'erence between bcc and hcp is found to be less than
thermal vibrational energy, it is suggested that the entro-

py term may be significant in the bcc phase stability at
high pressures where the hcp phase is more stable at
T =0. To clarify the discrepancy between theory and ex-

periment, further experimental work at low temperatures
as well as extensive phonon-mode calculations are re-
quired.
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