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Excimer-laser-induced melting and sohdification of monocrystalline Si:
Equilibrium and nonequilibrium models
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A theoretical description of ArF-excimer-laser-induced thermal processes in monocrystalline silicon is
presented. Two models are given consideration: (1) the equilibrium model, involving a condition of the
local thermodynamic equilibrium, and (2) the nonequilibrium model, considering a functional relation-
ship between the temperature of the solid-liquid interface and the interfacial velocity. Comparison of
both models reveals only small differences in the resulting molten layer thickness and melt duration but
significant differences in the temperature fields and the resolidification dynamics. Confrontation of both
models with experimental results strongly favors the nonequilibrium model, which —in principle —can
explain the Si(100) surface structure modifications by ArF-excimer-laser irradiation.

I. INTRODUCTION

Processes of laser-controlled melting, recrystallization,
and ablation of silicon represent a significant topic in the
research of the laser-solid interaction. Recently pub-
lished papers (see, e.g. , Refs. 1 —3) sustained important
advantages of the excimer-laser radiation in comparison
with the longer-wavelength light arising mostly from
much stronger absorption and only a slight temperature
dependence of the optical properties of Si in the UV re-
gion.

The need to describe these phenomena quantitatively
gave rise to a melting model of the laser processing of
materials (see Ref. 4, and references therein, for example)
built in terms of equilibrium thermodynamics, which we
will refer to as the equilibrium (EQ) model. However,
there is a large volume of experimental evidence proving
that laser melting of materials may be a highly nonequili-
brium process: the authors of Ref. 5 —7 reported amorph-
ization of (100) silicon if the regrowth velocity reaches—15-20 m. s

In this paper we introduce a model involving interfa-
cial kinetics, which we will refer to as the nonequilibrium
(NE) model. Our attention and computer modeling will
be devoted to the description of much subtler
phenomenon on excimer-laser-irradiated silicon described
in detail in Ref. 8: An unusual "bulklike" (1 X 1) surface
structure prepared on (100)-oriented silicon by ArF
excimer-laser irradiation under ultrahigh-vacuum condi-
tions. The fact that the initial sample temperature
strongly afFects the resulting surface structure [(2X1) or
(1 X 1)j also suggests the necessity to put in place a proper
theoretical model of laser-controlled phase changes in Si.

The EQ model is mathematically formulated as a clas-
sical Stefan problem (see, e.g. , Ref. 9). This approach—
customarily assuming that the introduction of an interfa-
cial kinetics into the model is unnecessary —is rather

II. MATHEMATICAL FORMULATION

Let us consider the equilibrium model (i.e., the iso-
thermal one-dimensional Stefan problem) in the form

BT 0 c)T
pc; = K, +S(x, t) in 0;, i =I,s,' Bt Bx 'Bx

pL, Z(t)=K, aT
Bx x =Z+

T(Z, t)=T,

aT
'Ox

(3)

adequate for slow processes. However, the motion of the
solid-liquid interface can be so fast in some cases that this
assumption is no longer valid and strong undercooling or
overheating of the material in various phases must be
considered.

Previously published models dealing with nonequilibri-
um phase transitions (see, e.g., Ref. 10) are based on
enthalpy considerations. There the position of the phase
interface does not appear explicitly; it is derived from the
local enthalpy contents of the sample. In this paper, the
condition of the local thermodynamic equilibrium at the
phase interface is replaced with the interface response
function and the phase interface itself is treated explicitly
as a position of the moving boundary between the solid
and liquid phases.

From a physical point of view, the nonequilibrium
models are evidently more adequate for a description of
such dynamic processes like laser-induced melting and
solidification. Their disadvantage, however, lies in the
fact that they employ a number of additional material pa-
rameters. One of the objectives of this paper is, there-
fore, a comparison of the applicability of the equilibrium
and the nonequilibrium models in a real experimental sit-
uation (Ref. 8).
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aT

T(D, t) = To,

T(x, O) = To,

(4)

, xe(Z(t), D)x —Z(t)
D Z—(t) '

transform (1) and (2) into

where p is the density, c, is the specific heat, E, is the
thermal conductivity, L, is the latent heat, t equals time,
x is the space variable, Z (t) is the location of the moving
boundary between the solid and liquid phases,
Z(t) =dZ(t)/dt, 0, is the space subdomain occupied by
phase i, Bi+0,=A, Q = (0 D ). D is the size of the spa-
tial domain (thickness of the sample). T, is the tempera-
ture of the equilibrium phase transition, the indices l and
s denote liquid and the solid, respectively. The source
term S(x, t) in Eq. (1) describes the energy absorption of
a laser pulse:

S(x, t) =(1—R)aIo(t)exp( —ax),

in 0', =(0,1),
aT . 1 —

g aT
at D —Z ag

1 8 BT
(D —z) ag 'ag
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pL,qZ(t) = IC, ——Ki
1 BT 1 BT

0+ Z 'Bg

pci —Z— = Ki +S Z, g, t

(12)

(14)

where R is the reAectivity, a is the optical absorption
coe%cient, and Io(t) is the pulse intensity profile.

In the case of a nonequilibrium (nonisothermal) prob-
lem, condition (3) is replaced with a function expressing
the dependence of the interface velocity on its tempera-
ture. The interface response function which was selected
follows from a simple version of the Jackson-Chalmers
theory"

Z(T„)=f (T, )

= C i exp( —
Q /kii T, )

and subdomains O, l, 0, are converted into two fixed-
space intervals fli, 0, . The fact that the parameter Z (t)
now becomes an independent variable allows straightfor-
ward boundary tracking and convenient numerical solu-
tion of (12)—(14) (see Ref. 12).

The space discretization and the standard Galerkin-
type finite-element procedure' give the following system
of differential equations (see Ref. 12 for details):

P(Z) [ T j+H(Z Z) j T j+ [U(Z, t) jat

X 1 —exp[ L(1/T, ——1/T, )/king] . (8)
+ [iB (Z, Z ) j

= [Oj. (15)

Here Q denotes the activation energy for self-diffusion in
the liquid, L is the latent heat of fusion per particle, and
C& is a material constant. In order to introduce a correct
dependence of the latent heat L on the interface tempera-
ture T, into (2), we perform the following quasiequilibri-
um considerations: If we cool a liquid silicon of a unit
mass from melting point Teq down to T(Teq7 then
manage to transform it into the solid at this nonequilibri-
um temperature by rapid drain of released heat L (T),
then slowly heat it up to the melting point T, and trans-
form it into the liquid by equilibrium melting; the balance
of consumed and released heat requires that

O=ci(T —T, ) L(T)+c,(T, ——T)+L,

P(Z) and H(Z, Z) are square matrices, column vectors
jTj, [U(z, t)j, and (B(z,z)j represent the tempera-
ture field, source term, and boundary conditions, respec-
tively.

Let n be the number of points in the liquid and m be
the number of points in the solid. Then

[T j =(Tii

Tln Ts 1

The time discretization of Eq. (15) (see Ref. 13) gives the
resulting set of algebraic equations

H(Z, Z) j T j,+ii, =P(Z, Z) j T j, —j U(Z, t)

Rearranging the terms of this equation,

L ( Tz ) =L, + ( Tz —T,„)( ci —c, ), (9)
where

—[B(z,z)j,

where L,q
is the latent heat measured at the temperature

Teq 0

III. NUMKRICAI. SOI.UTION

H(Z, Z ) = —,'H (Z, Z )+ P(Z),
At

P(Z, Z) = P(Z) ,'H(Z, Z), ——

( U(Z, t)j =
—,'( U(Z, t) j, + —,

'
j U(Z, t) j,+~, .

(18)

(19)

, xe(O, Z(t)) (10)

Let us consider the isothermal problem first. Landau's
transformations At is the length of a time element.

Conditions (3) and (4) that apply to the moving bound-
ary are treated in the standard way: The condition of the
local termodynamic equilibrium (3) is applied as a
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X[L, +(c,—ci)T,~],0, . . . , 0) (20)

where f (Tz) is the interface response function (8) and
where there are n —1 initial zero terms and m —1 final
zero terms. Condition (8) now becomes the convergence
criterion, i.e., Zk+, in point (4) of the iteration procedure
is being computed from (8).

Being aware of the fact that both the specific heat and
the thermal conductivity are temperature dependent;
they are considered to be constant only within a small
space-time finite element. In order to eliminate possible
errors, the finite elements are designed so that halving
their size results in the negligible change of the solution.
The size D of the spatial domain is adjusted so that the
choice of a higher value for D has no effect on the solu-
tion. This choice represents experiments with thick sil-
icon samples.

Now we briefly discuss the technical matters, namely,
the numerical performance of the finite element method
and the convergence properties of the proposed iterative
procedure: Generally, we find the finite-element method
rewarding for its integral concept. In this case it is par-
ticularly important that it does not 'impose such severe
restrictions on the size of the elements like, for example,
the method of finite differences. It is sufTicient that the
grid points be dense enough to track satisfactorily the re-
sulting temperature field, even though the source term
S(x, t) is strongly localized.

The iterative procedure introduced in point (3) proved
to be convergent in every trial computation regardless of
the size of parameter e. Typically the quantity that is to
be compared to e reaches 10 after 2—3 iterative steps.

Dirichlet-type condition for Ttn = si = Teq the Stefan
condition (14) as the convergence criterion in the itera-
tion procedure. The iteration process is designed as fol-
lows: (1) compute [Tj,'+t„ from (16) with Z=ZD and
Z =Z0, (2) compute Z, from (14) as the first approxima-
tion to Z, (3) compute [ T j,"+t„ from (16) with

Z&=(1 —q)Z0+qZk i qC(0, 1),
Zk =ZD+qkt[ZD+q (Zk i ZD)/2]

(4) compute Zk+ i from (14) and make a test

k+i k

1+Zk

If this is true, accept the solution

[Tji+ti=aT]i"+t.t
Z(t +b, t) =Z, ,

Z(t +At) =Z, +2 t(Z, +Zk)/2 .

If not, put Z& i
=Z& and go back to point (3).

The numeral solution of the nonisothermal problem is
analogous with the presented one. The differences are in
the application of the moving boundary conditions. The
Stefan condition (14) is now involved in Eq. (16), hence,
[B(Z, Z ) j has the form

[B(Z, Z) j =(0, . . . , 0,pf (Tz)

It should be noted that each iterative step is approximate-
ly as time consuming as a single explicit time step
without iterations. Therefore, it may appear more con-
venient not to allow multiple iterations within a single
time step and let the program pass the iteration pro-
cedure (points 1 —5) exactly once and employ a Aexible
step size control so that quantities like Z, Z, or T(O, t)
would be changing by amounts which fall within specified
limits. These two computational methods are virtually
equivalent in terms of the outcoming results, as far as the
corresponding time steps remain comparable. Further
numerical aspects of the method have been described at
length in Ref. 12.

IV. COMPARISON OF THE MODELS

We consider the following problem: The Si(100) sur-
face is irradiated by ArF-excimer-laser pulse (193 nm, 10
ns FWHM). The energy density E of the pulse defined as

E = f I0(t)dt (21)

is sufficient to melt the surface. The pulse shape I0(t) is
triangular [see Figs. 1(a) and 1(b)]. The initial state of the
silicon sample is solid, temperature T(x, O) = TD in the
whole sample. There is no liquid phase until the surface
temperature reaches T,q. The problem of the appearing
and disappearing of the liquid phase is treated in the
same way as in Ref. 14: at the moment when the surface
temperature reaches T,„, a small layer of liquid phase is
allowed to appear and the phase interface motion is
driven by Eqs. (1)—(3) or (1), (2), and (8) according to the
model used.

Thermodynamical and optical material parameters of
the crystalline and liquid silicon are taken from Refs. 1S
and 16, the thermal conductivity of the liquid silicon is
evaluated from Wiedemann-Franz law (see Ref. 17).
Values of constants appearing in the interface response
function (8) that apply to (100)-oriented silicon have been
accepted from Ref. 18.

Temperature fields and time dependences of the melt-
front position and melting-and-solidification velocities
were computed for both the EQ and the NE models un-
der normal conditions (T0=293 K) and the dependence
of initial sample temperature. Results are presented in
Figs. 1(a)—4(a) for the EQ model and in Figs. 1(b)—4(b)
and 5 for the NE model. Of course, our EQ model results
cannot, in principle, differ from those published by other
authors due to the same system of equations and bound-
ary conditions, but it is necessary to present them here
for clear evaluation of the NE model.

Figures 1(a) and l(b) represent computed surface tem-
peratures T(O, t) for various energy densities with initial
sample temperature T0 =293 K. Differences between
both models are relatively relevant in the maximum tem-
peratures (in NE model, —100 K higher) and in the tem-
peratures in the cooling period (in NE model, —70 K
lower).

The displacement of the moving boundary (Z(t), its
appearance, and disappearance is shown in Figs. 2(a) and
2(b). The duration of the melting in the NE model is by 4
ns (i.e., 5%%uo) longer than in the EQ model, the maximum
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formation. The priority of the NE model in such cases is
evident. Our theoretical description of ArF excimer-
laser-induced thermal processes on a mono-Si surface in-
dicates the capability of the NE model to give an ex-
planation of the observed surface structure modifications:
The solidification rate [see Fig. 4(b)j and undercooling
values (see Fig. 5) increase rapidly and reach nearly peak
character with the lowering of the initial sample tempera-
ture. We suppose that these local extremes of undercool-
ing in the time interval 15—20 ns (i.e., at the end of the
laser irradiation) evoke the formation of lattice defects
frozen at nonequilibrium concentration that stabilize ob-
served Si(100)(1X 1) surface structure.

The computed regrowth velocity always remained
below 15 m. s ' —the value critical for the amorphiza-
tion of silicon. This is in accordance with experiments in
Ref. 8 (for which the modeling was carried out), where
amorphization was not encountered.

In fact, our NE model at present cannot handle
amor phization nor reer ystallization from amorphous
phase because the contribution of the defects formation
to the latent heat L is not known satisfactorily well.
Therefore, the amorphization is not incorporated in the

NE model. In order to extend the applicability to the NE
model to amorphization, a necessary modification of for-
mula (9) will be required. Still we should proceed with
caution because formula (g) has been derived from
molecular-dynamics simulations based on the Stillinger-
Weber potential, the weak point of which is that it does
not predict amorphization solely by rapid cooling of the
liquid. '

VI. CONCLUSIC)NS

The evaluation of the equilibrium and nonequilibrium
models of ArF-excimer-laser-induced thermal processes
in mono-Si reveals only small or negligible differences be-
tween both models in quantities like maximum molten
layer thickness and melt duration that are the most fre-
quently measured quantities. Significant differences of
both models consist in calculated temperature fields and
resolidification velocity.

The priority of the NE model that provides informa-
tion on the interfacial overheating and undercooling be-
comes evident when explaining the formation of metasta-
ble surface structures.
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