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In addition to the familiar family of fourfold-coordinated polymorphs, silica exists in sixfold-

coordinated structures, among which stishovite is the most important one. Here we predict the lattice
parameters and structural properties of stishovite using two approaches: direct quantum-mechanical
calculations and classical interatomic potentials. Our quantum-mechanical calculations are based on
"soft" pseudopotentials constructed using the local-density approximation. For the interatomic poten-
tial calculations, we have used a recently developed two-body potential extracted from Hartree-Fock
self-consistent calculations of the total energy of silica clusters. The results of these two types of calcula-
tions are compared and contrasted. Unlike similar comparisons for fourfold-coordinated polymorphs,
we find that both approaches agree very well with experimental data. We attribute this difFerence to
fewer internal degrees of freedom in stishovite. Angular, or many-body forces play a less significant role
in this structure as contrasted to open structures such as quartz.

I. INTRODUCTION

Owing to its abundance in the Earth's crust and man-
tle, silica is one of the most important materials from a
geophysicist s point of view. Moreover, it is one of the
most useful materials in today's technology. Silica-based
applications are widespread and range from glass to
silicon-based microelectronic devices. The primary
reasons for the use of silica in electronic devices are its
passivation and encapsulation properties, which derive
from the fact that the Si-Si02 interface is electrically in-
ert. Because of these interesting electronic properties, sil-
ica becomes an attractive candidate for study by physi-
cists and materials scientists. This explains why the
literature in these areas of science abounds with experi-
mental and theoretical studies of as many as 40 po-
lymorphic forms of silica. Of all these forms, only a- and
P-quartz, a-cristobalite, coesite, trydimite, stishovite, and
a newly discovered phase in CaC12 structure have a
temperature-density field of thermodynamic stability for
chemically pure silica, ' i.e., in which no other element is
needed for structural stability. If we are interested in un-
derstanding the chemical bonds in silica, these crystalline
forms of SiQz form a fundamental intrinsic set.

In many polymorphs of silica, the silicon atoms are
surrounded by an approximately tetrahedral array of ox-
ygen atoms. The 0-Si-O angle is close to the ideal
tetrahedral bond angle of 109'28'. Each oxygen atom is

bonded to two silicon atoms and serves to link the
tetrahedra. Examples of this kind of polymorphs are m-

and p-quartz, a- and p-cristobalite, tridymite, and
coesite. Stishovite, a high-pressure polymorph of silica,
which occurs in the rutile structure, is a noteworthy ex-
ception. It is the first known form of silica in which each
silicon atom is coordinated by six oxygen atoms in an oc-
tahedral configuration and each oxygen atom is bounded
by three silicon atoms. It has distorted Si(O, /3)6 octahe-
dra sharing edges and corners. Garnet, holandite and
perovskite are a few more examples of high-pressure po-
lyforms in which an octahedral configuration for a silicon
cation is observed.

Stishovite was first synthesized in the laboratory in
1961 by Stishov and Popova. They produced this high-
density polymorph at 1200—1400'C and at a pressure re-
ported to be above 16 GPa. This pressure is equivalent to
that at a depth of 400—500 km in the earth. Thus,
finding stishovite on the surface of the earth was some-
what surprising. The presence of stishovite in Coconino
Sandstone Meteor Crater must be attributed to the tran-
sient shock pressure accompanying the meteorite im-
pact. ' When compared to other forms of silica, stisho-
vite is 46% denser than coesite and 60% denser than o:-
quartz as expected for the rutile structure, which is not as
open. Birch pointed out that the observed increase in se-
ismic velocities with depth from 200 to 900 km, in the
Earth can be accounted by phase transformations in
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which silicates and oxides with open structures break
down into close-packed polymorphs with an increase in
the coordination number of silicon. An example is the
transformation of quartz into stishovite. It has been
demonstrated that the pressure-temperature conditions in
Earth's mantle coincide with the stability fields of coesite
and stishovite. Thus, knowledge of the structural proper-
ties of high-pressure substances like garnet, spinel,
olivine, and stishovite is vitally important for the study of
Earth's mantle. Such high-pressure phases are character-
ized by high densities, elastic ratios (i.e., the ratio of the
bulk modulus to the density), seismic velocities, and by
low compressibilities. '

In order to understand some of these features, we need
to be able to predict the structural properties of silica.
Such predictions are quite dificult as forms of silica often
have nearly identical total energies. Moreover,
differences in the internal coordinates of such forms as
quartz and coesite are often quite small. In general, the
prediction of crystal structures and their properties is of
prime importance in solid state physics. For this reason,
a number of different approaches have been developed to
predict structural energies. These approaches range from
first-principles quantum-mechanical methods, " ' which
require extensive computational resources, to empirical
interatomic potentials. *

Interatomic potentials are much easier to implement
than quantum-mechanical methods. It is well known
that monatomic systems with close-packed structures
(e.g. , simple metals and inert gases) can be reasonably de-
scribed using two-body potentials. These two-body po-
tentials have an attractive part that represents the
cohesion of the condensed phase and a repulsive part that
describes the scale of the atomic size. The repulsive part
describes the fact that each ion resists overlap with the
electron distributions of the neighboring ions. Although
two-body potentials are very convenient to use, they fail
to describe open structures. For example, the structure
of elemental semiconductors that have the diamond
structure are not reproduced, since this structure is not
close-packed. One has to include three-body terms to
take into account the covalent nature of interatomic in-
teractions. ' ' The construction of such potentials is
dificult, and accurate ones for silica are lacking.

Nonetheless, a few applications of interatomic poten-
tials to silica have been attempted. For example, intera-
tomic potentials have been used to understand the struc-
ture of amorphous SiOz and similar materials. Because
of the simplicity of their use, pair potentials can greatly
enhance our ability to use molecular dynamics and simu-
lations to describe melting and glass formation in silica.
Molecular-dynamics (MD) simulations for a glass (BeF~)
were performed by Rahrnan, Fowler, and Narten and
Woodcock, Angell, and Cheeseman ' carried out a MD
simulation of amorphous SiO&. The potentials used were
purely ionic. The interactions consisted of a Born-
Mayer-Hug gins repulsion term and an attractive
Coulomb interaction. Vashishta et al. , have recently
proposed an interaction potential that ean be used in
molecular-dynamics studies of structural and dynamical
correlations of crystalline, molten, and vitreous states of

silica under various conditions of densities and tempera-
tures. The two-body contribution to this potential in-
cludes terms describing steric repulsion owing to atomic
sizes, Coulomb interactions resulting from charge
transfer, and charge-dipole interactions to include the
effects of large electronic polarizability of anions. The
three-body covalent terms include 0-Si-0 and Si-0-Si in-
teractions, which are dependent on bond angles and Si—
0 bond length. They noted that the negative ions such as0, S,Se, and Te are among the largest in the
Periodic Table and thus highly polarizable. Thus, they
postulated that the electronic polarizability of these ions
is an important term in the interaction potential.

In this work, we have used two approaches. We con-
sider a simple interatomic potential, which has recently
been constructed from Hartree-Fock calculations on SiOz
molecular species. ' %'e also perform quantum-
mechanical calculations. These calculations are based on
recently developed ab initio pseudopotentials, which have
been constructed within a local-density approximation.
Past studies have indicated that interatomic potential
with simple two-body terms fail to describe o.-quartz.
Moreover, since the two-body potential that we use was
obtained by fitting its results to total-energy calculations
for fourfold coordinated silica structures, ' one might
question whether such an approach will yield accurate re-
sults for stishovite. Earlier work' has suggested that such
potentials may give an accurate description of silica in
the higher coordinated form, but this effort did not com-
pare to experiment in detail, nor did it consider the de-
tails of structural changes under pressure. Our objective
here is to deal with such issues and predict the minimum
energy equilibrium structure at different pressures, lattice
parameters, and elastic constants such as the bulk
modulus, the pressure derivative of the bulk modulus and
the Poisson ratio using both approaches. We compare
and contrast the results of the two theoretical approaches
and make a detailed comparison with the available exper-
imental data.

II. COMPUTATIONAL METHODS

First-principles quantum-mechanical approaches can
be used for prediction of properties; however, they ean be
computationally intensive. One goal has been to deter-
rnine whether it is necessary to do the computations for
each form of silica independently. For example, if one
wishes to look at several polymorphs of silica, one could
seek a procedure in which a simple classical mechanical
potential is fit to quantum-mechanical calculations for a
specific structure. This potential could then be applied to
describe and predict the properties of other structural
forms. Such a procedure has been developed by
Tsuneyuki et al. ' They employed a Hartree-Fock self-
consistent-field method, which is known to give very pre-
cise structures of molecules, to the total-energy calcula-
tion of Si04 clusters. By fitting the results of these cal-
culations to a proposed form of two-body potential, they
have fitted the adjustable parameters to an empirical
form of interatomic potentials for silicon and oxygen.
The functional form of their interatomic potential is as
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follows:

U, (r)= +f0(b, +bj)exp
Q;QJ a, +a —r

b;+b
C; CJ.

6

where U,- is the potential energy of interaction between
the ith and jth atoms, r is the distance between them,
f0=1 kcalA 'mol ', and (a;, b;) are the effective radius
and softness parameter for the ith atom. The potential
parameters from Ref. 1 are given in Table I. Using the
two-body potential mentioned above, the total energy of
the crystal can be trivially calculated as

U= —,'gU;, (r) .

TABLE I. Parameters used in the classical two-body poten-
tial used in this study (Ref. 1).

0
Si

Q/e

—1.200
+2.400

a (A)

2.0474
0.8688

b (A)

0.175 66
0.032 85

c (kcal A mole )

70.37
23.18

In Eq. (1), the first term is the long-range Coulomb in-
teraction, the second term represents Born-Mayer type of
energy, whereas the third term gives the Van der Waals
component of energy. The Born-Mayer and Van der
Waals terms decay quite rapidly. For this reason, the
summations for Born-Mayer and Van der Waal energies
are evaluated directly. The Madelung energy is comput-
ed via Ewald's method.

Owing to the simplicity by which the interatomic po-
tentials can be evaluated, the total energy of the crystal
can be easily computed. This is highly advantageous for
complex crystals. For example, if the crystal has several
internal parameters, the total energy as a function of
these parameters must be optimized. This adds to the de-
gree of complexity of the already difficult problem. In
this situation, classical calculations might be preferred
over full quantum-mechanical calculations, if they can
give sufficiently accurate results. One of the objectives of
this paper is to assess this issue for stishovite.

We have already outlined some of the difficulties that
arise in predictions of properties of solids in general. In
addition to the complex structures that silica forms, there
are electronic interactions, which are difficult to describe
in terms of quantum-mechanical interactions. For exam-
ple, in the pseudopotential method, oxygen is difficult to
work with, since it has no p states within the core. There
exists no orthogonality condition for the p states, and the
oxygen potential for this component is much stronger
than that for the s state. The large nonlocality in the ox-
ygen pseudopotential results in localized p states when
contrasted to the s state. Silicon is more amenable to the
pseudopotential treatment as the cancellation in both the
s and p states are similar.

In situations where states can be highly localized, local
orbital bases such as Gaussian are often employed.
These basis give rise to complicated matrix elements, al-

though the resulting diagonalization involves a smaller
matrix than a plane-wave basis. We have not employed
this approach. We have used newly developed pseudopo-
tentials that are especially constructed for use with a
plane-wave basis. The matrix elements that arise in this
case are much simpler than those that arise in case of the
local bases. We have used special techniques to handle
large matrix manipulations.

The details of our quantum-mechanical calculations
have been presented in detail elsewhere. " Here we
briefly review the essential features. Our pseudopoten-
tials were generated self-consistently within the local-
density approximation using the method of Troullier and
Martins. This method produces "soft" pseudopoten-
tials, i.e., potentials that allow a rapid convergence in
terms of a plane-wave basis. The oxygen potential was
generated from the atomic 2s 2p ground-state
configuration with a radial cutoff of 1.45 a.u. for both the
s and p components of the potential. The oxygen d com-
ponent was neglected owing to its high-energy relative to
the atomic 2s and 2p valence states. For silicon, s, p, and
d components of the potential were included. The radial
cutoff for all three components was taken to be 1.80 a.u.
As is commonly done, we take one component of the po-
tential to be "local" and project out the remaining com-
ponents. Here the local potential was the p component
for silicon and for oxygen.

The one-electron Schrodinger equation was solved us-
ing a fast iterative diagonalization method. One advan-
tage of this method is that it does not require a calcula-
tion of the full Hamiltonian matrix. Rather only HP is
calculated. This procedure leads to a dramatic reduction
in storage and a considerable reduction in computational
time. Plane waves up to an energy cutoff of 64 Ry were
included in the basis set. Typically, 2300 plane waves
were used in the basis. Increasing the cutoff to 144 Ry al-
tered the total energy by less than 0.1 eV/molecular unit.
We used six special k points to evaluate the total energy.

III. STRUCTURAL PARAMETERS QF STISHQVITE

Stishovite belongs to the tetragonal system; it has the
point group D&h (P4zlmnm ). In Fig. 1, we illustrate a
unit cell of stishovite. The structure of stishovite is com-
pletely defined by the lattice constants (c,a) and a single
internal coordinate, u. The basis vectors for the tetrago-
nal structure are a=ax; b=ay; c=cz.

The unit cell contains two molecules of Si02. The
coordinates of the two silicon atoms and four oxygen
atoms are given by

R(Si), =0,
R(Si)2= —,'a+ —,'b+ —,

' c,
R(O), =ua+ub,
R(O)2=(1 —u )a+(1—u )b,
R(O)3=( —,'+u )a+( —,

' —u )b+ —,'c,
R(O)4=( —,

' —u )a+( —,'+u )b+ —,'c .
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FIG. 1. Structure of the unit cell of stishovite. The value of c
and a are given at ambient pressure. Also illustrated is the octa-
hedral coordination of the silicon atom.
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FICs. 2. Calculated binding energy per molecular unit of
stishovite. Results of classical calculations are normalized using
the equilibrium cohesive energy calculated quantum mechani-
cally. The volume is per molecular unit.

For a fixed volume of the unit cell, the total electronic en-
ergy is a function of two parameters: u and a (or u and
c). Minimizing the energy with respect to these parame-
ters is equivalent to putting the material under hydrostat-
ic pressure. We examined several volumes and mini-
mized the total energy using a method given by Davi-
don. A plot of equilibrium energy as a function of
unit-cell volume is given in Fig. 2 for classical interaction
potential and quantum-mechanical calculations. A Mur-
naghan equation of state was fit to these points to com-
pute the equilibrium energy and volume, the zero pres-
sure bulk modulus, and the pressure derivative of bulk
modulus. A Birch-Murnaghan form of the equation of
state gives essentially the same values. The results of the
calculation of binding energy with the interatomic calcu-
lations are normalized with that of quantum-mechanical
calculations by matching the equilibrium binding ener-

gies of both. Binding energy is the energy per molecular
unit of the crystals with respect to infinitely separated
constituent atoms. In the case of the quantum-
mechanical calculations, the atoms are "pseudoatoms, "
i.e., the total valence energy as determined for isolated
silicon and oxygen atoms using the respective pseudopo-
tentials. For silicon, the energy of the pseudoatom is—101.89 eV; for oxygen the energy is —426. 60 eV. Per
molecular unit, the energy of the isolated atoms is—955.09 eV. The total energy per molecular unit for
stishovite is —977.29 eV, leading to a calculated binding
energy of 22.2 eV/molecular unit. The experimental
binding energy of silica in the quartz structure is about
19.2 eV/molecular unit, which is expected to be nearly
equal to that of stishovite. Our over-estimate of the bind-
ing energy is a typical finding of local-density calcula-
tions.

The binding energy of stishovite as calculated from the
interatomic potentials can only be determined if one is
provided with the energy to "prepare" the ions from
which the solid is formed. The appropriate ions for the
interatomic potentials used here are Si + and 0'
While it is possible to consider fractional charge within
the local density approximation, oxygen ions can present
dificult conceptual issues. If we consider 0, then for
5+ 1, oxygen does not form a stable ion. Purely ionic
models with Si + and 0 with 6+ 1 result in undefined
reference energies for the isolated ions. Moreover, even if
we were able to consider a local-density solution, no "er-
ror cancellation" would occur between the atom and the
solid as we would be comparing a local-density calcula-
tion with a "classical" result. Here we avoid such issues
by equating the classical binding energy to the quantum
mechanical.

We note that in both the classical and quantum-
mechanical calculations, o.-quartz is only slightly lower in
energy than stishovite. From the pseudopotential calcu-
lations, quartz is more stable by about —0. 1

eV/molecular unit. Similar results are observed for the
interatomic work, although the energy difference is
slightly less, i.e., -0.05 eV/molecular unit. It is not
surprising that quartz is more stable; however, it is
surprising that two such different structures are so close
in energy. We postulate that entropic differences might
further enhance the stability of quartz at finite tempera-
tures as its open structure might be expected to yield a
larger phonon contribution to the entropy than the more
close-packed structure of stishovite.

The best estimations of bulk modulus and its pressure
derivative are 298.8 GPa and 6.69 for classical calcula-
tions and 292.0 GPa and 5.86 for quantum-mechanical
calculations respectively. Several investigators have
gathered data on the structural parameters using a
diverse range of techniques. Here we review briefly some
of the important works on the study of structural param-
eters. Chao et al. , identified stishovite in the coesite-
bearing Coconino Sandstone of Meteor Crater, Arizona.
They compared the x-ray-diffraction data on natural
stishovite with that for synthetic stichovite prepared by
Stishov and Popova and found that the agreement is ex-
cellent both in spacings and in intensity of reAections.
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TABLE II. Structural parameters for stishovite as determined from experiment and theory.

Unit-cell volume A

Powder diffraction data
Chao (Ref. 5)
Ida, Syono, and Akimoto (Ref. 35)
Bassett and Barnett (Ref. 28)

Liu, Bassett, and Takahaship (Ref. 2)

2.6649
2.665
2.663
2.666

4.1790
4.178
4.178
4.180

0.6377
0.6379
0.6374
0.6378

46.541
46.519
46.484
46.581

Single crystal data
Sinclair and Ringwood (Ref. 29)
Hill, Newton, and Gibbs (Ref. 3)

Sugiyama, Endo, and Koto (Ref. 36)
Ross (Ref. 30)

Pseudopotentials
Interatomic potentials

2.6651
2.6655
2.6669
2.6678

2.67
2.75

Theory

4.1772
4.1773
4.1797
4.1801

4.14
4.26

0.6380
0.6381
0.6381
0.6382

0.645
0.645

46.503
46.513
46.591
46.615

45.64
49.93

TABLE III. Bulk modulus data for stishovite.

Shock wave experiments
Megueen, Fritz, and Marsh (Ref. 37)
Anderson and Kanamori (Ref. 38)
Ahrens, Anderson, and Ringwood (Ref. 39)
Ahrens, Takahashi, and Davies {Ref. 40)

Static experiments
Ida, Syono, and Akimoto (Ref. 35)
Liu, Bassett, and Takahashi, (Ref. 2)
Bassett and Barnett (Ref. 28)

Ultrasonic experiments
Mizutani, Hamano, and Akimoto {Ref. 34)

Single crystal data

Bo (CsPa) Bo

435.0
462.2
362.7
300.0

2.66
3.04
7.0

710.0
344.0
300.0

40
4.0

346.0 4

Weidner {Ref. 32)
Sugiyama, Endo, and Koto (Ref. 36)
Ross (Ref. 30)

Theory
Pseudopotentials
Interatomic potentials
FLAPW (Ref. 1)

306.0
313.0
313.0

292.0
298.8
288

6.0
1.7

5.86
6.69
3.14

They reported a =4. 1790 A and c=2.6649 A as the
refined parameters. Bassett and Barnett determined
a =4. 178 A and c =2.663 A from a Debye-Scherrer pat-
tern.

The experimental values mentioned in the previous
paragraph were obtained using powder diffraction data.
Single-crystal data have been made available recently.
Sinclair and Ringwood synthesized single crystals of
stishovite at a pressure of 9 GPa and a temperature of
700'C. The refined values of lattice parameters were re-
ported to be a =4. 1772 A and c =2.6651 A. Ross et al. ,
obtained a =4. 1801 A and c=2.6678 A using x-ray-
diffraction data on single crystals. These values compare
very well with the values a =4.26 A and c =2.75 A es-
timated using the two-body potential and even better
with the values a =4. 14 A and c=2.67 A obtained by
our pseudopotential calculations.

In Table II, we have listed optimized lattice parameters

at equilibrium along with experimental data gathered by
several researchers. The agreement between our pseudo-
potential results and the experiment is within 1%. The
interatomic potentials also yields a satisfactory agree-
ment, i.e., the difference is still within about 4%%uo.

In Table III, we summarize a brief survey of the
compressibility data and also compare to the full-
potential linear-augmented-plane-wave (FLAPW) calcu-
lation of Park, et al. ' We may consider the single crystal
values as most reliable. Our pseudopotential and pair po-
tential calculations give BO=292.0 GPa and BO=298. 8

GPa, respectively. These values are in excellent agree-
ment with isothermal bulk modulus obtained from the
single-crystal data.

Figure 3 gives the equation of state of stishovite from
experiment and theory. In Fig. 3 we have given the vari-
ation of V/Vo as a function of pressure. Here Vo and V
are the volume per molecular unit at zero pressure and
the volume at any arbitrary pressure, respectively. We
notice that the theoretical calculations and experimental
data of Liu, Bassett, and Takahashi and of Bassett and
Barnett are within a few percent for the pressure range
of about 0—25 GPa. At higher pressures (40—80 GPa),
both the interatomic potentials and pseudopotentials are
seen to underestimate the pressure as compared to the ex-
perimental work of Wackerle ' and Weidner et al.
However, the experimental data exhibits a considerable
scatter. The pressure derivative of bulk modulus estimat-
ed from the single-crystal experimental data is, however,
lower than the values obtained from theory. We may
note that pressure derivative of the bulk modulus is still a
controversial quantity. Many pairs of values of Bo and

Bo can satisfy the same P —V data. As a consequence,
if static compression data alone are used to determine
both these quantities, a large error may enter the estima-
tion. Weidner et al. , have suggested that since other
rutile structure oxides have Bo of about 6, a low value for
stishovite might be incorrect.

In Fig. 4, we have illustrated the lattice parameters as
a function of pressure and compared it with single-crystal
high-pressure study by Wiedner et al. It should be not-
ed that theory underestimates the ratio c/co, while the
agreement between the theoretical calculation of a /ao is
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FIG. 3. Equation of state for stishovite. Experiments 1, 2, 3,
and 4 are from Liu, Bassett, and Takahashi (Ref. 2), Bassett and
Barnett (Ref. 28), %'akerle (Ref. 31), and Tsuchida and Yagi,
(Ref. 1), respectively. The dashed and solid curve are the
theoretical Murnaghan equation of state fit to energy calcula-
tions using interatomic potentials and pseudopotential calcula-
tions (as discussed in the text), respectively. Note the change in
scale in the lower panel.
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more satisfactory. The ratios a/ao and c/co are seen to
decrease monotonically in an almost linear way as a func-
tion of pressure. The c/a ratio, although not as sensitive
to pressure as a/ao and c/co, is seen to increase very
gradually as a function of pressure. Given the small vari-
ation in c/a over the pressure range illustrated, it is not
surprising that a considerable scatter occurs in the exper-
imental measurements.

Like the c/a ratio, the variation of the internal coordi-
nate u with pressure is very difticult to determine experi-
mentally. Theoretically, it decreases monotonically in
the pressure range 0—50 GPa. The results of calculations
done using the interatomic potential agree with the pseu-
dopotential calculations within about l%%uo and indicate
that u decreases from about 0.305 at ambient pressures to
0.302 at 50 GPa. The value of the u parameter computed
by theory agrees well with the experimental value of
0.3062 obtained by single-crystal x-ray-diffraction mea-
surements.

We also compute the negative ratio of the transverse
strain to the corresponding axial strain in a body subject-
ed to uniaxial stress, i.e., the Poisson ratio. To determine
this ratio we need to know the value of a, which mini-
mizes the total energy for a given value of c. We proceed
in a manner similar to that outlined for the calculation of
the bulk modulus. We minimize the cohesive energy as a
function of u and volume of the unit cell at several values
of c. The Poisson ratio is defined as

FIG. 4. Comparison of theoretical calculation of lattice pa-
rameters with experimental data from Tsuchida and Yagi. ' The
dashed and solid curve are the theoretical results, which have
been fit to total energy calculations. Result using interatomic
potentials (dashed line) and quantum-mechanical calculations
(solid line) are illustrated.

Aa/a 6 ln(a)
b,c /c b, ln(c)

We fit a straight line to the graph of ln(a) vs ln(c). The
Poisson ratio, as defined in Eq. (3) is the negative slope of
this line. The values are 0.314, obtained using the in-
teraction potential, and 0.290, obtained by pseudopoten-
tial calculations, as illustrated in Fig. 5. These values
compare well with 0.333, which were obtained by Mizu-
tani, Hamano and Akimoto using data from ultrasonic
experiments.

In previous work, " we examined the structural
properties of cx-quartz under pressure. We found that the
ambient pressure structure was well represented by in-
teratomic pairwise potentials; however, pressure-induced
changes in the structure were not reproduced even quali-
tatively. This is not the case for stishovite. Changes with
pressure for the internal structural parameters, i.e., c, a
and u are accurately reproduced when compared to ex-
periment or pseudopotential calculations. Likewise
Poisson s ratio and the compressibility of stishovite as
calculated by either interatomic pairwise potentials or
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FIG. 5. Calculation of Poisson ratio of stishovite by fitting a
straight line to the graph of ln(a) as a function of ln(c).

IV. CONCLUSIONS

In this paper we have examined the structural proper-
ties of Si02 in the rutile structure, i.e., stishovite, as a

pseudopotential methods agree with each other and ex-
periment. We attribute the success of pairwise forces in
the case of stishovite to fewer internal degrees of freedom
present as compared to the open structures, e.g., the
quartz structure. From the measured behavior of the
internal structural parameters with pressure, angular
terms are not expected to be significant in stishovite. For
example, in o.-quartz, the Si-O-Si angle changes by 15'
with a pressure increase of 10 Gpa. Over a similar range,
the Si-0-Si angles in stishovite change by less than 1'.
Unless the bond bending energies in stishovite differ by
an order of magnitude from those in quartz (which is not
likely), changes in the bond angles in stishovite are too
small to have a significant effect on the total energy.

It has been suggested' that once the silicon —oxygen
bond length is fixed, and the symmetry of the structure
specified, the internal coordinates at ambient pressure of
many of the silica structures follow directly. This would
account for the good agreement with experiment of the
ambient pressure structures predicted by pairwise forces
and the failure of such potentials to account for pressure
induced changes in open structures.

function of pressure. We considered two approaches.
One approach is based on the interatomic pairwise poten-
tials as proposed by Tsuneyuki, et a/. ' The other ap-
proach is based on pseudopotential calculations using the
local-density approximation and ab initio pseudopoten-
tials. Both approaches lead to an accurate description of
the structural changes, which occur in stishovite under
pressure. Specifically, we have examined the equation of
state and the internal structural parameters as a function
of pressure. The chief difference between the two ap-
proaches is that the interatomic potentials yield a value
for the ambient pressure unit cell which is about 10%
larger than experiment and the quantum-mechanical
work.

This is in contrast to the case of silica in the o;-quartz
case where interatomic pairwise potentials do a poor job
in describing the structural changes under pressure.
We attribute these differences to the importance of
many-body, i.e., angular forces, which are present in open
structures such as quartz. In quartz, the details of the
pressure dependence of the Si-0-Si and 0-Si-0 angles are
quite complex, e.g. , there exist four unique 0-Si-0 angles,
and these angles do not scale in a similar fashion with
pressure. These angles control the orientation of the
Si(0&)&&2 tetrahedra and are crucial in determining the
various silica polytypes. It would be surprising if a sim-
ple pairwise potential, with no explicit angular depen-
dence, replicated the angular changes with pressure.
(Even adding a simple bond-bending term does not
significantly improve the changes of angles with pres-
sure. ) Conversely, in stishovite, where the number of
internal degrees of freedom are fewer, it should not be
surprising that a pairwise interatomic potentials yields
accurate structural trends with pressure.
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