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Electronic structure of disordered overlayers on metal substrates
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The electronic structure of a random overlayer on a nonrandom substrate, both consisting of
transition-metal atoms, is determined theoretically by employing (i) the first-principles tight-binding
linear-muffin-tin-orbital method to describe the band structure, (ii) the surface Green's function to
treat the layered nature of the problem, and (iii) the coherent-potential approximation to include the
influence of disorder in the overlayer. As an application we determine kII-resolved as well as kl!-
integrated layer-projected densities of states for the first few layers of an Ag(001) substrate coated
with an overlayer of random Ag75Pd25.

In this paper we report on the development of a method
based on the density-functional formalism for the deter-
mination of the electronic structure of a disordered layer
on a metal substrate or between two interfacing metals.
This technique employs (i) the first-principles tight-
binding linear-muffin-tin-orbital (TB-LMTO) method,
(ii) the concept of principal layers and the surface
Green's function (SGF) approach, and (iii) the coherent-
potential approximation (CPA).

The projection of the Green's function (GF) of the ideal
semi-infinite solid onto the top principal layer, the SGF, is
the central quantity for applications of a GF method to
overlayers and interfaces. The great advantage of our ap-
proach is the combination of the TB-LMTO and SGF
methods with the CPA, which describes reliably the prop-
erties of disordered systems. The main purpose of this pa-
per is to extend the theory developed recently for bulk al-
loys and for ideal surfaces to random surfaces, in partic-
ular to the electronic properties of systems consisting of
impurities adsorbed on the ordered substrate, which fre-
quently occur in experiment. ' This improves on the
simplified treatments based on empirical TB models that
currently exist in the literature.

Within the atomic-sphere approximation (ASA), the
Hamiltonian is factorized into structure constants charac-
terizing the arrangement of atoms and into potential pa-
rameters determining the scattering properties of the indi-
vidual atoms. The Hamiltonian of a single disordered
overlayer (labeled by X) on a perfect substrate (labeled by
o), both consisting of transition-metal atoms, and in the
orthogonal LMTO representation' y is given by
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Here, R denotes a lattice point belonging either to the
substrate (v =cr) or to the overlayer (v =A,), and L =lm is
the orbital momentum. The structure of the problem
enters only via the structure constants Sz'L'zz given in

terms of the nonrandom canonical structure constants
S&L z I. known analytically. ' The matrices 5~'

=(S' ) characterize the geometry of the overlayer-to-
substrate coupling. For matters of simplicity, it is as-
sumed that the two-dimensional periodicity of the over-
layer as characterized by S~ is the same as that of the
substrate layers characterized by S" (no reconstruc-
tion). We shall also neglect possible layer relaxations of
the top layers by using the ideal bulk structure constants.
The individual atoms in the overlayer or in the substrate
are characterized by site-diagonal potential parameters:
matrices X=C,h, , y with elements XRL. These parameters
describe the centers C, widths 6, and distortions y of the
corresponding bands. For v=X, the quantities XRL are
randomly Xz t. and Xtt t with probability x and 1

—x, re-
spectively, where 2 and 8 refer to the two components in
the alloyed overlayer. For v=a, the quantities XRL are
those of substrate and therefore nonrandom.

Let us briefiy summarize the basic idea of the TB-
LMTO-CPA approach. In random alloys, the Hamil-
tonian in (1) exhibits both diagonal and of-diagonal dis-
order, via the random potential parameters, such that the
averaging of G(z) =(z H) ' in the orthog—onal LMTO
representation y cannot be performed without additional
approximations. However, by transforming to a suitably
chosen nonrandom LMTO representation of P, one
can define ' an auxiliary resolvent gP(z) = [P~(z)
—S~l '. Here P~(z) is the so-called potential function,
which is a random but site-diagonal quantity, while S~ is a
nonrandom structure-constant matrix. Now the usual
configurational averaging within the CPA can be per-
formed for g~(z). The configurationally averaged resol-
vent (g~(z)) =[PP'(z) —Sp) ' is then transformed back
to the original LMTO representation y, using an exact
scaling transformation, relating gP(z) to G(z). The
coherent-potential function P~ (z) is a site-diagonal non-
random matrix determined from the CPA condition.

The TB-LMTO-CPA can be applied to the present
problem keeping in mind that in a semi-infinite system the
physical properties vary from layer to layer, since at best a
two-dimensional translational symmetry can be assumed.
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xep "(z)[P,"(z) P"(z)], — (3)

where all involved quantities are site diagonal, @P (z) is
given by

@P,lk( ) —N lg( P,xx( k )) (4)
k

and the vectors k
~~ belong to the surface Brillouin zone

(SBz).
It should be recalled that, in principle, in a semi-infinite

system the Green's function has to be determined for all
layers. In order to evaluate the layer-projected auxiliary
Green's function (gP(z)) the concept of principal layers

This of course applies also to the Green's function and
consequently to the coherent-potential function. It can be
shown, however, that in the case of a disordered over-
layer on a perfect substrate the CPA condition, i.e.,
P~'(z), is restricted to the overlayer only. This is an im-
portant simplification in comparison to the more general
case of a surface of a disordered alloy where, in principle,
the coherent-potential functions. of all layers are coupled
together. Contrary to the bulk, due to lowering of sym-
metry at the surface, Pp'(z) in general is a nondiagonal
matrix with respect to L and L' even for cubic lattices. Its
form in the present case is given by

r

PLL ERR", v=k (overlayer),
PRL, R'L' (Z) (2)

PL' bRR bLL., v = cr (substrate layers).

The elements of Pp (z) are found from the following
CPA condition

'P"(z) =XP,"(z)+ (I —x)P"(z)

+ [P~ "(z) —P"(z)]

(PLs) is used, in which the substrate is viewed as a stack
(i =0, 1,2, . . . ) of PLs such that SP has nonvanishing ele-
ments only between nearest neighboring PLs. A principal
layer can include a group of atomic layers and, depending
on the substrate face and the number of nearest-neighbor
interactions included in SP, defines the dimension D of the
problem [D=N(l,„„+1),where N is the number of
atomic layers in a PL, and l .,„ is the maximal angular
momentum]. In comparison with other treatments, the
freedom in the choice of the LMTO representation is the
great advantage of our method. In particular we choose
the LMTO representation P to be the most localized
one' (fastest decay of SP with respect to interatomic
distances). Using further the nonrandomness of SP and
the fact that the bulk-derived structure constants are
used, one gets

SP"(k ) =SP "(k )
(s)

S~'J'(k
~~ ) =S~ ' (k ~~ )B~; +, +S~' (k ~~ )BJ,;—,.

Thus, only SP and S~ ' =(SP' ) describe the struc-
ture-related part of the substrate. The overlayer and its
coupling to the top PL (i=0) are structurally given by
S~ (k~~) and S~ "(k~~) =[S (k~~)], respectively. Note
that the overlayer is a single layer by definition, while a
PL can include more atomic layers.

The elements (g~ (k~~, z)) and (g~'"(k~~, z)) of the ma-
trix (g~(z)) determine the layer-projected densities of
states; (g~' (k~~, z)) in turn is also needed to solve the
CPA equations [Eqs. (3) and (4)]. Using the projection-
operator formalism or, alternatively, the block-tridiag-
onal form of (g~(z)) with respect to indices X and i =0,
1,2, . . . [see Eq. (5)], the above elements are given by

(gr (k,z)) =[Pp' (z) —S~ "(k,z) SP' (k~ )Qr —(k, z)SP' (k )]
(g ' (k~~,z)) =[lQ~ (kr~rz)] ' —ri''(k~~, z)]

where the I i"(k~~, z) are found from a set of recursive equations (i =0, 1,2, . . .)

I &'+'(k~~, z) =S&'o(k~~)[PP'(z) —S& "(k~~) —I t"(k~~,z)] 'SP" (kt~) .

(7)

(8)

In these equations, Qp (k~~, z) is the SGF (the top-PL
projection of the resolvent of the ideal semi-infinite sub-
strate) as discussed recently. The set of recursive equa-
tions is terminated at the surface

I P' (kii, z) =S ' (kii)

x['P '( ) —S '"(kii)] 'S "'(kii),

and corresponds to a hard wall-like boundary condition
for the vacuum. ' Note that in Eq. (9) Pr'(z) =PI' (z)
for all layers of the substrate [see Eq. (2)]. Equations (7)
and (8) can be interpreted in physical terms: each subse-
quent recursion can be viewed as an epitaxial addition of
one substrate PL towards the surface, until finally the
overlayer is added [Eq. (9)]. In the opposite direction, the
whole semi-infinite substrate is added via the SGF,
~p ~(k, ~, z).

The above formalism is applied to the evaluation of the
electronic structure of a single random Ag75Pd25 [1&&11

I

overlayer in the fourfold hollow position on top of the
(001) face of fcc Ag. For the fcc lattice the use of
screened structure constants S~ allow a restriction to
first-nearest-neighbor interactions. A principal layer
therefore consists of a single atomic layer. The k~~- and
layer-resolved spectral densities as well as the k [~-

integrated layer-resolved densities of states (DOS) are
then determined from the projections (G(z)) and
(G(z))" of the physical resolvent (G(z)), related directly
to (gP (z)) and (gP "(z)), respectively.

The choice of potential parameters X,'L, X=C,4, y
(a =Ag, Pd) is of central importance for any alloy prob-
lem. In order to avoid charge self-consistency, the best ad
hoc choice is the use of potential parameters derived from
charge-self-consistent film calculations, " which not only
supply layer-resolved potential parameters but also de-
scribe the boundary conditions at the substrate surface
properly. In addition, the use of results from charge self-
consistent supercell calculations seems to be a reasonably
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good choice. In this report, however, we use the self-
consistent bulk potential parameters of constituent atoms.

Even if one neglects relaxation of the top substrate lay-
ers, the problem of atomic relaxations in the overlayer due
to diff'erent sizes of the Ag and Pd atoms remains. In or-
der to discuss size mismatch in the overlayer, two limiting
models are considered: (i) all overlayer interatomic dis-
tances are those of the substrate (perfect epitaxial growth,
no relaxations), and (ii) respective overlayer interatomic
distances correspond to the values in the pure metals (re-
laxed case). In the latter case we relate the relaxed struc-
ture constants to ideal ones by a simple scaling law. '
As a result, one can still use the ideal structure constants
but with correspondingly modified potential parameters y&

and h, ~. In other words, by considering modified hoppings
in the Hamiltonian (1), lattice relaxations can be intro-
duced within the tight-binding framework.

A study of ultrathin Pd overlayers on Ag indicates per-
fect epitaxial growth at least for the first monolayer. s If
this is also the case for (Ag, Pd) disordered overlayers then
the model without relaxation is justified. Since there are
no experimental data available for the (Ag, Pd) overlayer
system, the results for both cases described above are
presented.

The layer-resolved DOS's in the overlayer and in the

(Ag, Pd) on Ag(001)

top three substrate layers are presented in Fig. 1 for an
unrelaxed and a relaxed overlayer of random Ag75Pd2s on
Ag(001) together with the componentlike DOS for Ag
and Pd in the overlayer. Because of the reduced number
of Pd neighbors at the surface the Pd-impurity peak at
about —0.30 Ry is much sharper than the corresponding
peak for the bulk Ag75Pdp5 alloy and survives as a shoul-
der above the d-Ag band only in the top substrate layer.
As one can see from Fig. 1 the DOS for the second and
especially the third substrate layer is already close to the
DOS for bulk Ag. Since the average distance for Pd
atoms is larger in the unrelaxed case, the Pd-like com-
ponent DOS is broader in the relaxed case than in the un-
relaxed case. The Ag-like component DOS in the over-
layer remains essentially the same in both cases.

As an exainple of ki- and layer-resolved spectral densi-
ties, the ki =0 case is shown in Fig. 2. The most striking
eff'ect of disorder is the appearance of the Pd-related peak
at about —0.30 Ry, which survives as a shoulder only in
the top substrate layer. In the following layers the spec-
tral density quickly approaches its bulk counterpart. The
unrelaxed and relaxed cases are distinctly different only in
the region of the Pd-impurity peak (the corresponding
Pd-induced peak is again narrower in the unrelaxed case).
It should be noted that the convergence of the k!!-resolved
DOS to the bulk value is weaker than for the k i-

(Ag, Pd) on Ag(001)

(b)

s1

s3
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FIG. 1. Layer-resolved DOS's (solid lines) for an overlayer
(ov) of random Ag75Pd25 on Ag(001). The first three layers of
the substrate are denoted by s 1, s2, and s3, respectively. For
the overlayer the componentlike densities of states for Ag
(dashed line) and Pd (dotted line) are shown. The vertical lines
denote the position of the substrate Fermi level. (a) refers to the
unrelaxed case and (b) to the relaxed case.

ENERGY (Ry)

FIG. 2. k!!-and layer-resolved spectral densities for an over-
layer (ov) of random Ag75Pd25 on Ag(001) and ki -0. The first
three layers of the substrate are denoted by s1, s2, and s3, re-
spectively. The vertical lines denote the position of the substrate
Fermi level. (a) refers to the unrelaxed case and (b) to the re-
laxed case.
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integrated DOS.
We have presented a method with which to study the

electronic structure of substitutionally disordered mono-
layers on ordered substrates. The importance of our ap-
proach is its ability to describe properly both the varying
monolayer composition and the semi-infinite nature of the
underlying substrate within the framework of density-
functional formalism. The method is simple, easily imple-
mented numerically, and yet sufficiently accurate. It al-
lows the consideration of a number of interesting applica-
tions, such as the study of high-Miller-index (covered)
surfaces, the investigation of properties of disordered in-
terfaces or graded heterojunctions between two metals, a
generalization to randomly covered semiconductor sur-

faces, etc. The theory can be improved in some technical
aspects, namely, by including the eFect of the top-layer
relaxation or by considering more realistic boundary con-
ditions for the sample-vacuum interface or by using
layer-dependent potential parameters as obtained from
the slab or supercell calculations. Quite clearly this
theory is currently limited by the use of muIIin-tin or
spherically averaged atomic potentials. Consequently it is
not suitable, for example, to calculate work functions.
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