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By exploiting the analogy between the correlation charge surrounding an electron in an interacting
electron gas and the electronic charge localized about nuclei in condensed atomic systems, we are led
to a functional approach which partially preserves the nonlocality of fluctuations in an inhomogeneous
system. In this way, the van der Waals and Axilrod-Teller interactions are determined solely from the
fluctuation properties of the electron gas. The approach gives further insight into the local-density ap-

proximation.

At the level of electrons and nuclei, the Hamiltonian for a simple dense elemental system of volume Q can be written

H=T,+T.+ —;— fn dr fnd3r2v((r, 1) [P (1,12) =278 )V (1) + 2362 (11,12)] (1)

where v.(r) =e?/r is the Coulomb interaction, Z is the
atomic number, and f’,, the kinetic energies. In (1) ;55')
and ;5,,(,'} are, respectively, the one- and two-particle densi-
ty operators. A ground-state trace of (1) over electron
states established in a volume Q then defines within an
adiabatic approximation a problem in nuclear coordi-
nates; a common approximation to it in the tightly bound
molecular systems considered here is

B=T,+ 4 [ a'n [ droatti—rpP @), @)

where ¢(r) is a Lennard-Jones or similar interaction.
From the atomic viewpoint, the long-range part of this in-
teraction arises from fluctuations occurring in the elec-
tronic charge localized about all nuclei. From the statisti-
cal point of view, however, the interactions originate with
fluctuations in the density (3"’ (r)) condensed about each
nucleus. Within the adiabatic apProximationi this density
may also be written as (ﬁﬁ')(rl)ﬁ,,”(rz))/(ﬁ,f' (r,)), which
is just the conditional probability density of finding an
electron at r; given a nucleus at r. In this context the
more fundamental quantity is therefore the two-particle
correlation function; the electronic charge density of
atomic physics can be viewed in the condensed state as
response or correlation charge density. The diagrammatic
representation of this interpretation is shown in Fig.
1(a) (i).

We now turn to the opposite extreme, namely, an in-
teracting electron gas in a uniform compensating back-
ground of density p. The two-particle density for normal
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[
states is then translationally invariant, i.e.,

pP (ry,r) =p2g(r,—13) , (3)
and this replaces
P (r1,1) =p(2))p (r)g (ry,12) (4)

which appears in a ground-state trace of (1) for the elec-
tronically inhomogeneous case. It follows that the equiv-
alent to (B (r, )ﬁ,f')(rz))/(ﬁ,f')(rz)) is p.g(r; —r;) which
possesses an exchange-correlation hole outside of which
reside weak correlation maxima. Another electron, acting

@ (i)
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FIG. 1. Fluctuation-based interaction between (a) (i) two and
(ii) three atoms; the (b)(i) two- and (ii) three-electron equiv-
alent of (a). The wavy lines represent the bare Coulomb in-

teraction in (a) and the dynamically screened interaction in (b).
The dotted lines represent the static screened interaction.
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as a test charge, sees the entire arrangement with a static
screened interaction which decays very quickly except for
weak Friedel oscillations.

The question of dispersion interactions arising from
Auctuations in this otherwise static response charge can
now be raised as it was for the atomic case. Indeed, the
standard argument' together with dimensional analysis
leads to the expectation? of an attractive pair interaction
~ —h,(ry/r)® in the absence of damping (see below).
This accounts for the diagram in Fig. 1(b)(i); note the
evident similarity to Fig. 1(a)(i). Given this similarity,
we turn now to an approach to density-functional theory
which attempts to include the major manifestations of
these fluctuations. Common to most applications of
density-functional theories is a local-density approxima-
tion (LDA) in which the functional for the inhomogene-
ous system is obtained by replacing the uniform density in
the homogeneous electron-gas energy density by the spa-
tially varying density at a chosen local point (a strict
LDA) or some function of it (a weighted density counter-’
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part). A tacit assumption is that important nonlocal fluc-
tuation effects inherent in the original problem can be re-
stored merely by allowing the density to take on an ap-
propriate spatial dependence. Though often satisfactory
for ground-state and cohesive properties, it is known that
the LDA, when applied to atomic systems, does not
correctly reproduce effective long-range interactions.?
We shall show that there is an approach that is capable of
including such fluctuations, which links to the viewpoint
advanced above, and which, when applied to atom pairs,
does recover the van der Waals interaction.

The lowest order fluctuational term shown in Fig.
1(b) (i) leads to a static van der Waals attraction between
electrons.>* Its physical significance is greater than its
formal order in perturbation theory might imply> because
the internal screened Coulomb lines are dynamical? and
therefore incompletely screened in the high-frequency,
small momentum limit. The form of the effective attrac-
tion between electrons® at r; and r; is

—Sexpl—i(qi—q2)- (r, —1‘2)]‘;:’2“5(% -q1,0,q1,0, —q2, — )

—S(q1 —q2,0, —q), — 0,q2,0)

e(q,0) e(qx—q;,0) A2

Ve (Q2)
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(5)

e(q, — o) €(q—q0) "’

where S(q;,0,q2,2,q3,®3) is the three-point function of
the electron gas. The inclusion of the Lindhard dielectric
function €(g,w) approximately incorporates screening ef-
fects.

In approaching this diagram in the inhomogeneous
case, static screening arguments lead us to expect that the
fluctuations of interest will be largely confined to a local
screening length for an electron at ry (or r,). If the densi-
ty varies over a distance large compared to such screening
lengths, it is reasonable to assume that static screening
and associated fluctuations occur at the local density of
the electron at r; (or ry). These fluctuations occur at high
frequencies where the random-phase approximation
screened interaction arises from the exchange of
plasmons. This exchange, however, can be viewed as tak-
ing place in an equivalent homogeneous electron system of
density pes which is determined by noting that the em-
phasis here is on the energetics, and especially the
ground-state energy of (1). Thus, because the form taken
by the requisite {5, (r;,r,)) is given by (4) and because
the pair distribution functions are close to unity except at
small relative separations, it follows from (3) that
the effective density should be chosen as pex
=[pV(r)pM(r,)1"2. Consequently, the required aver-
age plasmon frequency is

w0, (r1,12) =lw,(r))w,(r;)1"?,

where @, (r) =[47p(r)e?/m]'? is the local plasmon
1

C123(r1,r2,13)[3cos(8;)cos(0>)cos(63) + 11

I
frequency.
In the limit of high frequencies and small momenta, the
three-point function® reduces to
kre(r) q1°q2

S(q—q2,0,—q;, —0,qor)=—i—————,  (6)
T w

where kr(r) =[372p(r)]1'? is the local Fermi wave vec-
tor; correspondingly, the dielectric function is given by the
plasmon pole approximation’ with plasmon frequency
w,(ry,12). In addition, the static screened Coulomb in-
teraction is given within the Thomas-Fermi approxima-
tion by k1r(r) =[4e 2%k (r)/naol /2. With these separate-
ly local approximations, the effective interaction obtained
from (5), and now appropriate to the inhomogeneous con-
text, is

oler —r2,p (1), p V(1)1
2
=34 [—e—z—] 1 )

4 | m)] lo,(r,r)]r—r,°

A more detailed calculation? introduces a weak logarith-
mic correction to (7) whose effect in the asymptotic region
is, however, marginal.

The approximations leading to (7) can be applied more
generally to higher center interactions. Figure 1(b)(ii),
for example, shows the three-body equivalent of Fig.
1()(G). For electrons at ry, ra, and ri3, the asymptotic
form of this interaction is

U3(r|,r2,r3)=— 33 .3
| 92 9K} Wk

) (®)
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where the 0; are the interior angles of the triangle formed by the three vectors ry, r2, and r3 with sides r;;, and

e? 1

3
Ci23(ry,r13) = lfl (—]
2 m

lw,(r),12) + 0, (r2,13) + 0, (r3,11)] 1

o, (r1,12) 0, (r2,13) 0, (r3,11)

[wp (r1,12) + @) (r2,13) Hw, (r2,13) + @, (13,111 L) (r1,12) + 0, (r3,11)]

This interaction is immediately recognized as taking the
Axilrod-Teller® form.

Comparison of (7) and of (8) and (9), with the stan-
dard perturbative expression for interatomic interac-
tions,""? reveals a striking identity. In the fluctuational
sense, each electron and its attendant screening cloud
behaves as an “atom’ with a single excitation frequency,
namely the appropriate w,. This reinforces the analogy
made between the correlation charge about an electron
and the electronic charge condensed about a nucleus, and
it leads us to conjecture that this identification will gen-
eralize to all multielectron interactions. These results and
the identifications made with atomic physics are also valid
in the homogeneous limit.

We test (7) by determining the effective interaction be-
tween two identical atoms separated by a distance R and
each with electron density pé‘)(r) centered on its nucleus.
From (5), this is

®(R) =fd3r| fd3r2¢[r| —1+R,p" (1)), pM (r)]
(10)

and in the large R limit, we find from (7) and (10) the
dipole-dipole attraction

xp ()& (r,)

o) = -4, an
which gives the required power-law dependency; Cuy is
the dispersion coefficient (in a.u., with energy in ryd-
bergs).

In the derivation of (7), we have assumed that plasmons
can be exchanged between r; and ry; however, if the local
wave vector introduced by Langreth and Mehl'® (namely,
q(r) =|Vioglkte(r)]] a quantity characterizing the rate
of density variations) is actually larger than the local
plasmon cutoff q.(r) =ktr(r)/~/3 at either r, or r,, then
the plasmons will be Landau damped and no fluctuating
multipole interaction can occur. Therefore the cutoff
0(q.(r1) —q(r1))B(gq.(r;) —q(ry)) implicit in (11) is
also included in the calculation of the dispersion
coefficient Cy, listed in Table I and compared there with
the experimental Cy; for noble-gas atoms'' [spherically
averaged double-zeta wave functions '? are used for the re-
quired atomic electron densities p{"’(r)]. The agreement
is seen to be reasonably good; also, it is equally good for
unlike atoms [e.g.,, Ne-Kr, Cgz;(theor)=61.6 while
Caa(expt) =54.5 a.u.l.

The Axilrod-Teller triple-dipole interaction between
atoms is obtained using the same arguments, but starting
with (8) and (9). Table I also compares the theoretically
determined Axilrod-Teller dispersion coefficient Cyqs With
the literature values.!' The level of agreement again
highlights the difficulty of strictly local approaches®

9)

Iwhich generally fail to reproduce the correct power-law
dependence of the three-particle interactions.'> Thus the
determination of both the van der Waals and Axilrod-
Teller interactions from fluctuation properties of the elec-
tron gas appears to stand in some contrast to the predic-
tions of the standard LDA approaches.

The search for alternate functionals or improvements to
existing functionals has been hitherto carried out largely
within homogeneous systems; it has resulted in a continu-
ous improvement of the average treatment of fluctuations
occurring in homogeneous systems, although it is well
known that it neglects effects of a long-range character
such as interactions between fluctuations occurring in re-
gions of different density. In terms of a momentum-space
expansion for the ground-state energy density at r, the
LDA treats every diagram in perturbation theory on an
equal footing, as if the physical process were occurring in
an electron gas whose uniform density is set at the value
pV(r). Thus fluctuations separated in space and occur-
ring at different densities can be included in such an ap-
proximation, but only insofar as the density in these two
regions can be taken to be p(r). To go beyond this it is
necessary to be sensitive to the role of each diagram in the
inhomogeneous context.

To assist in the understanding of this role, we define a
diagram to be irreducible with respect to the interaction if
it cannot be divided into subdiagrams by cutting only bare
interaction lines. As an example, consider the expansion
for the polarization propagator; a diagram in this expan-
sion that cannot be so divided is one that involves the in-
terchange of particles between the external vertices and
therefore possesses an exchange character; see, e.g., Fig.
2(a). Diagrams that can be divided into subdiagrams are
of the following two types: (i) correlation diagrams in
which the external vertices are found in different
subdiagrams— the particles interact with one another at a
distance [see, e.g., Fig. 2(b)]; and (ii) those in which the
two external vertices are found within a single subdia-
gram, and which may therefore be termed reducible ex-
change diagrams, see, e.g., Fig. 2(c). The key physical

TABLE 1. Dispersion energy coefficients, Css and Cuaa, in
a.u., for the noble-gas atoms. The first entry is the calculated
value. In parentheses are the literature values based on atomic
data (e.g., Ref. 11).

Cud Cddd
Xe 595 (537) 12771 (10570)
Kr 286 (261) 3847 (3157)
Ar 143 (131) 1362 (1051)
Ne 13.3 (12.6) 26.5 (23.7)
He 4.2 (2.91) 6.5 (2.94)
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FIG. 2. Diagrams contributing to ‘the polarization propaga-
tor; (a) interaction-irreducible exchange diagram, (b) correla-
tion diagram, (c) interaction-reducible exchange diagram. The
wavy lines represent bare interactions.

point is that the long-range nature of the bare interaction
means that the interaction irreducible subdiagrams in the
correlation diagram, Fig. 2(b), can be at different densi-
ties. In consequence it appears that in the treatment of
fluctuations by the LDA and its variants, the correlation
diagrams are the ones most seriously misrepresented.

The concept of interaction irreducibility enables us to
selectively make the local approximation on just the in-
teraction reducible diagrams which correspond to the
multipole sequence in the real-space expansion of quanti-
ties of interest (energy, polarization propagator, etc.). In
this case the effective density p.s obtained in a manner as
suggested above determines an appropriate plasmon fre-
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quency for each dynamic screened interaction line. The
effects of spatial variations of the density which have their
greatest impact on processes involving the exchange of
plasmons can be incorporated by including the Landau
damping of the plasmons using, e.g., the prescription of
Langreth and Mehl.!° As demonstrated, this approach
provides an approximate means of treating the nonlocal
effects of fluctuations in an inhomogeneous system.

If fluctuating multipole interactions in inhomogeneous
systems are to be correctly described by a nonlocal density
functional approach, it is essential to draw a qualitative
distinction between physical processes that are essentially
local and those whose character derives from fluctuations
in spatially separated regions of different density. The ap-
proach we have presented incorporates this distinction,
leads to the correct long-range fluctuating dipole interac-
tions between atoms, and can be simply extended to a spin
dependent version.'* Dimensionality is also important:
The two-dimensional fluctuation-based attraction appears
to go as —r/r®? at long range because of the crucially
different plasmon dispersion relation.
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