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Self-fields and critical-current-density anisotropy of high-temperature superconductors
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Hysteresis loops of high-temperature superconductors often exhibit a peak in the irreversible magneti-
zation around zero field. A mechanism for such a peak is proposed, involving self-fields in platelet-
shaped samples which bend vortices in plane, generating a contribution from a large in-plane component
of critical current density. Numerical electromagnetic calculations demonstrate this effect and show
that its size depends strongly on the presence of an additional isotropic component.

Hysteresis loops of high-temperature superconductors
are usually understood! ~* in terms of the Beam critical-
state model.>® However several features remain puz-
zling. One is the frequent appearance of a peak in the ir-
reversible magnetization M (H) around zero field, which,
particularly at low temperatures, is superimposed on a
broad background of irreversible magnetization stretch-
ing to very high fields. Good recent examples are in Fig.
1(a) of Ref. 7 and Fig. 2 of Ref. 8 and they resemble the
calculated curve of Fig. 1 of this paper, which will be ex-
plained further below. In many cases this peak occurs in
platelet-shaped crystals with both ¢ axis and applied field
perpendicular to the plate, although similarly shaped
peaks have also been observed with field applied in the
(a,b) plane.

A possible explanation for this peak or other low-field
anomalies has been sought in connection with the lower
critical field,? although simulations show such effects to
be small.! Another possible mechanism comes from the
field-dependence of the critical current density,1 that is, a
dependence of a given current density component J, on
the amplitude (rather than the direction) of the local field.
Measurements with H parallel to the (a,b) plane in Y-
Ba-Cu-O crystal platelets should probably be interpreted
in this way.

In this paper we propose a third possible mechanism
which could apply in some—though certainly not all—
cases. The mechanism involves in-plane self-fields in
platelet-shaped samples, combined with a highly aniso-
tropic critical current density’” !> which is maximum
when the vortices lie in the (a,b) plane. In other words,
J. and hence the irreversible magnetization depend on
the direction of the local field.

The idea for this mechanism for the peak emerges from
recent electromagnetic calculations of the self-field distri-
bution inside a disk-shaped superconductor with isotro-
pic critical current density in the critical state.'>!* At
remanence, for example, these calculations reveal field
lines strongly distorted from the vertical direction (the z
axis) perpendicular to the plane. Over much of the sam-
ple, the lines lie horizontal, in a way which might be de-
scribed crudely as a severely flattened dipole distribution,
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illustrated schematically in Fig. 2(a). The field lines circle
around a ring lying in the center of the disk and about
0.15R from the edge of the disk of radius R. The self-
fields are typically of size J.t (where J, is the critical
current density and ¢ is the thickness), except for loga-
rithmic divergences near the axis and edge of the disk. In
the presence of an applied field H,, one must add vectori-
ally H, to the self-fields generated by the critical
currents, and thus the local field pattern “straightens
out” [see Fig. 2(b)] as H, increases.

We emphasize that these earlier calculations assumed
an isotropic current density. However datal®™121516 op
the high-temperature superconductors reveal a highly an-
isotropic current density. In particular, for our Y-Ba-
Cu-O crystals,'? the component J(*?(@?  corresponding
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FIG. 1. Calculated normalized irreversible magnetization M
vs applied field H,, for a disk with R /t =5 in the critical state,
with a local-field-direction-dependent critical current density,
described by Eq. (1) with C,=1. C,, the strength of the isotro-
pic component of the critical current density, is 0.5 and 0. The
solutions for C,=0 proved to be reproducible but unstable.
The height of this peak may actually be lower than what we
have shown. The comparison of the two shows the considerable
enhancement of the peak in M (H) with increasing Cj.
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to current and field both in the (a,b) plane but perpendic-
ular to each other, appears to be larger at low tempera-
tures, by at least a factor of 5, than the component
J{@x¢  corresponding to current along (a,b) but field
along c. Transport measurements'®!! on Y-Ba-Cu-O
films suggest the same trend. J(*? (@Y is the component
usually associated with “intrinsic pinning.”

The field distribution arising from currents flowing
around a disk in the (a,b) plane has components in both
(a,b) and ¢ directions. Thus one can expect both com-
ponents J!#?(@b and j{@b¢ 15 contribute to the irrever-
sible magnetization M at remanence. When the field pat-
tern straightens out with increasing applied field along
the c axis, the irreversible magnetization should become
increasingly dominated by the component J{*%* and the
contribution from J\%?»(@b will decrease. If J\#?>(@? jg
larger than J{%%¢ one can then expect the irreversible
magnetization to decrease as the applied field exceeds the
typical self-fields of the disk; this causes a peak in
M (H,), centered near H, =0.

To confirm the plausibility of this mechanism we have
performed numerical electromagnetic calculations of the
field and current distributions in a disk with an anisotrop-
ic critical current density. We use the same methods as
in the earlier calculations'>!* with isotropic current den-
sity. We describe the angular dependence with a power
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FIG. 2. Schematic field lines for a vertical cross section of a
disk (a) at remanence and (b) with an applied field H,, for the
case of uniform current density circulating circumferentially
around the disk (Cy=1, C,=0). The applied field causes the
net local field in the sample to straighten out parallel to the z
axis along the disk normal. (c) and (d) show schematic current
distributions for a disk with an extreme anisotropic current den-
sity (Co =0, Cy=1), for smaller and larger aspect ratios, respec-
tively.
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series in cos?6,
J.=J,o(Cy+Cyc08*0+Cycos*0+ - - - ), (1

where 0 is the net field angle out of the disk plane (vector
addition of the self-fields and applied field) and the C; are
dimensionless constants. Let us consider the simplest
case with only C, and C, terms; J, is maximum when the
local field is in the plane, minimum when the field is nor-
mal, along the z axis, provided C,>0. C, represents an
additional isotropic component, whose role, as we shall
see, is quite significant.

Our procedure is to start with a uniform azimuthal
(circumferential) current density throughout the entire
disk and to calculate the field distribution by numerical
integration of standard equations'*!'7 for the fields
around a current ring. Then, applying Eq. (1) we recalcu-
late a current distribution through the disk, recalculate
the fields, and so forth, iterating until the results con-
verge to a stable solution within some. given numerical
accuracy. Details are given in Ref. 17. Then the magne-
tization is calculated by the usual integration of the
current density over the volume which is then divided by
the volume. This calculation entirely ignores forces due
to vortex curvature,'® on the assumption that in large
samples such as crystals this contribution is small.

An example of the distribution of radial (H,) and axial
(H,) fields along a radius, obtained by this method, is
shown in Fig. 3(a) for the case C,=0, C,=1, all other
C;=0and R /t =5. This distribution differs considerably
from that found earlier for uniform current density.'>!*
Instead of a roughly uniform radial field across most of
the surface, H, is strongly peaked near the outer edge of
the sample, while H, changes sign at the same place. The
current is concentrated in this same region. Thus the ex-
treme anisotropic case appears to give something much
closer to the simple dipolar field distribution from a
current ring.

Integrating the current, and also adding results ob-
tained in the presence of an applied field, we found the
magnetization dependence shown in Fig. 1. All fields are
normalized by J 4t. The results for C,=0 show a peak
near H=—0.01. As explained earlier, the applied field
reduces the magnetization to zero because the net field
lines straighten out (6—/2) with increasing applied
field, and so J,—0 according to Eq. (1). However, these
results for C, =0 are unstable and erratic with continued
iteration of the program; we show here only the most fre-
quent values.

Some insight into the ringlike current distribution can
be obtained by considering the symmetry of the radial
fields, which must change sign above and below the mid-
plane and which therefore must be zero at the midplane.
If C;=0 and only the angle-dependent terms are present,
symmetry requires that the current be zero at the mid-
plane. But then Maxwell’s equation dictates that
(dB,/dr)—(dB,/dz)=0 there (we ignore here the
difference between B and H, assuming that H,, is small).
This means that the gradients of B, along the radial
direction must be comparable to those of B, along the z
direction, and hence that the currents must be localized
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on a comparable scale in the two directions, namely, on
the scale of the disk thickness z. Thus we can expect two
loops, symmetrically displaced on either side of the mid-
plane, as shown schematically in Fig. 2(c). From the out-
side, this distribution will resemble a single current loop,
just the type of solution that the numerical calculations
come up with.

It is interesting to note that for higher sample aspect
ratios, one would expect other solutions with two (or
more) pairs of current loops to appear [Fig. 2(d)]. Indeed
these do tend to arise in the numerical calculations for
larger radii, as shown for the case C;=0, C,=1, and
R /t=10 in Fig. 3(b). This solution does not stabilize but
seems to cycle between one and two current loops as we
iterate our program. We have not yet attempted a more
complete investigation of this unstable regime. But there
is an appealing, though perhaps superficial, analogy be-
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FIG. 3. Calculated field distributions for a disk in its critical
state, with current density going as cos’6, where 0 is the angle
of the net local field direction out of the disk plane (no isotropic
component, C,=0, C,=1). Triangles show the z-field com-
ponent at the center plane of the disk, and circles show the radi-
al field at the surface of the disk. In (a) the results are for aspect
ratio R /t=35, in (b) for R /t =10. The results in (a) are stable,
those in (b) are unstable, with the solution jumping between
single- and double-peaked states as the iterations of the calcula-
tion proceed.

tween the possible chaotic behavior of this problem and
the well-known chaotic behavior of Rayleigh-Benard
rolls,!® which suggests that the phenomena we calculate
deserve further work.

Comparing to experiment, the result of Fig. 1 for
C,=0is not very satisfactory. The magnetization is very
small; at H, =0, it is 0.13 in our normalized units, while
the usual uniform Bean critical state formula would give
J.R /3 or 1 in the same units (R /t =5). The reason is
clearly the reduced current flow arising from the forma-
tion of a localized current ring, as described above. We
also attempted to investigate the dependence on radius,
and while we had difficulty achieving convergence at
higher radii as mentioned already, the calculations indi-
cate a sublinear dependence on radius, while linearity is
usually observed in experiment.’>?! We note that the
magnetization of a ring, calculated with the volume in-
side the ring, is independent of radius.

Results which seem more applicable to experiment
were obtained with calculations including a finite value
for C,, the isotropic component in Eq. (1). The field-
dependent magnetization, calculated for the case
Cy=0.5, C,=1, and R /t=5, is shown in Fig. 1. The
field and current distribution (not shown here) which
gives rise to this magnetization is much closer to the con-
ventional distribution for isotropic current (see Refs. 13
and 14). Once again we find a peak in M (H,, ), but now it
is much larger and wider, and it sits on top of a field-
independent contribution from the isotropic current den-
sity, of magnitude 0.5X5/3=0.8333, as expected from
the usual Bean formula M =J_R /3 for this case (here 0.5
comes from the choice C;=0.5). The peak is also slight-
ly off-center; this is to be expected given the asymmetry
of the z-self-field distribution with respect to positive and
negative applied z fields. The applied-field asymmetry of
the peak decreases with increasing aspect ratio; this will
be the topic of future work.

Physically, we can interpret this result as follows. The
isotropic component creates radial fields over much of
the sample, and these fields dictate a contribution from
the in-plane current density according to Eq. (1). In
effect, the isotropic component stabilizes and strengthens
the in-plane contribution. Figure 4 demonstrates this
effect by plotting the height of the M (H) peak above the
high-field value, versus C,, for constant C,=1. The
width of the peak increases accordingly.

The experimental angle dependence of critical
current!®!! is considerably more peaked around the in-
plane direction than cos?0. To investigate the effect of
this sharper angle dependence, we performed a series of
calculations with a constant C;=0.5 and R /t=5, and
with progressively higher members of the series in Eq. (1),
i.e., first with C,=1 (and all other C;. , zero), then with
C,=1 (and all other C;. g zero), and so forth. We found
that at H, =0, the normalized magnetization decreased
from 1.33 to 1.13 to 1.05 for i=2,4,6, respectively.
These changes represent a significant decrease of the peak
height, since the high-field level for the irreversible mag-
netization is 0.833, as described above.

In summary, numerical electromagnetic calculations of
a disk with anisotropic current density show a zero-field
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FIG. 4. Peak height above the high-field saturation value (see
Fig. 1), as a function of strength of the isotropic component C,,
in Eq. (1). Although the peak actually occurs at slightly nega-
tive applied field, we approximate the peak height by
M(0)—M,,, where M(0) is the remanent magnetization at
H,=0 and where M, is the value at high H,.

peak in the irreversible magnetization versus field. The
peak is found even when the critical current density is as-
sumed to be completely independent of the amplitude of
the applied field. Our mechanism for the peak arises
specifically in platelet-shaped samples with a large in-
plane current density component J.%%:(®®  We have
shown that the peak is enhanced by the presence of an
isotropic current density and depends on the breadth of

the angular dependence of the current density. In princi-
ple a study of this peak may ultimately permit a deter-
mination of the magnitude of J**"(% 'which has other-
wise proved difficult to measure directly!? in crystals.
This phenomenon should also be relevant in interpreting
transport data'®!! on thin films at low fields; this is
another aspect for future study.

We emphasize that this proposed new mechanism for
the peak does not rule out others and can occur in com-
bination with them. Indeed, as mentioned above, peaks
have been observed even when the sample geometry is
not plateletlike, that is even when there are no in-plane
self-fields. It must also be said that so far there is no
direct experimental proof of this mechanism, which
would require crystals large enough to cut a rod-shaped
specimen out of a platelet and to compare the hysteresis
loops. Nevertheless, though it may be hidden by other
effects, it is a mechanism which seems likely to occur,
given the overwhelming tendency of these superconduc-
tors to grow in a platelet shape, and given the growing
evidence for a large in-plane critical current density, pos-
sibly arising from intrinsic pinning.

The authors thank M. W. McElfresh for providing the
incentive for this work, C. Aguillon for some initial ex-
perimental efforts to confirm this effect, and S. Senoussi,
L. Fruchter, and M. Daeumling for valuable discussions.
(A.P.M.) thanks I. A. Campbell and the Université de
Paris-Sud for their hospitality during his stay at the La-
boratoire de Physique des Solides.

*Also at Université de Paris-Sud, Physique des Solides,
Batiment 510, 91405 Orsay, France.
1S. Senoussi, M. Oussena, and S. Hadjoudj, J. Appl. Phys. 62,
4176 (1987); S. Senoussi, M. QOussena, G. Collin, and 1. A.
Campbell, Phys. Rev. B 37, 9792 (1988); S. Senoussi (unpub-
lished).
2G. Ravz-Kumar and P. Chaddah, Phys. Rev. B 39, 4704 (1989).
3V. V. Moshchalkov, et al., Physica C 162-164, 1633 (1989).
4A. P. Malozemoff, in Physical Properties of High Temperature
Superconductors, edited by D. Ginsberg (World Scientific,
Singapore, 1989), pp. 71-150.
5C. P. Bean, Phys. Rev. Lett. 8, 250 (1962); Rev. Mod. Phys. 36,
31 (1964).
6A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972).
7L. Civale, A. D. Marwick, M. W. McElfresh, T. K.
Worthington, A. P. Malozemoff, and F. Holtzberg, Phys. Rev.
Lett. 65, 1164 (1990).
8U. Welp, K. W. Kwok, G. W. Crabtree, K. G. Vandervoort,
and J. Z. Liu, Appl. Phys. Lett. 57, 84 (1990).
9M. Tachiki and S. Takahashi, Solid State Commun. 72, 1083
(1989).
10B, Roas, L. Schultz, and G. Saemann-Ischenko, Phys. Rev.
Lett. 64, 479 (1990).
1D K. Christen, C. E. Klabunde, R. Feenstra, D. H. Lowndes,
D. Norton, J. D. Budai, H. R. Kerchner, J. R. Thompson, L.
A. Boatner, J. Narayan, and R. Singh, Physica B (to be pub-
lished).
12D, C. Cronemeyer, T. R. McGuire, A. P. Malozemoff, F.

Holtzberg, R. J. Gambino, L. W. Conner, and M. W. McEl-
fresh, in Transport Properties of Superconductors, Progress in
High Temperature Superconductivity, edited by R. Nicolsky
(World Scientific, Singapore, 1990), Vol. 25, p. 11.

13M. Dauemling and D. C. Larbalestier, Phys. Rev. B 40, 9350
(1989).

141, W. Conner and A. P. Malozemoff, Phys. Rev. B 43, 402
(1991).

I5T. R. Dinger, T. K. Worthington, W. J. Gallagher, and R. L.
Sandstrom, Phys. Rev. Lett. 58, 2687 (1987).

I6E, M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F.
Schneemeyer, and J. V. Waszczak, Appl. Phys. Lett. 55, 283
(1989).

17W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill,
New York, 1950).

18y, Kogan, Phys. Rev. Lett. 64, 2192 (1990).

19A. Libchaber, in Modern Physics in America: Michelson-
Morley Centennial Symposium, Proceedings of a Conference
held in Cleveland, Ohio, October, 1987, AIP Conf. Proc. No.
169, edited by William Fickinger and Kenneth L. Kowalski
(AIP, New York, 1988), p. 95.

20B. Oh, M. Naito, S. Arnason, P. Rosenthal, R. Barton, M. R.
Beasley, T. H. Geballe, R. H. Hammond, and A. Kapitulnik,
Appl. Phys. Lett. 51, 852 (1987).

21y, Yeshurun, M. W. McElfresh, A. P. Malozemoff, J.
Hagerhorst-Trewhella, J. Mannhart, F. Holtzberg, and G. V.
Chandrasekhar, Phys. Rev. B 42, 6322 (1990).



