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First-order transition in frustrated quantum antiferromagnets
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A two-dimensional frustrated quantum Heisenberg model with first-, second- (diagonal), and third-
neighbor couplings (J,-J,-J; model) is studied near the phase boundary of the antiferromagnetic (7, )
phase. It is shown that quantum corrections remove accidental classical degeneracy and ensure a
nonzero hysteresis width for the J; =0 transition between commensurate (7,7) and (,0) phases, so that
finite J; is necessary to produce a continuous transition through the intermediate disordered phase.

The discovery of high-temperature superconductivity
renewed an interest in the study of quantum fluctuations
in two-dimensional (2D) quantum antiferromagnets. Be-
sides the effort undertaken in order to establish whether
or not quantum fluctuations are strong enough to destroy
long-range order in S =] Heisenberg antiferromagnets
on various lattices,"? there is also a considerable interest
in the study of frustrated antiferromagnets with most of
the efforts focused on the so-called J- J,-J; model with

first-, second- (diagonal), and third-neighbor cou-
plings:3~°
H=J1 28 Si4at2 X SiSiiay,
LA LAgiag
+J32S['S1+2A . (1)
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For positive (antiferromagnetic) J;, next-neighbor cou-
plings compete with the nearest-neighbor one and, ap-
proaching some critical values, provide an instability of
the (7, 7) antiferromagnetic ground state.

For classical spins, the (7, 7) configuration becomes un-
stable at J,>J,, J,=2J,+4J;, against a transition or
into a symmetrical (Q,Q) incommensurate state with

cosQ =—J,;/J., or into a nonsymmetrical state (m,0)
with
~ 1 Jy
cosQ=—— | —(1+a)—1
JC

and a =2J,/J,, depending on whether or not the ratio of
next-neighbor couplings a is greater than one, corre-
spondingly.® In the latter case, a subsequent increase of
frustration leads to a second transition at
J,=J.,(1—a)/(1+a) into a commensurate (m,0) state.
For diagonal frustration only, i.e., when J; =0, the inter-
mediate region disappears and (m,7) configuration trans-
forms directly into (ir,0) state at J, =J, /2.

What ensures interest in this simple model is that it is
believed to have a region of a disordered spin-liquid
phase. The possibility for a breakdown of long-range or-
der comes from the fact that, on a transition line J, =J,
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antiferromagnetic spin-wave excitations, generally linear
in k for k close to (0,0) and 7= (1, ), undergo additional
softening and along J, =J, the spin-wave spectrum

ex=21,S (i)' 2
(2)

Pe=1{2(1=v ) (1—v,)+a[(1=v, )2+ (1—v,)?]},

where v, =cosk;, is quadratic in k both at low momen-
tum and near 7.%° As a result, in the quantum version of
the problem, the corrections due to quantum fluctuations
turn out to be logarithmically divergent in two dimen-
sions and one comes to a possibility that different ordered
states may be separated by an intermediate spin-liquid
state.

For S =1, numerical simulations>*® point out that
this is most likely the case. The intermediate phase with
a restored continuous symmetry was identified as a dimer
phase with columnar dimerization. In this paper, I will
focus instead on the situation for large S.

The question of whether or not a region of a spin-liquid
state really exists even for arbitrary large S is a subject of
recent controversy. loffe and Larkin® used a
renormalization-group (RG) technique and showed that,
along a critical line, the coupling constants measuring the
strength of quantum fluctuations also grow logarithmi-
cally in passing to larger scales exactly in the same way as
in the O(n) o model with n >2. This means that fluctua-
tions not only destroy on-site magnetization but also gen-
erate an internal scale (correlation length, & <expS for
S >>1); that is, finite shift from a critical line is necessary
to produce long-range order. This approach is valid only
for strong enough J; since, in the case of J;—0, the bare
coupling constants, normally small to the extent of 1/,
acquire a logarithmically divergent (as InJ,/J;) factor.
The case J;=0 was first considered by Chandra and
Doucot.® They calculated the first correction to sublat-
tice magnetization and claimed that a disordered region
exists in the lack of J; as well (see also Refs. 8 and 9).

Contrary to these results, Read and Sachdev’ explored
the 1/N expansion for S,(N) frustrated magnets (the
physical picture is restored by setting N =1) and did not
detect any intermediate disordered phase in the ‘“‘quasi-
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classical” limit when, besides large NN, one also assumes
that the ratio n, /N, where n, is the number of bosons at
each site (n, =285 for N =1), is also large.

The purpose of this Brief Report is to show that the
contradiction can be partly resolved by the standard
Hartree-Fock calculations for ordinary SU(2) spins.
Specifically, I will show that the same Hartree-Fock
corrections, which are well known to lift an accidental
degeneracy in the (77,0) phase>®1%!! also produce a finite
hysteresis width for the J;=O0 transition between the
(m,m) and (m,0) states, that is finite J; is necessary for a
continuous transition to occur. This is very natural since,
at the transition point J,=J,/2, the two states have
different spin-wave spectra:

g, =4J,S|sink,|sink | (3)
for the (m,7) phase and

€, =4J,S|sink, |(1+cosk,) (3"

for the (,0) phase, and there are absolutely no reasons to
expect quantum fluctuations to be absolutely equal in
both phases. This is to be contrasted with the cases when
hysteresisless first-order transitions result from exact
infinite quantum degeneracy at criticality.'>!® Since the
lines of soft modes in the spin-wave spectrum of Egs. (3)
and (3') were associated with the hysteresisless transition
for classical spins, the finite hysteresis width due to quan-
tum fluctuations also removes the accidental classical de-
generacy (this phenomena is often referred to as “order
from disorder”!%).

The calculations are very simple and, in essence, re-
quire only a decoupling procedure for the fourfold anhar-
monic terms in the bosonic version of the original spin
Hamiltonian obtained with, say, a Dyson-Maleev trans-
formation. In the absence of cubic anharmonisms this is
enough to get the leading corrections in 1/S. The reali-
zation of this procedure for the (m,7) phase produces a
shift in the instability point when the excitation spectrum
first becomes unstable at k=0 and :

vi(1—+2)
8(017,#)___1_'_2‘]22# , 4)
k €k

where 6=2J,/J,. The logarithmical divergence on the
right-hand side (rhs) of (4) with ¢, as in (3), is an
aftereffect of the classical “soft lines” at criticality. The
evaluation of the integral with logarithmic accuracy gives
syﬂ:1+£§n )
TS
The same procedure applied to the (7,0) phase lifts an
accidental degeneracy at k =(0,7) and (w, 7). However,
quantum corrections do not produce any shift in the in-
stability point since the transition is now governed by fer-
romagnetic fluctuations in the y direction, which are well
known to be insensitive to a transformation from classical
to quantum spins [mathematically, this is manifested in
that, for g, as in (3'), the coefficients of the unitary trans-
formation diagonalizing the quadratic form in bosons do
not depend on v, ]. Hence,

8m0=1. (5

It follows from (4') and (5) that the stability regions of
the (,7) and (,0) phases overlap and thus for quantum
spins the first-order transition has a finite hysteresis
width. The energies of the (,7) and (,0) states touch
each other at

1
B =1+ 5 (m=2) . (©6)

Note that, by evident reasons, 8., has no logarithmical
factor in S.

The fact that, up to logarithmic terms, |8, —8,| grows
linearly with 1/ violates a possibility of disordered in-
termediate phase which was believed to result from loga-
rithmical corrections to the sublattice magnetization
which become relevant only exponentially close to the in-
stability lines in both (7,7) and (,0) phases. This com-
plements the Read and Sachdev results for J;=0." The
only difference is that their expression for the instability
point of the (,7) phase does not contain a logarithmical
factor in n, /N.

For classical spins, no matter how small J; produces a
continuous transition through the intermediate (,Q)
phase. For quantum spins, however, the finite hysteresis
width for J; =0 points out that finite J; is necessary to
make a transition continuous. Moreover, since, in both
phases, J; couples ferromagnetically ordered spins and

FIG. 1. A schematic 7T =0 phase diagram of the J,-J,-J;
model on the J,/J, and J;/J, planes. Solid and dashed lines
correspond to second- and first-order transitions. Due to quan-
tum fluctuations, finite J; is necessary to produce a continuous
transition through the intermediate disordered phase (shown
hatched). The numbers denote the stability regions of different
phases: 1 (m,7); 2 (7,0); 3 (7,Q); and 4 (Q, Q).



394 BRIEF REPORTS 4

the logarithmical in S term enters into the expression for
8(;”") only, then, with J; increasing, the type of transition
will change first along the instability line of the (,0)

phase: for J; >JS", where
—2
JP=g, == 7
3 Vanls

it will transform into the (7,Q) phase via continuous
transition. Meanwhile, a transition from the (7, 7) phase
will continue to be first-order until J; exceeds a second
critical value, J{. One could expect that
J¥ ~(1/8)InS. However, the self-consistent solution of
when the quadric in the (7— Q) term in the low (7—Q)
expansion of the energy of the (7, Q) phase changes a sign
along the (m,7) instability line shows, that on this scale,
only the hysteresis width decreases, while the first-order
transition itself survives up to much higher values of J;.
The calculations yield

J(Z)—LI_L

3 2

1/2
InS

8
2m2S ®)

In between J§ and J$? the (,7) phase will undergo a
first-order transition into the (7, Q) phase with some in-
termediate Q [although small for J; >>(1/S) InS].

On the other hand, for sufficiently large J; (J3>J%),
the (m,7) phase will lose a stability via a continuous tran-
sition. In this case, Hartree-Fock corrections only shift a

critical line and renormalize the bare values of the cou-
plings but do not change a conclusion of Ref. 5 about the
existence of an intermediate disordered phase for arbi-
trary large S. The proposed phase diagram with the tri-
critical point, where a continuous transition via inter-
mediate disordered phase changes to first-order transition
(dashed curve), is presented in Fig. 1. Note that quantum
fluctuations do not diverge along the (7,0)— (7, Q) tran-
sition line and, thus, no disordered state separates these
two phases.

A phase diagram for n, /N =1 was obtained by Read
and Sachdev.” They found a first-order transition for
small J; but did not detect any intermediate phase be-
tween the ordered (,7) and (Q, Q) or (,Q) states in the
region where one expects a continuous transition to
occur. The reason for the discrepancy is unknown to me.

Note added in proof. After submitting this paper I
learned that the first-order transition in the large-S
J,—J, model was also obtained in the frameworks of a
Schwinger-boson approach.!®
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