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First-order transition in frustrated quantum antiferromagnets
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A two-dimensional frustrated quantum Heisenberg model with first-, second- (diagonal), and third-
neighbor couplings (J&-J&-J3 model) is studied near the phase boundary of the antiferromagnetic (~,~)
phase. It is shown that quantum corrections remove accidental classical degeneracy and ensure a
nonzero hysteresis width for the J3 =0 transition between commensurate (~,~) and (m.,0) phases, so that
finite J3 is necessary to produce a continuous transition through the intermediate disordered phase.

The discovery of high-temperature superconductivity
renewed an interest in the study of quantum fluctuations
in two-dimensional (2D) quantum antiferromagnets. Be-
sides the efFort undertaken in order to establish whether
or not quantum Auctuations are strong enough to destroy
long-range order in S =

—,
' Heisenberg antiferromagnets

on various lattices, ' there is also a considerable interest
in the study of frustrated antiferromagnets with most of
the efForts focused on the so-called J&- J2-J3 model with
first-, second- (diagonal), and third-neighbor cou-
pling s:

II —Ji Q St.St+~+ J~ g St St+gd
l, h ' ~dna

+J3 X St St+2~ . '

I, b,

For positive (antiferromagnetic) J, , next-neighbor cou-
plings compete with the nearest-neighbor one and, ap-
proaching some critical values, provide an instability of
the (m, ir) antiferromagnetic ground state.

For classical spins, the (vr, ~) configuration becomes un-
stable at J, )J&, J, =2J2+4J3, against a transition or
into a symmetrical (Q, Q) incommensurate state with
cosQ = —J, /J„or into a nonsymmetrical state (ir, Q)
with

cosQ = —— (1+a)—1
a J,

and a =2J3/J2, depending on whether or not the ratio of
next-neighbor couplings a is greater than one, corre-
spondingly. In the latter case, a subsequent increase of
frustration leads to a second transition at
Ji =J,(1—a)/(1+a) into a commensurate (vr, 0) state.
For diagonal frustration only, i.e., when J3 =0, the inter-
mediate region disappears and (~, vr) configuration trans-
forms directly into (ir, 0) state at J2 =Ji /2.

What ensures interest in this simple model is that it is
believed to have a region of a disordered spin-liquid
phase. The possibility for a breakdown of long-range or-
der comes from the fact that, on a transition line J& =J„

antiferromagnetic spin-wave excitations, generally linear
in k for k close to (0,0) and sr=(ir, n), undergo additional
softening and along J& =J„the spin-wave spectrum

(2)
yk= I2(1 —v, )(1—v )+a [(1—v ) +(1—v )2I ],

where v, =cosk, , is quadratic in k both at low momen-
tum and near m. ' As a result, in the quantum version of
the problem, the corrections due to quantum Auctuations
turn out to be logarithmically divergent in two dimen-
sions and one comes to a possibility that difFerent ordered
states may be separated by an intermediate spin-liquid
state.

For S =
—,', numerical simulations ' ' point out that

this is most likely the case. The intermediate phase with
a restored continuous symmetry was identified as a dimer
phase with columnar dimerization. In this paper, I will
focus instead on the situation for large S.

The question of whether or not a region of a spin-liquid
state really exists even for arbitrary large S is a subject of
recent controversy. Iofte and Larkin used a
renormalization-group (RG) technique and showed that,
along a critical line, the coupling constants measuring the
strength of quantum fIuctuations also grow logarithmi-
cally in passing to larger scales exactly in the same way as
in the O(n) o model with n )2. This means that fluctua-
tions not only destroy on-site magnetization but also gen-
erate an internal scale (correlation length, g~expS for
S))1); that is, finite shift from a critical line is necessary
to produce long-range order. This approach is valid only
for strong enough J3 since, in the case of J3 ~0, the bare
coupling constants, normally small to the extent of 1/S,
acquire a logarithmically divergent (as ln J2/J3) factor.
The case J3=0 was first considered by Chandra and
Doucot. They calculated the first correction to sublat-
tice magnetization and claimed that a disordered region
exists in the lack of J3 as well (see also Refs. 8 and 9).

Contrary to these results, Read and Sachdev explored
the 1/N expansion for S„(N) frustrated magnets (the
physical picture is restored by setting N =1) and did not
detect any intermediate disordered phase in the "quasi-
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Ek=4JzS~sink, ~~sink
~

for the (~, vr) phase and

sk=4J2S sink„(1+cosk )

(3)

(3')

for the (m. , O) phase, and there are absolutely no reasons to
expect quantum fluctuations to be absolutely equal in
both phases. This is to be contrasted with the cases when
hysteresisless first-order transitions result from exact
infinite quantum degeneracy at criticality. ' ' Since the
lines of soft modes in the spin-wave spectrum of Eqs. (3)
and (3') were associated with the hysteresisless transition
for classical spins, the finite hysteresis width due to quan-
tum fluctuations also removes the accidental classical de-
generacy (this phenomena is often referred to as "order
from disorder"' ).

The calculations are very simple and, in essence, re-
quire only a decoupling procedure for the fourfold anhar-
monic terms in the bosonic version of the original spin
Hamiltonian obtained with, say, a Dyson-Maleev trans-
formation. In the absence of cubic anharmonisms this is
enough to get the leading corrections in 1/S. The reali-
zation of this procedure for the (vr, w) phase produces a
shift in the instability point when the excitation spectrum
first becomes unstable at k=0 and m".

classical" limit when, besides large X, one also assumes
that the ratio n& /N, where nb is the number of bosons at
each site (nb =2S for N = 1), is also large.

The purpose of this Brief Report is to show that the
contradiction can be partly resolved by the standard
Hartree-Fock calculations for ordinary SU(2) spins.
Specifically, I will show that the same Hartree-Fock
corrections, which are well known to lift an accidental
degeneracy in the (m. , O) phase ' ' '" also produce a finite
hysteresis width for the J3=0 transition between the
(~, vr) and (~,0) states, that is finite J3 is necessary for a
continuous transition to occur. This is very natural since,
at the transition point J2=J, /2, the two states have
different spin-wave spectra:

5(m, o) —1
C

It follows from (4') and (5) that the stability regions of
the (rr, vr) and (vr, O) phases overlap and thus for quantum
spins the first-order transition has a finite hysteresis
width. The energies of the (~,~) and (m, O) states touch
each other at

5„=1+ (m. —2) .
1

mS

Note that, by evident reasons, 6„has no logarithmical
factor in S.

The fact that, up to logarithmic terms, ~5„—5, ~
grows

linearly with 1/S violates a possibility of disordered in-
termediate phase which was believed to result from loga-
rithmical corrections to the sublattice magnetization
which become relevant only exponentially close to the in-
stability lines in both (m, ~) and (ir, O) phases. This com-
plements the Read and Sachdev results for J3=0. The
only difference is that their expression for the instability
point of the (~,vr) phase does not contain a logarithmical
factor in nb/N.

For classical spins, no matter how small J3 produces a
continuous transition through the intermediate (vr, Q)
phase. For quantum spins, however, the finite hysteresis
width for J3=0 points out that finite J3 is necessary to
make a transition continuous. Moreover, since, in both
phases, J3 couples ferromagnetically ordered spins and

v (1—v )
5', ' '=I+2J2 g

k Ek
(4)

where 5=2J2/J, . The logarithmical divergence on the
right-hand side (rhs) of (4) with El, as in (3), is an
aftereffect of the classical "soft lines" at criticality. The
evaluation of the integral with logarithmic accuracy gives

g(~ ~) 1 + lnS
~S

(4')

The same procedure applied to the (m, O) phase lifts an
accidental degeneracy at k =(O, m) and (n, vr). However,
quantum corrections do not produce any shift in the in-
stability point since the transition is now governed by fer
romagnetic fluctuations in the y direction, which are well
known to be insensitive to a transformation from classical
to quantum spins [mathematically, this is manifested in
that, for E„as in (3'), the coefficients of the unitary trans-
formation diagonalizing the quadratic form in bosons do
not depend on v j. Hence,

FIG. 1. A schematic T=O phase diagram of the J&-J2-J3
model on the J2/J& and J3/J& planes. Solid and dashed lines
correspond to second- and first-order transitions. Due to quan-
tum fluctuations, finite J, is necessary to produce a continuous
transition through the intermediate disordered phase (shown
hatched). The numbers denote the stability regions of diA'erent

phases: 1 (vr, n); 2 (n, O); 3 (vr, g); and 4 (Q, Q).
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the logarithmical in S term enters into the expression for
5', ' ' only, then, with J3 increasing, the type of transition
will change first along the instability line of the (~,0)
phase: for J3 & J3",where

J( I) J 7T 2

4~ S
it will transform into the (vr, Q) phase via continuous
transition. Meanwhile, a transition from the (m, n) p. hase
will continue to be first-order until J3 exceeds a second
critical value, J3

'. One could expect that
J3 '-—(1/S) lnS. However, the self-consistent solution of
when the quadric in the (~ Q) te—rm in the low (vr —Q)
expansion of the energy of the (m, Q) phase changes a sign
along the (rt, rt) instability line shows, that on this scale,
only the hysteresis width decreases, while the first-order
transition itself survives up to much higher values of J3.
The calculations yield

1/2
I. lnS

(8)
,

2~S
In between J~3" and J~3 ' the (~, m ) phase will undergo a
first-order transition into the (~, Q) phase with some in-
termediate Q [although small for J3 ))(I/S) inS].

On the other hand, for sufliciently large J3 (J3 )J3 '),
the (vr, rr) phase will lose a stability via a continuous tran-
sition. In this case, Hartree-Pock corrections only shift a

critical line and renormalize the bare values of the cou-
plings but do not change a conclusion of Ref. 5 about the
existence of an intermediate disordered phase for arbi-
trary large S. The proposed phase diagram with the tri-
critical point, where a continuous transition via inter-
mediate disordered phase changes to first-order transition
(dashed curve), is presented in Fig. 1. Note that quantum
fluctuations do not diverge along the (vr, 0)~(m, Q) t. ran-
sition line and, thus, no disordered state separates these
two phases.

A phase diagram for nb/% =1 was obtained by Read
and Sachdev. They found a first-order transition for
small J3 but did not detect any intermediate phase be-
tween the ordered (vr, vr) and (Q, Q) or (m., Q) states in the
region where one expects a continuous transition to
occur. The reason for the discrepancy is unknown to me.

Note added in proof Afte. r submitting this paper I
learned that the first-order transition in the large-S
J, —J2 model was also obtained in the frameworks of a
Schwinger-boson approach. '
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