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In the presence of an electric field the energy spectrum of a quantum well becomes continuous, with
bound states transforming into resonances, but also with strong modifications in the above-barrier re-
gion. Analyzing the density of states (DOS) of the system, we find modulated oscillations of this quantity
due to interference of the waves reflected from the well boundaries and from the slope of the electric-
field potential. We show that these oscillations in DOS are related to the Fowler-Nordheim resonances
in transmission through a double-barrier tunneling structure. We also calculate the absorption a(#iw)
from the ground state in the well to the energy continuum above the barriers. We find a pronounced
electric-field effect on a(#iw); the slowly varying curve for zero field transforms into a series of sharp
peaks. The observation of these peaks requires narrow wells, wide barriers, and moderate electric fields.
It would allow for the determination of important parameters like band offset or the value of the internal

electric field.

I. INTRODUCTION

Progress in the physics of semiconductor heterostruc-
tures has been stimulated by their numerous applications:
quantum-well lasers, high-speed transistors, resonant-
tunneling diodes, etc. In most of these devices the elec-
tric field can be very strong, due to their small dimen-
sions, e.g., the potential drop across a single quantum
well can easily exceed the depth of the well. The electric
field is also useful as a parameter allowing for the con-
tinuous tuning of the energy levels, for the modification
of the selection rules for optical transitions, etc.

In the presence of a uniform electric field (of infinite
range) the spectrum of any heterostructure becomes con-
tinuous, with bound states transforming into resonances
of finite energy width. However, the first calculations of
the energy spectrum in the presence of the field assumed
that the levels remain discrete.’? Since then the
broadening of the energy levels has been included pertur-
batively,? i.e., assuming that the coupling between bound
states and continuum is weak.

The most complete analysis of the continuous energy
spectrum of single* and multiple’ quantum wells has been
performed by Austin and Jaros, who analyzed the density
of states (DOS) without any assumptions about the cou-
pling between the bound levels and the continuum. The
following dispute in the literature® arose because of the
differences between approximate methods and the exact
calculation in the high-field range. All these calculations
have concentrated on the energy spectrum inside the
quantum well, or only slightly above.

In the present paper we study the full spectrum of the
quantum well in the presence of the field. We analyze the
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change in DOS introduced by the well Ap(E), using a
simple and exact method for evaluating this quantity. In
the energy range above the barriers we find interesting os-
cillatory structures in Ap(E) that could not be obtained
with perturbative methods. We also study the transmis-
sion across the double-barrier structure at higher energies
and the absorption from the ground state in the well to
the continuum above the barriers. Both of these quanti-
ties reveal very interesting electric-field effects, consistent
with the structures found in Ap(E).

We assume a uniform effective mass m* throughout
the heterostructure. In this case the boundary conditions
for the envelope function and its gradient can be taken as
continuity. For equal masses in the parabolic bands of
the well and of the barrier material the eigenvalue prob-
lem becomes strictly one dimensional. We did not want
to complicate the issue with the speculations about the
boundary conditions,” although the wave function in the
presence of the field can be quite sensitive to them.?

We neglect the band-structure effects,’ i.e., the pres-
ence of X or L minima in the conduction band of the well
and barrier material. As shown in Ref. 9 the I'-X mixing
induced by the field could be important only at very high
fields (above 500 kV/cm for a single quantum well) while
the effects we describe occur at much lower fields (of the
order of 10 kV/cm). Of course at energies high above the
I’ barriers the X minima come into play even at zero field.
Therefore our calculations are valid in a limited energy
range above the barriers (say, 0.2 eV for Al,;Gag,As
barriers).

The paper is organized as follows. In Sec. IT we briefly
describe our method of determining Ap(E) and we ana-
lyze this quantity for a single quantum well in the pres-
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ence of the electric field. For the energy range inside the
well we determine the positions and the widths of reso-
nances, in agreement with previous calculations.* In the
energy range above the barriers we study the oscillatory
structure in Ap(E) and its dependence on the field and on
the well parameters. Section III is devoted to the study
of transmission T (E) for a double-barrier structure and
of the correspondence between the resonances in 7 (E)
and the oscillations in Ap(E). In Sec. IV we evaluate the
absorption from the ground state in the well to the con-
tinuum. We point out the most favorable conditions for
the observation of the predicted effects. Section V con-
tains the summary of our results.

II. DENSITY OF STATES IN THE
CONTINUOUS SPECTRUM

The DOS of a quantum system is defined as
plE)= Y 8(E —E,), (1)
n

while the local density of states (LDOS), used by some au-
thors!®~ 12 may be defined as

polE)= fndz S |W(E,,2)|*8(E —E,)

= [ dz|W(E2p(E) . @

Here {E,} are the eigenvalues of the system, W(E,,z) are
the corresponding wave functions, and  is some selected
region of integration. For () being the whole space we
obtain the DOS defined in Eq. (1).

We consider a finite (but big) system so that the energy
spectrum is discrete (but dense). As we show at the end
of this section, the use of the LDOS can be misleading be-
cause it depends on the integration region ). Instead, we
analyze the change in DOS Ap(E) introduced by the con-
sidered structure'® (e.g., by the quantum well),

Ap(E)=p(E)—py(E) , (3)

where py(E) is the DOS in a big “box” and p(E) is the
DOS in the same box with the structure. The choice of
the box is irrelevant except that it has to be sufficiently
big so that Ap(E)<<py(E). For the zero-field case it is
often convenient to take the big box as a wide quantum
well with infinite barriers, for the structures with the elec-
tric field it is natural to choose the triangular box, i.e., an
infinite barrier at z=0 and a linear potential elsewhere.
Suppose that the condition for the energy levels in an
empty box is

Dy(E))=0, 4)
and for the box with the structure,
D(E,)=0. (5)

The functions Dy(E) and D (E) are obtained by solving
the set of boundary conditions for the wave function and
its gradient. The DOS is then given by the inverse of the
spacing between the levels,

3881
1
po(E,(,))=-A—0- , 6)
-1
PE)=3— )

n

where A9=E? ,—E? and A,=E,,.,—E,. Both of
these densities increase with the box size. However, the
difference between them, which characterizes the con-
sidered structure, stays finite even for an infinite box.
Thus we can write

A, =A0+x, , (8)
with |x,| <<A%. The change in DOS becomes

X

Ap(E, )= — .
PEL= =50

9)

The shift in the energy spacing can be obtained by ex-
panding D (E) around E, + A%, and we finally obtain

1 D(E,+A%
(A%)2 D'(E,+A%)

where D'(E) is the first derivative of D (E). Thus, know-
ing the eigenvalue conditions (4) and (5) we can determine
Ap(E) from Eq. (10).

So far we have considered the one-dimensional (1D)
system. In any heterostructure we also have the free
motion in the directions parallel to the interfaces. There-
fore every level of our 1D structure introduces in fact a
steplike DOS. The full DOS for a given energy E is the
sum of such steps for all lower-lying levels E, <E. For
the energy E in the continuum this sum becomes the in-
tegral of 1D DOS plus the constant contribution from all
lower-lying bound states. We prefer to consider the 1D
DOS but it would be straightforward to integrate it.
Also, the absorption discussed in Sec. IV contains the 1D
DOS due to the wave-vector conservation in optical tran-
sitions.

Let us now apply this method to the quantum well of
depth ¥V, and width L, subject to a uniform electric field
F. The natural choice of the big box is the triangular po-
tential shown in Fig. 1. The increase in the box size is
achieved by increasing X. The condition for the energy
levels in an empty box is given by Eq. (4) with

Ap(E,)= , (10)

Dy(E)=Ai(y,) , (11)
where Ai is the Airy function'* and
1/3
2m*eF E
= | —=1, 12
. 7 oF (12)

so that y,= —(2m *eF /#*)!/3E /eF. For the box with the
well,

D(E)=a,Ai(yy)+B,Bily,) , (13)

where a; and f3; are given by lengthy expressions ob-
tained from the boundary conditions at z=X and
z=X+L. For a big box (i.e., large X) we can use the
asymptotic formulas'* for Ai(y,) and Bi(y,). This yields
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FIG. 1. Potential profile used for the determination of DOS.
The arrow shows the energy reference used in Ap(E) figures—
the middle of the well bottom.

the following expression for the energy levels in a tri-
angular box:
1721273

2
A Con>>1, (14)

2m*

3mrneF
2

El=

n

so that the DOS py(E) <V E. However, for some more
complicated structures than the triangular box the ex-
pression for D,(E) may be more complex so that the
roots cannot be found analytically. The general pro-
cedure is therefore as follows: first we find two roots of
Dy(E) and the spacing between them, together with one
root of D(E). For a big box the spacing of the roots
changes very slowly so that all subsequent roots of D(E)
and D(E) can be found by linear interpolation. The size
of the big box does not affect Ap(E) but in the energy re-
gions where we expect very narrow resonances it is neces-
sary to increase X to get a better resolution.

Let us now look at the results of the calculation: first,
the resonances in Ap(E) originating from bound states at
F=0. Figure 2 shows the broadening (and shift) of the
ground state in a 30-A, 70-meV quantum well for
m*=0.45m, (heavy holes in GaAs); the energies are
measured from the middle of the well bottom. We show
this figure to demonstrate that our results for Ap(E) coin-
cide’” with those of Austin and Jaros, who presented a
similar graph in Ref. 4. In Fig. 3 we show the evolution
of three bound states in a wider well and the increase of
their half-widths with the field. The excited levels behave
nonmonotonically when the field is increased, as shown in
Ref. 2 for an infinite well.

The results could be plotted in dimensionless units (en-
ergy in Ey=#2/2m*L?; field in F,=E/eL) so that they
apply both for electrons and for holes. However, the sit-
uation for the holes is more complicated because for the
in-plane k vectors different from zero, the heavy- and
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FIG. 2. Quasibound state in a 30-A, 70-meV quantum well
for heavy holes (m*=0.45m,) at three different fields: 100
kV/cm (solid line), 240 kV/cm (dotted line: Ap multiplied by
9), 440 kV/cm (dashed line: Ap multiplied by 27).

light-hole states become coupled and the calculation
should be done for a 4 X4 (or 6 X6) Luttinger Hamiltoni-
an (as in Ref. 16). Therefore in the following we shall
concentrate on the electrons (m*=0.067m, in the well
and in the barriers) and we shall use ordinary units.
Figure 4(a) shows Ap(E) in a wide energy range '’ for
a 100-A, 100-meV well at the field of 20 kV/cm. At
lower energies we can see two resonances originating
from bound states at zero field. At energies above the
upper barrier an oscillatory structure begins with slow
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FIG. 3. Electric-field variation of three quasibound states in
a 100-A, 70-meV quantum well for heavy holes. Solid lines fol-
low the position of DOS maxima, dots indicate the half-widths.
The dashed-dotted line gives the position of the lower barrier
edge.
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modulation of the amplitude. The period of the fast os-
cillation increases with the field [Fig. 4(b)] while the slow
modulation depends only on the width of the well. The
number of nodes in a given energy region turns out to be
proportional to the well width, i.e., if we triple the width,
the number of nodes will triple. This resembles the con-
dition for the zero-field resonances above the well, name-
ly kL =nmw. We can therefore attribute the oscillatory
structure in Ap(E) to the reflections of the wave function
from the well boundaries and from the slope of the elec-
trostatic potential. If there was only one boundary, we
would only get the fast component. Due to the interfer-
ence of the wave functions reflected from two interfaces
we get the slow modulation, which depends only on the
well width.

The interpretation of the structures in the DOS be-
comes easier when we look at the wave functions corre-
sponding to the maxima and the minima of Ap(E). In
Fig. 5 we plot the normalized wave functions correspond-
ing to the energies of the first maxima [solid lines in Figs.
5(a) and 5(b)] and minima [solid lines in Figs. 5(c) and
5(d)] for a 100-A, 100-meV well at the field of 10 kV/cm
[Ap(E) is shown in Fig. 6]. We can see that the wave
functions approximately vanish at the right-hand-side in-
terface (maxima) or at the left-hand-side interface (mini-
ma). Furthermore the comparison with the wave func-
tions corresponding to the same energy value but for
V,=0 (dotted lines in Fig. 5) shows that the maxima
(minima) in Ap(E) correspond to an increase (decrease) of
the probability in the right-hand-side barrier region.
When the wave function vanishes at both interfaces we
get the node in Ap(E) at the corresponding energy and no
change of the wave function in the right-hand-side bar-
rier region [Fig. 5(e)]. This supports the interpretation
given above. It also means that the maxima of Ap(E)
correspond to bound states in a triangular well starting at
the right-hand-side boundary (dashed region in Fig. 1)
and the minima are related to bound states in the poten-
tial starting at the left-hand-side boundary (shaded region
in Fig. 1). This is illustrated in Fig. 6 where the arrows
denote the energies of bound states in the two potentials
mentioned above. The node in Ap(E) occurs when the
arrows corresponding to the two potentials become
aligned. The condition for the node E, can be derived
from the asymptotic formulas for the Airy functions

2
g =\finm) (15)
" 2m*L?

which coincides with the zero-field resonance condition
kL =nm. For higher energies the Airy functions in the
well resemble trigonometric functions—the well bottom
seems flat from high above.

It is interesting to study the low-field limit of the struc-
tures in Ap(E). In Fig. 7 we show the comparison
between Ap(E) for a 40-A, 200-meV well for F=0
(dashed line) and F=1 kV/cm (solid line). We have
checked that the dashed line, which is close to zero in the
considered energy region, represents the average of the
solid one. The electric-field effect resembles the
magnetic-field effect: the average DOS for small fields
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FIG. 4. Change in DOS for electrons (m * =0.067m,) intro-
duced by the well: (a) 100-1°\, 100-meV well at F=20 kV/cm; (b)
100-A, 100-meV well at F=60 kV/cm; (c) 100-A, 200-meV well
at F=20 kV/cm; (d) 200-A, 100-meV well at F=20 kV/cm.
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FIG. 5. Wave functions at different energies for a 100-A, 100-meV well at F=10 kV/cm (solid lines). Dotted lines denote the wave
functions for ¥V, =0 (no well) at same energies. The well region is between the dashed lines. The energies correspond to the first two
maxima of Ap(E): (a) E =124.4 meV, (b) E=138.6 meV; the first two minima of Ap(E): (c) E=117.6 meV, (d) E=131.8 meV; the
node in Ap(E): (e) E=225.3 meV. Note in (e) that the wave functions coincide in the right-hand-side barrier region. The corre-
sponding Ap(E) is shown in Fig. 6.

tends to the zero-field case but locally Ap(E) (even for a  region of the sample. At weak fields the reflection from
very small field) turns out to be qualitatively different. Of  the slope of the electrostatic potential occurs far away
course our calculation is not realistic for very small fields  from the quantum well.

because it assumes coherent wave functions over a large Finally let us briefly discuss the local density of states,
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FIG. 6. Change in DOS introduced by a 100-‘&, 100-meV
well at 10 kV/cm. Black (white) arrows denote the positions of
bound states in the dashed (shaded) potential regions of Fig. 1.

as defined in Eq. (2). It is often believed!® !? that the
study of quantum-well resonances can be performed us-
ing this quantity, with the integration volume () taken as
the region of the well (X <z <X +L). Therefore, for the
case of the 100-A, 100-meV, 10-kV/cm structure (like in
Figs. 5 and 6) we compare in Fig. 8 the local density of
states, evaluated'® for two choices of Q: the quantum-
well region [py (E), solid line] or the right-hand-side bar-
rier region [pp(E), dotted line]. We can see that the re-
sults are very different for the two regions and in both
cases po(E) does not coincide with Ap(E) (plotted in Fig.
6). In Fig. 8 we clearly see the modulated oscillations of
pp(E) in the higher-energy region (around its value for
V,=0), but only small peaks corresponding to quasi-
bound states in the well. These peaks are much more
pronounced in py (E) which, in turn, only shows a small
and not modulated oscillatory structure at high energy.

Ap (meV?)

-1 " - 1 1 N
200 210 220 230

Energy (meV)

FIG. 7. Change in DOS due to a 40-A, 200-meV well at F=1
kV/cm (solid line) and at F=0 (dashed line).
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FIG. 8. Local DOS calculated for the well region (solid line)
and for the barrier region (dotted line). The dashed line is the
local DOS in the barrier for ¥,=0 (no well).

This shows that LDOS is not equivalent to DOS and that
it strongly depends on the choice of the region ).

III. TRANSMISSION RESONANCES

It is interesting to see how the oscillatory structure in
Ap(E) affects the transmission above a quantum well. Of
course, in order to have a nonzero transmission we have
to consider a structure different from the well in a semi-
infinite linear potential; let us consider a double barrier,
shown in Fig. 9. This structure introduces two additional
interfaces, complicating the picture considered in the pre-
vious section. We also realize that the oscillatory behav-
ior of Ap(E) was due to the reflection from the potential
slope above the well. However, in order to have strong

V(z)

ikz e—ikz ik'z

e L L LT T R L PR Y

Vo :

FIG. 9. Potential profile of the double-barrier structure con-
taining the quantum well of depth ¥ and width L in the elec-
tric field of finite range. The wave functions in the two flat po-
tential regions are displayed. The transmission is given by
|t|?k’ /k. The energies are measured from the upper flat region.
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reflection from the potential slope the transmission must
be weak.

In spite of all these limitations, it is possible to see in
transmission the effects we found in Ap(E). We have cal-
culated analytically the transmission for the potential
profile shown in Fig. 9. As we are mainly interested in
the energy region marked by the dotted lines in Fig. 9
(this is where we expect to see the oscillatory structure)
we had to use wide right-hand-side barrier to study a
wide energy region.

In Fig. 10(a) we show (solid line in a semilogarithmic
scale) the transmission probability T(E)=o [t (E)|?k' /K
(the symbols refer to Fig. 9) across a 100-A, 250-meV,
quantum well at F=10 kV/cm. The barriers were
1000 A wide and their height from outside was 100 meV
(we choose V,;=V,). On the same figure we show
(dashed line in a linear scale) the corresponding Ap(E).
Maxima in transmission coincide with those in DOS,
even if the structures in transmission are less pronounced
being superimposed on a very steep slope. A similar
comparison for a 280-meV, 200-A well at 10 kV/cm [Fig.
10(b)] shows that the node in Ap(E) is also present in
transmission.

The transmission peaks, due to the levels in a triangu-
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FIG. 10. Transmission coefficient (logarithmic scale, solid
lines) and the change in DOS (linear scale, dashed lines) for the
following parameters of the structure in Fig. 9: (a) L=100 A,
V,=250 meV; (b) L=200 A V,=280 meV. In both cases
F=10 kV/cm, the barriers were 1000 A wide and their height
from outside was V, =V, =100 meV.
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lar “well,” above the right-hand-side barrier are well
known as the Fowler-Nordheim!® resonances and have
been recently discussed in Ref. 20. Here we show, how-
ever, that in a double-barrier structure we have strong in-
terference effects due to the second interface of the well.
This interference can enhance or destroy the transmission
resonance as shown in Fig. 11 where we compare the
transmission across two double-barrier structures with
different well depths (solid and dashed lines). We can see
that the presence of the well strongly modifies the ampli-
tude of the Fowler-Nordheim peaks although their posi-
tion (with respect to the upper barrier) depends only on
the electric field. The transmission resonances discussed
here are probably the source of conductance oscillations
in the high-voltage region, reported in Ref. 21 for a
multiple-quantum-well structure.

IV. ABSORPTION FROM THE GROUND STATE
TO THE CONTINUUM

Another important quantity that could reveal the
electric-field-induced oscillations is the absorption from

08 r
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Transmission

02 r
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05 T T

(b)

03+

(meV?)

Ap

01+

0.1
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FIG. 11. The effect of the well parameters on (a) the
transmission resonance and (b) on the corresponding Ap(E) res-
onance. Solid lines are for ¥V;=320 meV, dashed lines for
V,=250 meV. In both cases L=200 A, F=10 kV/cm,
V,=V,=30 meV, and the barriers are 300 A wide.
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the ground state in the well to the continuum at higher
energies. Several oscillatory optical effects are known in
bulk semiconductors®? (Franz-Keldysh oscillations) and
in superlattices”® (Wannier-Stark ladders). Here we want
to consider a new type of effect associated with the pres-
ence of the electric field and the boundaries of a single
quantum well.

In order to deal with discrete initial state we consider
the potential profile shown in Fig. 12, i.e., we assume a
finite range of the electric field (the upper limit of the field
is irrelevant). If we considered the potential profile of
Fig. 1 we would face two problems: (i) we would have a
continuum of initial states instead of the discrete ground
state, and (ii) most of the wave functions of the initial
states would be outside of the well, in a big box. For a
linear potential these parts of the wave functions would
give the dominant contribution to the absorption. This,
in turn, would lead to the unphysical dependence of the
absorption on the box size and the quantum-well contri-
bution would be negligible.

All previous calculations of the infrared electroabsorp-
tion in quantum wells?* were performed for discrete ener-
gy levels (including the field-dependent broadening phe-
nomenologically). Here we evaluate the absorption to the
continuum of states and we obtain all the structures in
a(#w) directly. Our calculation is valid for arbitrary field
strength while the previous ones applied only to narrow
Lorentzian resonances.

The momentum matrix element (p,) between the
ground state and an arbitrary “continuum” state can be
determined analytically (see the Appendix) and the oscil-
lator strength can be written as

f=ﬁ )P (16)

Multiplying this by the density of final states we obtain

FIG. 12. Potential profile used for the absorption calculation.
The ground state is bound while the continuum starts at E=0.

3887

the absorption a(#iw) in arbitrary units. We also evalu-
ated a(#iw) separately for the F=0 case.?”> In that case
the box is flat and extends from — 4/2 to 4/2 and the
well is placed in the middle. The transition from the
symmetric ground state only takes place to the antisym-
metric continuum states so that the absorption is “insen-
sitive” to half of the excited states. This is qualitatively
different from the F5<0 case.

Our calculation describes the absorption in a 1D sys-
tem but it also applies to the real, 3D quantum well. The
plane waves describing the motion parallel to the inter-
faces cancel in the momentum matrix element, i.e., the
parallel wave vector is conserved. For parabolic disper-
sion all transitions from the ground subband to the excit-
ed continuum subband occur at the same energy #ow.
Therefore the oscillator strength only has to be multi-
plied by the number of occupied states in the ground sub-
band (assuming the continuum states are free). The sum-
mation over the final states thus involves only a one-
dimensional density of states.

Let us now look at the results for the 60-A, 250-meV
well at F=20 kV/cm [Fig. 13(a)]. For these parameters
of the well there are two bound states at F=0 and the
huge absorption peak at 157 meV is due to the intersub-
band transition. At the energies above the top of the well
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FIG. 13. Absorption (logarithmic scale, solid lines) and the
change in DOS (linear scale, dashed lines) (a) for the 60-1&, 250-
meV well at F=20 kV/cm and (b) for the 25-.&, 250-meV well
also at F=20 kV/cm. The dotted line shows the zero-field ab-
sorption.
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we can see multiple absorption peaks at the same position
as the Ap peaks. The correspondence between a(#iw) and
Ap is also clear in Fig. 13(b) where we plot these quanti-
ties for a 25-A, 250-meV well also at F =20 kV/cm. In
this case there is only one bound state in the well and the
only peaks in the absorption (and in Ap) are those due to
the above-well resonances. There is, however, an impor-
tant difference between a(#iw) and Ap. It consists in the
lack of slow modulation in the absorption, i.e., the nodes
in Ap are not present in a(#iw) (see Fig. 14). This is due
to the fact that Ap is related to the overall behavior of the
eigenstates while a(#iw) monitors the wave functions’ lo-
calization mainly in the well region. For this reason
a(fiw) resembles somewhat the LDOS calculated for the
well region (py, in Fig. 8).

Figure 13 reveals another interesting property of a(#iw)
(not present in Ap); the intensity of the above-barrier
peaks is much higher for the narrow well than for the
wide one. This feature of the absorption to the continu-
um is also present for F=0. It is a consequence of the f-
sum rule; once the first excited state is pushed out of the
well the intersubband transition disappears very quickly
(Fig. 14) and the continuum transitions gain strength. As
long as the excited state remains quasibound, it absorbs
most of the oscillator strength and the multiple-peak
structure at higher energies will be hard to see [Fig.
13(a)]. Let us therefore look at the narrow-well case
again (Fig. 15). The electric-field effect on the absorption
to the continuum is surprisingly strong [compared, e.g.,
with the effect on the intersubband transition—Fig.
13(a)]; the threshold for F=0 is replaced by a smooth in-
crease and a slowly varying curve is replaced by a series
of sharp peaks. The height of these peaks is only an or-
der of magnitude lower than for the intersubband transi-
tion in Fig. 13(a) so they should be observable. The pres-
ence of the peaks is a particularly attractive feature of the
F+#0 absorption because it should allow for the deter-
mination of the depth of the well (band offset), electric
field, and other important parameters.

When the field is reduced, the peaks become denser
and denser, the average of a(#w) tends to the zero-field
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FIG. 14. Absorption for the 45-A, 250-meV well at F=20
kV/cm (solid line) and the corresponding change in DOS (dot-
ted line).
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FIG. 15. Absorption for a 35-A, 250-meV well at F=0 (dot-
ted line) and at F=10 kV/cm (solid line).

absorption but locally even a small field changes a(#iw)
dramatically. We have previously observed a similar be-
havior of Ap (Fig. 7). The zero-field and the finite-field
situations are qualitatively different. Of course our con-
siderations are based on the idealized, coherent picture of
the system; for weak fields our above-barrier states extend
over large regions of the sample. For example, at F=0. 1
kV/cm the first above-barrier resonance decays 1000 A
away from the well. Any scattering in this region will
destroy the coherence and smear out the sharp reso-
nance. In today’s high-quality heterostructures the mean
free path for the vertical transport can be as large as 0.5
um (Ref. 21) but the absorption experiments are usually
performed on multiple quantum wells where the barriers
are at most a few hundred angstroms wide. Therefore, if
we assume the 500-A-wide barriers we can expect to see
several peaks at FX 5 kV/cm. Going to higher field in-
creases their separation and lowers them (Fig. 16). We
can see in Fig. 16 that the envelope of the peaks in a(#w)
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FIG. 16. Absorption for a 35-10\, 250-meV well at two
different fields: 10 kV/cm (dashed line) and 40 kV/cm (solid
line). The white (black) arrow denotes the potential energy 500
A away from the right-hand-side interface for F=10 kV/cm
(F=40 kV/cm).
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is the same for different fields but at lower fields we deal
with sharper and higher structures at lower energies.
The arrows denote the energy values where the next well
appears (for 500- A barriers in a multiple-quantum-well
structure), i.e., they mark the energy range where the
peaks can be observable. It seems that for 500-A barriers
the optimal field would be around 10 kV/cm.

The most important sources of broadening would be
the spread of the well parameters (in multiple-well sam-
ples) and the nonparabolicity, both the one induced by
different masses in the well and in the barrier®® and the
one due to bulk nonparabolicity in the two materials. If
the width of the intersubband peaks is about 10 meV (at
low electric fields) we can expect our structures to be ob-
servable at the fields of a few kV/cm (and above).

The transitions to the continuum are very important
for the infrared detectors based on the quantum-well
structures.”’ Two multiple-quantum-well samples have
been studied in Ref. 27: 45- A wells with 140- é
Aly ,Ga, 3As barriers and 40-A wells with 300-A
Alj 3;Gag ¢oAs barriers. The second sample seems quite
promising as far as the observation of the electric-field-
induced structures is concerned. However, the zero-field
absorption measured on this sample shows a broad low-
energy edge which suggests that there may be some
spread of the well depth in this 50-well sample. Such a
spread could smear out the structures we predicted. It is
also not clear whether or not the excited state is pushed
out of the well in these samples—this depends critically
on the band offset value (e.g., with 70/30 rule the excited
state is still in the well). Further experimental studies are
necessary, both because of the interesting physics of these
phenomena and because of their potential application in
infrared detectors.

V. SUMMARY AND CONCLUSIONS

We determined the change in DOS introduced by a sin-
gle quantum well Ap(E) in the presence of a uniform
electric field F. In the energy region below the top of the
well we obtained the energies and the widths of reso-
nances originating from bound states at zero field. Our
results coincide with those of earlier work.>~* In the en-
ergy region above the top of the well we found modulated
oscillations in Ap(E) due to the reflections of the wave
functions from the boundaries of the well and from the
slope of the electrostatic potential. The modulation de-
pends only on the well width while the fast oscillation is
related to the bound states formed by the triangular po-
tential above the barrier. We demonstrated that the use
of the local density of states can be misleading as it
strongly depends on the region under consideration.

We have then calculated the transmission T (E)
through the double-barrier tunneling structure (in the
electric field) and we found that the peaks in T(E) coin-
cide with those in Ap(E). The transmission maxima are
the Fowler-Nordheim resonances modified by the in-
terference effect. We find that by modifying the width (or
depth) of the quantum well we can destroy or enhance a
given transmission resonance.

Finally we calculated the infrared absorption a(fiw)
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from the ground state in the well to the continuum of
states above and we found sharp structures in a(#iw) cor-
responding to the peaks in Ap(E). The absorption peaks
do not show any periodic modulation and their intensity
is highest for narrow wells with only one bound state.
These sharp structures could be observed in the
GaAs/Al,_,Ga,As multiple-quantum-well system at
moderate fields (about 10 kV/cm) if the barriers are
sufficiently thick (=500 A). Such measurements would
supply additional information about the sample (the peak
positions are sensitive to the well depth and to the elec-
tric field) and they are also important for the applications
in infrared detectors.

We have not considered the interband absorption?®
which should also reveal structures due to resonances at
energies above the top of the well. In this case absorption
will be the convolution of the structures for electrons and
for holes. Due to the higher mass of holes Ap(E) varies
more rapidly for the holes than for the electrons. The
slow-modulation period is also much shorter for holes.
Therefore at fairly high fields (50—100 kV/cm) we can ex-
pect to see mainly the structures due to holes. However,
as we mentioned previously, the correct description of
the holes requires a 4 X4 (or 6 X 6) Luttinger Hamiltonian
and our parabolic, one-band calculation only applies for
k, —0 We found some interesting electroeflectance re-
sults showing the above well structures similar to the
ones we discussed here but the barriers were made of
graded-gap Al Ga,;_,As which complicates the simple
picture we considered.

The electric-field effect on the continuum is much more
pronounced than on the quasibound states. We hope that
our results will stimulate some experimental effort in this
area.
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APPENDIX: NORMALIZATION
AND THE DIPOLE MATRIX ELEMENTS
FOR THE AIRY FUNCTIONS

For an arbitrary solution u(y)=a Ai(y)+BBi(y) of
the Airy equation,

2
(A1)

we can multiply both sides by du /dy and integrate by
parts to obtain

Vb
du

dy (A2)

Y
fy "dy ut(y)= |yu—

Va

We used this equation for normalizing our wave func-
tions and also for the determination of the local density
of states.

For the absorption calculations we needed the momen-
tum matrix element between the ground state and the ex-
cited states. This required the evaluation of the integrals
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) d
fya dyug(y)dyue(y D)
—_4d » _
deyqdyug(y)ue(y D), (A3

where u,(y) and u,(y) are two solutions of the Airy equa-
tion and, from Eq. (12),

1/3
#iw

eF

2m*eF

D= 7

(A4)

Here %o is the energy difference between the ground
state and the excited state. The integral on the right-
hand side of (A3) can be calculated from the following
identity:

WITOLD TRZECIAKOWSKI AND MASSIMO GURIOLI

S

Y
fy dy ug(y)yu,(y —D)
pd
= [, dy u;»)» ~Du,(y —D)

Vb
+D [ Vdy ug(y)u,y —D), (A5)

by using the Airy equation (A1) in the first two integrals
and integrating by parts. We finally obtain

f bd u,(yu,(y —D)=——1 u,(y —D)—u,(y)
Ya YV Uty e D |° Y dy ¢ Y
Vb

d
-—ug(y)—d;ue(y —D) b

(A6)

Equations (A3) and (A6) allow for the analytic determina-
tion of the momentum matrix element.
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