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Unified description of coherent and dissipative electron transport
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We apply the Landauer-Buttiker theory of dc electron transport to a chain of scatterers, which are
coupled to an external heat bath. In this approach, coherent and dissipative transport are treated in a
unified manner, and the suppression of quantum coherence effects for increasing coupling with the heat
bath can be described. In particular, we find that the resonant behavior of the conductance with respect
to the Fermi wave vector disappears gradually with increasing coupling. For intermediate coupling, res-
onance effects are only found for sufficiently small samples. They disappear asymptotically with increas-
ing sample size. The characteristic length for this dephasing effect corresponds to the mean free path,
which is derived from the exponential decay of the transmission coefficient in the presence of inelastic
scattering.

I. INTRODUCTION

Interference effects due to coherent transport have
been observed in rnesoscopic systems with and without
magnetic field. These phenomena can be described in a
very efficient manner by the Landauer theory of coherent
transport, ' which relates the conductance of the con-
sidered system to its scattering properties. The inhuence
of inelastic scattering on the observed interference phe-
nomena like Aharanov-Bohm oscillations, conductance
fluctuations, ' or persistent currents has become an im-
ports, nt issue. In his original work Landauer has in par-
ticular investigated the inhuence of elastic scattering on
the electron transport. Nevertheless, he noticed immedi-
ately that in an open system inelastic phase-breaking pro-
cesses will destroy the quantum coherence and thus lead
to dissipative electron transport. This idea has been pur-
sued by several authors. In an explicit manner, Buttiker
introduced dissipation in a small normal-metal loop by
attaching the loop via a single lead to an electron reser-
voir. This approach has been developed during the last
few years by Buttiker as well as several other authors.
In particular, it has been used with great success for the
interpretation of multiprobe experiments. ' Most re-
cently, D'Arnato et al. ' have discussed the conductance
of ordered and disordered chains in the presence of in-
elastic scattering, where the scattering probabilities are
calculated with a Green's-function method. Datta' has
shown that the Landauer-Buttiker approach is consistent
with a quantum-mechanical description of dissipation by
the interaction of electrons with a reservoir of indepen-
dent harmonic oscillators.

In the present paper we apply the Landauer-Buttiker
theory to a chain of scatterers with elastic as well as in-
elastic scattering channels. In the absence of inelastic
scattering the multiple scattering of the electron states

with Fermi wave vector q leads to pronounced quantum-
coherence effects. Following Biittiker, ' ' '" we intro-
duce a scattering matrix which not only accounts for
elastic scattering within the transport channels but also
for scattering from the transport channels into side chan-
nels. The side channels connect the sample to its envi-
ronment which is represented by a local heat bath or elec-
tron reservoir. Electrons entering the heat bath are rein-
jected into the sample with an arbitrary phase. The
scattering involving the heat-bath channels thus gives rise
to irreversible dephasing. We emphasize that the heat-
bath channels are introduced to describe open systems,
i.e., their presence does not necessarily imply that we add
voltage probes to the chain. This would only be adequate
for the discussion of multiprobe measurements. In other
words, we consider open systems, in which the electrons
everywhere within the sample are coupled with the local
environment. Depending on the considered specific sys-
tem, the coupling may depend on the spatial position.

The transformation of the scattering matrices into
transfer matrices enables us to connect the scatterers in a
straightforward way. For a realistic model of a one-
dimensional conductor between ideal contacts, we consid-
er a finite chain of scatterers and derive its scattering ma-
trix from the overall transfer matrix. The local chemical
potential for the heat bath at each scatterer is determined
from the current conservation conditions. The resistance
can then be calculated in terms of the chemical potentials
and the interchannel transition probabilities which follow
from the total scattering matrix of the chain. As in the
original formulation of Landauer for the fully elastic case
of an isolated chain with open ends at the contacts, the
resistance of the sample can be defined in terms of its
scattering properties. As an example, we use this ap-
proach to investigate the inhuence of irreversible process-
es on quantum coherence in a chain of identical scatter-
ers.
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II. MODEL OF THK GENERALIZED
SCATTERER

We describe the single scatterers by their scattering
matrices, which relate the incoming waves to the outgo-
ing waves. In the case of a single elastic scatterer, we
have to consider two transport channels, 1 and 2. If we
denote the coefficients of the incoming waves in channel i
by c,- and of the respective outgoing waves by c, we ob-
tain

2 l1+2

Ci c)—0
C2

where o is the scattering matrix of a single elastic scatter-
er. For simplicity we suppose the scatterer to be sym-
metric. Then it can be described in terms of the
reAection coefficient r and the transmission coefficient t.
If we place the scatterer at the origin, its scattering ma-
trix is

FIG. 1. Channels of a single scatterer at position n. Cou-
pling with the heat bath: channels 2n +1 and 2n +2. Trans-
port channels: 1,2.

Thus c.=0 corresponds to a completely elastic scatterer
and c= 1 to a completely inelastic scatterer. The scatter-
ing within the heat bath, which is described by ao with

which must be unitary, so that

(2) —t r

In this paper we neglect any wave-vector or energy
dependence of r and t. For our present purposes it is
sufficient to use the simple parametrization

(4)

%'e now introduce a generalized scatterer which allows
for reversible elastic as well as for irreversible inelastic
scattering. In addition to the two channels for the trans-
port, this requires two more channels towards the heat
bath (channels 2n +1 and 2n +2 in Fig. 1). Assuming
that the scatterer is placed at the origin, we define the
corresponding scattering matrix by

is necessary in order to obtain a unitary scattering ma-
trix.

The incoming and outgoing wave functions obey the
translation symmetry of Bloch waves. It follows that a
displacement of the scatterer from the origin to a position
na, where a is the lattice constant, leaves the transmission
coefficient unchanged, whereas the reAection coefficient is
changed by a phase factor. For the reAection in channels
1 and 2, we get

—2iqna
~in

2gqPEQ

2n

For zero temperature, q is equal to the Fermi wave vec-
tor. The corresponding scattering matrix becomes

ar nt 0
at ar p
0 P
P 0 at ar—

0
ar —at

The submatrices pl with

Pl
(10)

where o „and o.„are defined in accordance with Eqs. (2)
and (8) replacing r by r, „and r2„.

0
1 01=

III. CONSTRUCTION OF THE SCATTERING
MATRIX OF A CHAIN OF SCATTKRKRS

couple the elastic channels with the heat bath. The rela-
tive strength of elastic and inelastic scattering is given by
the parameters

For the case of N scatterers within the chain, the di-
mensions of the scattering matrix of the whole chain as
well as that of a single scatterer are given by the total
number of channels within the chain, which is equal to
2%+2—:M (see Fig. 2). If we order the channels as indi-
cated in Fig. 2, the scattering matrix of the single scatter-
er at the nth position becomes
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A A A A
/ X/ X/ X /

I I I I I I I I

For the definition of the transfer matrices T„we have to
distinguish between the waves in the right channels
(2,4,. . . , M) and left channels (1,3, . . . ,M —1):

3 4 5 6 7 8 2N+1 2N+2

C2 C1

FIG. 2. Chain of N scatterers. The labels count the channels.
C2 C1

(13)
czo 0 Pl ~ ~ 1 0 CM —1

Q 1 ~ ~ ~ 0 ~ ~ ~ 0

S =—n 0 . ao.—n 0

0 Q ~ ~ ~ 0 ~ ~ 0 1

C1

We note that the channels to the heat bath at locations
other than na are decoupled from the rest.

We are now in a position to construct the scattering
matrix of a chain of N scatterers. We first have to trans-
form the scattering matrices (11) into the corresponding
transfer matrices of the single scatterers. This transfor-
mation can be derived from the respective definitions:
The scattering matrices relate the outgoing to the incom-
ing waves, i.e.,

T

I
C1

—n —n —n
=T B (14)

with

S21 S22 S23

0 1 0

S41 S42 S43

S24 . S2M

Q ~ ~ I 0

S44 ' S4M

0 0 0 1 0

In order to establish the relation between S„and T„, we
consider Eq. (12) for the M special cases in which only
one channel carries an incoming wave, and determine the
coe%cient vectors of the outgoing waves. Inserting all
coefficients into Eq. (13) yields the matrix equation

C2 C2

(12) 0 0 0 0

CM
where the S;" are the matrix elements of the matrix S„
and

B—n

S11

0
S

S"
0

S32

0

S13

S3

0

S14

0

S34

0

S1M

0
S"

M —1, 1 SM —1,2 ~M —1,3 ~M —1 4 SM —1 M

which has to be inverted to calculate T„ from Eq. (14).
The transfer matrix of the system of N scatterers is

then given by

Ttot T~T~ 1
' T

0

0
t12

0
~32

0

0
t33

0

t14

1

~34

0

0

~3M

Using a similar procedure as for Eq. (14), we obtain the
corresponding scattering matrix from

—tot—S D=C

M —11 M —1,2 M —13 M —1,4 tM —1,M

(19)

with and
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1 0 0 0 0 If we write the chemical potentials as

21 t22 23 24 2M P2„+1=P2+g„(P1—1M2), (24)

0 0 1 0 0
t41 t42 43 ~44 t 4M

tM1 tM2 tM3 tM4 tMM

(20) we obtain for the y„ the following inhomogeneous system
of linear equations:

N

~nolan + X ~nm(Xn Xm ) P1,2n +1+Pl,2n+2
m=1

n =1,2, . . . ,N (25)
where the t,. are the matrix elements of T„,. The scatter-
ing probabilities between the various channels are ob-
tained from Eq. (18) as

(21)

with

~nm +2n + 1,2m + 1 ++2n + 1,2m +2

+I 2n+2, 2m+1+P2n+2, 2m+2 (26)

where s; denotes the matrix elements of S„,. In our case
we get p;. =p; due to the symmetry of the single scatter-
ers. We note that the scattering probability @12 describes
the transmission across the sample.

IV. CALCULATION OF THE RESISTANCE

M

I, =—g p,"(p, —p ), i =1,2, . . . ,M,
j=l

(22)

which is the central result of Ref. 9. The prefactor e/h
arises from the product between the electron charge, the
group velocity, and the density of states at the Fermi en-

ergy, which is multiplied by a factor —, since only elec-
trons traveling in one direction have to be considered for
the current.

The chemical potentials are obtained from the condi-
tions of current conservation which read

The resistance of the chain depends on the scattering
probabilities p;- as well as on the properties of the heat
bath at the scatterers. The latter are speci6ed by the
respective chemical potentials p; (see Fig. 3) and the tem-
perature T. Here we restrict ourselves to the case T =0.
For the subsequent discussion we calculate the resistance
of the total system, i.e., with included contacts. These
are characterized by the chemical potentials p1 and p2, as
indicated in Fig. 3.

The currents within the different channels can be ex-
pressed in terms of the above parameters. Taking into
account that only electrons with energies between p,. and

p contribute to the current between channels i and j, we
obtain

h 1R=
N

P12+ g Xn (P2, 2n +1+P2,2n +2 )
n=1

(27)

According to Eq. (25), the g„depend only on the scatter-
ing matrix of the chain. It follows from Eq. (27) that the
same is true for the resistance, in full analogy with the re-
sults of Landauer for an elastic chain. A similar relation
has been given by D'Amato et al. ' The denominator
can be interpreted as an effective transmission probabili-
ty. It consists of two parts: the contribution of coherent
tunneling p, 2 and the incoherent contribution of elec-
trons which were scattered inelastically.

For an ideal lead, i.e., 5=1 and a=0, we have p12 =1
and p2, =0 for i )2. In this case Eq. (27) reduces to the
contact resistance

R, =h/e (28)

In the case of completely elastic scatterers, i.e., c, =0 but
5&1, this contact resistance causes the difference be-
tween the two Landauer formulas which can be found in
the literature. From Eq. (27) we obtain for the two-probe
resistance, which includes the contacts,

h 1
2
—

2 P12
(29)

From the solutions g„we calculate the chemical poten-
tials, which are inserted into Eq. (22) to determine the
currents. In particular, we need the current in the trans-
port channels which is conserved, so that I1=—I2. As
the voltage difference across the contacts is given by

(p1 —p2)/e, we obtain for the resistance

I2n+1+I2n+2 =0 . (23) By subtracting the contact resistance, we obtain for the
sample resistance

A A
/ X/ X/ X /

I I I I I I I I

Rs R2 Rc
P12

(30)

P3 P4 I7 PS I 2g+) I" 2N+2 H2 V. DISCUSSION OF THE NUMERICAL RESULTS

FIG. 3. Chemical potentials in the chain and at the contacts.
The indices correspond to the channel labels in Fig. 2. Since
each scatterer is connected to a heat bath by two channels, the

respective chemical potentials are identical.

In order to illustrate the method, we present in the fol-
lowing the results for a chain of X identical scatterers.
This simple case is just chosen for convenience. It is ob-
vious that without any additional difticulties, our method
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could equally well be applied to an inhomogeneous chain,
in which the scattering properties depend on the position.

Considering q.'d ' E (27) and the subsequent arguments, i
can be expected that the resistance of the chain is dom-
inate y e ed b the behavior of the transmission pro a i ity

heatp, 2, at least in the limit of small coupling c. to the hea
bath. In Fig. 4 we present an example of its dependence
on the wave vector q for typical values of the parameters.
For vanishing c the interference eff'ects due to multip e
elastic scattering are clearly seen. Increasing ine astic

'
kl 1 ds to a dephasing of the scattered

n 1waves, so that the oscillations in Fig. 4 are strong y
M the overall transmission is reduce

in the presence of the inelastic backscattering. It is in-
teresting to note ae that the transmission probability is very
small for extreme values of the wave vector. This e av-
ior can be interpreted as a band-structure eff'ect, corre-

d' t th occurrence of surface states in a nite
chain. The respective range of q values increases wit in-
creasing e astic sca er'1

' tt ing irrespective of the inelastic
scattering strength. According y, q1 the window or
signi can r'fi t transmission narrows with decreasing 5.

de en-Th b havior can be deduced from the epen-e same e
dence of the transmission probability on the chain eng
as shown in ig. . oF' 5. For large 6, the chosen value o q
f 11 t the discussed transmission window. T e uc-

f rferencetuations with N are again a consequence o. inter. e
eff'ects whic epen, oh' h d d f course on the number of scatter-
ers. For sma we11 6 are outside the mentioned window,
and significant transmission is possib y f t'ble onl for s ort
chains. The transmission probabilities decay with in-
creasing number of scatterers.

The inhuence of inelastic scattering also leads to a de-
cay of the transmission probabilities for increasing chain
length. To study this behavior, we analyze the decay
length A, (N) defined by

p, 2(E,N) =p, 2(e=O, N)exp[ —N/A(N)] .

If the thus defined decay length converges for large X, its

1.0

C5

O
CL

O

0)
E

1.0

G$

O
CL

O
M

E

0.0
I

1
I

10 20
number of scatterers N

I

30 40

FIG. 5. Transmission probability for ar a chain of N elastic
=0 25vr/a. The transmission probabilityscatterers {m=0) at q= . vr a.

5=03 0.5 0.7, and 0.9 (from bottom toof each scatterer is
top).

limit can be interpreted as the inelastic mean free path.
This convergence is shown in Fig. 6. e no e a
elastic mean ree pa epf th d pends also on the elastic scatter-

s ~ ~

ing, because e e e, b th ff'ective number of inelastic scattering
processes increases wiith the reAection probability. We
have also found a strong wave-vector dependence o t e

1 h d the mean free path, which could be ex-
ected as a consequence of the q dependence o e

above-discussed interference and dephasing eff'ects wil
e. This is demon-characteristically inhuence the resistance.

strated in ig. , w eF' 7 here the wave-vector dependence of
t e resis ance

'
h

' t is presented. A comparison wit ig.
nce are deter-shows that the main features of the resistance are e er-

e other scatter-mine y ed b the transmission probability. e ot
e resis-ing pro a iiies w

'
b b'1't hich enter the relation for t e r

nnels dotance [Eq. (27)] and which involve the side channe s o
not give rise to any a i

'
dd tional oscillations but only reduce

the absolute value of R.
~ ~ ~

With increasing inelastic coup ing, tthe resistance in-
or values within the above-described transmis-creases for q va ues wi

of the "surfaceindow and decreases in the regime o e
~ ~

clearl seenstates. " This contrasting behavior can be cle y
from a comparison o igs.f Figs. 8(a) and 8(b) where the depen-

r smalldence of R/N on the chain length is depicted for sma
1 ~ If this uanti-and intermediate values of q, respective y.

'
q

It can be seen from Fig. 8 that the length after which this
1

'
b havior is reached depends strong y1 ont ein-imlting e av

elastic coup ing, an is o1' d of the order of the previously de-
rived mean free path.

0.0
0.0 1.0 VI. CONCLUDING REMARKS

wave vector q (units of 7rla}

FIG. 4. Transmission probability for a ca chain of 10 scatterers
h c =0 0.1, 0.2, and 0.3 (from topfor inelastic scattering strength c =

to bottom). e e a). Th lastic transmission probability for eac
scatterer is 5=0.7.

~ ~ ~

We have demonstrated that the Landauer-Buttiker
h f dc electron transport can easily be app iea lied to at eoryo ce

channels.chain of scatterers with elastic and inelastic c
Starting from Buttiker's model of separate elastic an in-
elastic scatterers, we aveh e introduced a scatterer which
comprises elastic and inelastic scattering in such a way
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that the respective parameters cover the whole range of
coupling strengths. We have shown how the scattering
properties of a chain of these scatterers can be computed.
Our formulation leads to a consistent description of both
coherent and dissipative transport, which not only ex-
plains the essential features of the extreme cases of
coherent and dissipative transport, but also describes the
delicate interplay between interference and dephasing
efFects in the intermediate regime. In particular, we have
been able to make the following observations.

As expected, the elastic coupling leads to strong in-
terferences due to backscattering. These quantum-
coherence effects are gradually suppressed by inelastic
processes. The dephasing can be seen, e.g. , in the behav-
ior of the transmission probability and the resistance.
With respect to their wave-vector dependence, two quali-
tatively different regimes can be distinguished already in
the fully elastic case: Within a certain q window, the size
of which decreases with increasing reflection coefficient
of the single scatterers, transmission is not attenuated
even in the limit of an infinite chain; inelastic scattering

0..0 ~ I I 1
l

I I 0 I
l

I ~ I ~

10 20 30
number of scatterers N

40

10.0—
FIG. 6. Decay length (in units of the lattice constant a) of

the transmission probability through a chain of N scatterers at
q =0.25m/a for a=0. 1,0.2, . . . ,0.9 (from top to bottom). The
elastic transmission probability of each scatterer is (a) 5=0.5,
(b) 5=0.7.

0.0
I I I

10 20 30
number of scatterers N

40

15.0
CD

O
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~10.0
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D
C5

co 50
V)
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1.5

1.0—

Ct- 0.5—

(b)

0.0
0.0

wave vector q (units of m/a}

0.0
I t I

10 20 30
number of scatterers N

40

FIG. 7. Resistance of a chain of 10 scatterers for inelastic
scattering strengths v=0, 0. 1,. . . , 1 (from bottom to top near
the center of the figure). The elastic transmission probability of
each scatterer is 5=0.7. The contact resistance is subtracted.

FIG. 8. Resistance of a chain of N scatterers scaled with the
chain length N for (a) q=0 and (b) q=0. 25m. /a and inelastic
scattering lengths a=0. 1,0.2, . . . , 1 [from top to bottom in (a)
and vice versa in (b)]. The elastic transmission probability of
each scatterer is 5=0.7.
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reduces the transmission probability and accordingly in-
creases the resistance. Outside the window, interference
effects are so destructive that the waves can only
penetrate over a short length; in this range the weakening
of the interference by inelastic scattering increases the
transmission probability, and therefore decreases the
resistance. The length scale of the dephasing is given by
the inelastic mean free path, which is determined from
the decay of the transmission probability with the chain
length. We note, however, that the thus defined mean
free path should not be used to calculate the resistance by

means of the Drude formula, because of the coherent
contributions to the transport.

We believe that the method presented will be helpful
for the study of a large variety of phase-sensitive trans-
port phenomena. In particular, we intend to investigate
the recently discussed oscillations of the chemical poten-
tial. " An interesting extension of the method would be
to include disorder either by randomizing the spacing be-
tween the scatterers or by choosing a sequence of
different scatterers according to some appropriate distri-
bution.
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