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Charge-transfer excitations on a linear chain
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One —and two —electron-hole-pair excitations are calculated for a finite chain by means of a generalized
Bethe ansatz. It is shown that the static Coulomb interaction between correlated pairs reduces the
respective bandwidth as compared to the single-pair excitation. The influence of single-particle overlap
is discussed.

I. INTRODUCTION

Recent progress in material science allows us to design
semiconductor heterostructures on a nanometer length
scale. While this is being achieved with high precision
along one dimension (layered materials), the extension to
two and, in particular, to three dimensions is still in its in-
fancy. '

Structuring in all three spatial dimensions amounts to
introducing a type of custom-made "quasimolecular"
bulk material: Just like "natural" molecular crystals,
these artificial ones will be characterized by a kind of
decoupling of the "molecular" units (in the following,
called "cells") from one another, leading to the well-
known hierarchy of strong intracell versus weak intercell
interactions. However, the cells of the artificial material
tend to be larger in linear scale by more than one order of
magnitude, implying 10 —10 atoms per cell with their
corresponding number of electrons. Comparing with the
few atoms per cell of the more conventional molecular
crystals, such a system might properly be considered
"mesoscopic. " Nevertheless, realizing corresponding ex-
citation conditions and low temperature, the dynamics
will be controlled locally by only a few electronic states
around the Fermi level. Thus, with respect to these spe-
cial conditions, the mesoscopic cell may we11 act even as a
rather simple functional unit, a module.

In the following we will restrict ourselves to three
relevant states per cell: The local ground state ~1), the
metastable state ~2 ), and the transient state

~
3 ) (see Fig.

1). The centers of charge of state ~1) and ~2), respective-
ly, are assumed to be separated by distance R. One such
cell without inversion symmetry can be regarded as a
minimal model for an optically controlled bistable quan-
tum system (a switch). As this switching process is ac-
companied by charge transfer, the Coulomb interaction
between adjacent cells could be exploited for the realiza-
tion of a quantum control system capable of information
processing. The challenge of such systems—
investigated up to now in the form of theoretical feasibili-
ty studies —consists in the quest for microscopic (or
quantum) control as opposed to macroscopic control
realized, e.g., in conventional optics or thermodynamics.

Despite the mesoscopic scale of the individual cell, the
bulk material is supposed to be periodic (length of period-

icity d) so that Bloch's theorem applies: The true eigen-
states should be delocalized. On the other hand, the
modular nature of information representation rests upon
localized eigenstates. Discrete localized states are, furth-
ermore, prerequisites for optical control in frequency
space: broad bands tend to render "microscopic" control
impossible. Though this could be achieved to any degree
by means of appropriate "spacer" material between the
active cells, the interaction between the cells required for
information processing (in the form of a cellular automa-
ton ) severely interferes with this localization condition.

It is the purpose of this contribution to investigate the
interplay between intercell interaction and the resulting
excitation spectra. It will be shown that these interac-
tions are not only responsible for the broadening of states
but that under certain conditions they may even reduce
the appropriate bandwidths: due to small coherence
length the dynamics of narrow-band excitations does,
indeed, call for a local description (hopping transport).

II. MODEL

We consider N three-level systems (cells) on a linear
chain with periodic boundary conditions (see Fig. 1). It is

assumed that in the ground state each cell has an electron
in level 1. A di6'erent cell geometry but also with respect

~R~
2

FICz. 1. Three-level systems with charge transfer on a linear
chain; d is the intercell distance, R2 the intracell charge-transfer
distance as defined in Eq. (1).
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N

total Hintra + inter g Hl +
2 g Hl, l'

1=1 1, 1'= 1

{1&1')

(2)

The interaction term within a cell, 8;„„„wi11be of no in-
terest here, as it leads only to a local energy shift. The
Hamiltonian for the interaction between two cells reads
in the nearest-neighbor approximation (l'=l+1; elec-
tron, e; hole, d)

H, =H U', +H",+H",+8", .1, 1' l, l' l, l' l, l' l, l'

In this case spin effects are neglected and only processes
conserving the energy and the number of particles are
considered. The screening due to the material environ-
ment will be included by means of a phenomenological
dielectric constant e in the Coulomb law.

H describes the one-particle interaction, resulting
from the wave-function overlap of two equal states but in
different cells:

H ~
= g U&i;& +U didi, .

i =2&3
(4)

H", H ", and P'", finally, refer to the two-particle
Coulomb interaction between two electrons, two holes,
and one electron and one hole, respectively:

II"= ~ddd"'d i'.d, .d, ,

Q ee — ~ Weep t
1, 1' ~ ij l, i 1',j 1',j l, i

1&J —2, 3

+ 2 Fij + l, i~i',j ~l', i~lj
1&J =2, 3

{iwj)

H 1= ~~ F Q 1 &l.d(dl
i =2, 3

to charge-transfer excitations has been considered by
Petelenz.

The excitation-induced charge transfer within a cell is

R, =&jlxjI& —
& llxI1&, j =2, 3 .

R. may be called the intracell electron-hole distance in-
troducing a dipole moment Rj Ie (e is the electron
charge) with respect to the ground-state charge distribu-
tion. We assume, for simplicity, R 3 =R2/2.

Exciting a cell, which means creating an electron-ho1e
pair (only one pair per cell shall be possible), thus leads to
a dipole moment (charge-transfer exciton) because of the
different localization of the respective one-particle wave
functions. Coupling the cell via dipole-dipole interac-
tion, in addition to single-particle overlap, we expect op-
tical nonlinearities and bound pair states.

Assuming that the distance d between two cell centers
is much greater than R z (d ))

R 2 ), we get a hierarchy in
the interaction energies, and the total Hamiltonian can be
separated as follows:

omitted. The indices i,j =2 3 denote the electronic ener-
gy levels in each cell, &,d are the Fermi operators for
electron and hole creation, respectively. U, U", 8'"",
8"', 8"",8'. ', F,"', and F "are the respective interaction
matrix elements in the nearest-neighbor approximation.

It is convenient to distinguish between the static
( W"", W ', W ", Wid') and the dynamic (F,",F ") Coulomb
interaction. The latter can be seen in analogy to the so-
called Forster interaction in molecular physics by which
the excitation of a molecule is able to travel along the
chain.

%'e have to distinguish between 8""and 8'"' because,
in general, the distances between electron-hole and hole-
electron of neighboring cells are different, R'"=—d —R,
while R '= d +R (see Fig. 1). The ratio between the
static and the dynamic Cou1omb interactions in our mod-
el can be varied, as far as the dipole moment within the
cells can be adjusted.

A macroscopic realization of such a hierarchical struc-
ture model appears possible either based on semiconduc-
tor material or with organic macromolecules. '
Structuring a semiconductor material (quantum dot) on
nanometer scale seems to be more promising in the near
future due to the large amount of technological know-
how of the microelectronics of today. These complex
molecular systems offer a wealth of possibilities, but usu-
ally suffer from incomplete characterization. '

III. ANALOGY TO SPIN-2 SYSTEMS

For a preliminary investigation we reduce our Hamil-
tonian, Eq. (2), to a two-level chain (ij =2) and neglect
the overlap term 8 . The interaction matrix elements
are defined as before but without the indices (i,j); ele-
ments F,J' do not occur in this case.

We introduce exciton-creation and -annihilation opera-
tors, "obeying for small particle numbers a Bose commu-
tation relation,

8 l .'= midi, ki .'=disci
to get from Eq. (2) the exciton Hamiltonian

N N—y Fed8 +
~8 y ( Wdd+ W«)8 +g

1=1 1=1
N

+y (Wdd+ W"—W'"—W ')S+ 8 8+8
1=1

For comparison we take the anisotropic spin Hamiltoni-
an (short-range Heisenberg exchange interaction) for X
atoms of spin —, on a linear chain with periodical bound-
ary conditions in an external magnetic field Ho in the z
direction to be'

N

HMasn
—2J g IS lS l+, +(1—a)(S lS l+, +S lS i+, )]

1=1

~ed
X ~ l, i~i, id I'dl'+ Wde

l =2, 3 i l &l'.

N

pago QSi ~

1=1

As there is but one local hole state, its index 1 will be where Siv+, =S, . J is the exchange integral (J(0, fer-
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Comparison with the exciton Hamiltonian, Eq. (6), im-
plies the identification

1
( Wdd+ Wee Wde Wed)

2

Fedcx= 1 ~dd+ ~ee ~ed prde

~ed+ grde

(9)

The constant terms in Eq. (8) can be ignored.
From the definition of a with 0 ~ n ~ 1, we deduce the

condition

O~F' /(W"+W —W' —W ') 1

for the parameters of the excitonic system to have the
same results, especially with respect to the bound states,
as in the magnetic case. For the general case of three-
level systems we restrict ourselves in the following to
~ed & 0 and ~ed+ ~de ~ee ~dd & 0l I J &J

In analogy to the calculation for the spin- —,
' chain based

on the Bethe ansatz, ' '' we obtain, observing Eqs. (9),
the exact energy eigenvalues of the linear two-level chain
for an n —electron-hole-pair excitation in the nearest-
neighbor approximation (n ~ X):

~Exc(k k k ) n ( Wed+ Wde Wee Wdd)

romagnetic case; J )0, antiferromagnetic case), pii is the
Bohr magneton, g is the g factor. For the anisotropy pa-
rameter +=0 we have the isotropic Heisenberg interac-
tion, and for o.= 1 we have the pure Ising interaction.

We now transform to creation and annihilation opera-
tors S +,S,defined as

S,—:=S,+iS~,
which obey Bose commutation relations, but with the re-
striction that it is not possible to have two or more spins
at the same place (hard-core bosons' ):

N

HM, s„=2J g ( —,
' —S,+S, +S,+S

i S,++,S,+, )
1=1

N
+J(1—a) g S i+S i+,

1=1
N

p~gHO—g (S i+S i
—

—,
'

) .
1=1

IV. ANALYTICAL RESULTS FOR PURE
COULOMB INTERACTION

In this section we want to study the dispersion relation
of three-level systems on a linear chain in the case of pure
Coulomb interaction, still neglecting the overlap term in
Eq. (3). This assumption allows us to restrict ourselves to
intracell pair excitations. Taking the time-independent
Schrodinger equation with the total Hamiltonian, Eq. (2),
and

~
n ) to be the wave function of n electron-hole excita-

tions:

A. One-pair excitation

For the one —electron-hole-pair excitation in a periodic
structure we get with

C =C eiK1
Ij 0

the following dispersion relation:

EK . =E'."cosK, (14)

where the band index j =2, 3 denotes the local electron
levels. For periodic boundary conditions, cl =cl+N, we
require k, +kd ——K =2mn /N, with n =0, +1,+2, . . . .

B. Two-pair excitation

With the convention

1+n &n'+N

to avoid double counting in Eq. (12), the secular equation
is now

the eigenstates can be written as a coherent superposition
(one exciton is at cell l, the electron being in the local
state j, another exciton is at I', the electron in j', . . .):

3

cii . . . (a ijd i)(d i, d ti. ) . ~0),
l, l', . . . =1 j,j', . . . =2

( 1&l')

(12)

where ~0) is the vacuum state. Equation (11) is then re-
duced to an algebraic system of equations for the
coefficients ciji, . . . (secular equation).

+F' g cosk; .
i =1

(10) n' —n, i ij nn'ij Fi ( n + in'ij n —in'ij

Here and in the following k will be given in units of d
We see that the width of the energy band in the k space is
determined by the matrix element of the Forster interac-
tion while the static Coulomb interaction introduces only
an energy shift. The wave vectors k; will be complex, in
general, to cover all possible states: For k, real, we have
uncorrelated excitons (continuum states), for k, imagi-
nary we get bound states (compare the so-called magnon
bound states' ) with lower energy. Those states can be
interpreted here as states of neighboring electron-hole
pairs, for which the Coulomb interaction leads to an en-
ergy lowering.

ed
j (Cnn'+ iij nn —iij'

where D, is defined as

ed+F, (c„„, ,+, jc+„„,, ),

c0nij cnNj i and cnN + 1ij c 1nji

couple Eq. (15) with (16).

Wed+ Wde Wee Wdd Fee(1
1J J V &J &~J

The boundary conditions

(15)

(16)
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Taking Bloch's theorem for the eigenvectors of a sys-
tem with translation symmetry, the coe%cients c„„;.
satisfy the following expression [with respect to Eq. (18)]:

8)
82

F()(k) D—,je"
—F()(k)+D, e" (32)

ika
Cn +an'+ aij e Cnn'ij (19)

Cn+1Vn +.Nj
—

Cnn iJ (20)

to k=(2vr/N)m, m =0,+1,+2, . . . (N values).
To simplify notation, we introduce the efFective Forster

matrix element Fo(k) and the wave number ko(k) by

The wave number k is constrained by the periodic bound-
ary condition

Solving Eqs. (32) and (29) numerically for fixed m ' and k,
we, finally, get the relative wave vector sc.

In general, m' is arbitrary, which means ( —1) =+1
in Eq. (29). In the case of two-level systems m' has to be
m'=kN/2m and thus leads to only half the number of
eigenstates possible in the three-level chain. This means
that for the (2,2)- and the (3,3)-two-pair bands we have
,'N(N——1) states, while for the (2,3) band we have
N(N —1) states.

!(Fed+F derek)
—.F e 0i (k/2 —k )

J I 0 (21) C. Results

where

k sink
ko(k) =——arctan F'"/F-'"+ o k

!(Fed +Fed +2FedFedcosk)1/20 2 j I J (23)

which is solved by a Bethe ansatz

ik /2( n + n' )i g —«( n' —n ) +g n( n ' —n )
)Cnn' 2e (25)

The energy calculated with Eq. (25) then reads [compare
with Eq. (10)]

Ek =F'"(cos(k/2+is)+cos(k/2 ia)) . —

In analogy to this special case we now make a general-
ized Bethe ansatz to solve the eigenvalue problem Eqs.
(15), (16), with (18) for i':

ik/2(n +n') —i(ko+m)(n' —n r ~ —rt(n' —n)
Cnn'ij e' e

e«(n —n))'
iP ik/2(n+n') +'( 0+~ " " —~(n' —n)e LB)e

(27)

n(n' —n )
) (28)

With the expressions (27) and (28) introduced into Eq.
(18) we find

B)
KN( 1 )m'

B2
(29)

Let us first consider the case of two identical electron-
hole pairs, which means i =j (as for a two-level system).
Equations (1S) and (16) can then be reduced to

(E+5„„,D)c„„.=F'"(c„+,„+c„,„,+c„„+,+c„„,),
(24)

For a finite chain of N = 11 cells the one- and two-pair
excitations are shown in Fig. 2(a) for static Coulomb in-
teraction D;~ =0 and in Fig. 2(b) for D22=D23=D33 =5,
the interaction matrix elements being F2 = —1,
F3 —5. Here and in the following all energies are
given in units of IF2 I. The position of the energy bands
is arbitrary because of neglecting the respective excita-
tion energies within the cell [see Eq. (2)]. The width of
the single-pair energy band (j) is determined by the
respective Forster matrix element F~'": b (~)

=2
I FJ' I.

For the spectrum of the two-pair excitations (ij), we
have to distinguish two cases with respect to the parame-
ter D;, where D; stands essentially for the static
Coulomb interaction [see Eq. (17)], the electron of one ex-
citon being in the state i, the electron of the other in the
state j (i,j =2, 3):

For D; =0, we have only continuum bands of width
b, (,")=2IF,' +F' I, corresponding to uncorrelated
electron-hole pairs. They belong to imaginary solutions
of Eqs. (29) and (32) for the wave vector a.

For D; &0, an energetically lower energy subband
separates from the continuum, which can be interpreted
as being due to correlated adjacent electron-hole pairs;
this case corresponds to real ~'s.

The energy shift with respect to the continuum is con-
trolled by D, This result can be interpreted as a non-
linearity, because creating a further exciton from a one-
pair excitation we have the possibility of ending up either
in a bound or in the continuum state, and for each case
we need a diferent transition energy.

The width of the subband is calculated to be
5(, .

)
= [(F,"") +(F' ) ]/D; . It is interesting to note that,

compared to the respective single-pair bands, A(,J) is
compressed by a factor [(F ") +(FJ ) ]/D;~ F(J). For ex-.
ample, 5(2 2) is smaller than 6(2) by a factor 2F2 /D22

According to the quantum dot model, proposed and
described in more detail in Ref. 7, we estimate the param-
eters as follows:et)=[k/2 ko(k)+m]N+vrm—' . (30)

Ek = —2FO(k)cosia . (31)

Requiring that this result holds also for n '= n + 1 gives
the constraint

If this ansatz is put into Eq. (15) for n'Wn +1 (i.e.,
without the D;, term), we find for the eigenvalues

E23,E&3=1 eV, E&2=10 meV,

IF"I=10 6 meV,
U'= U'= IF"I .

For R 2 = 10 nm, d =50 nm, D;. is dominated by the static
contributions and typically amounts to D, . =10 ' meV.



3833S ON A LINEAR CHAINCHARGE- TRARANSFER EXCITATIONS
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—E(k)/k~ T
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i.e., a coherence length

I, =A, d~/"I/7r . (36)

e'"' '' (k k')p(z, z') =— e p
k
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= 2 "k T )
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process (with a hopping time r=h/b, ) rather than as a
coherent wave: the hopping time for correlated pairs is
significantly reduced.

/n)=
I m, . . . =1 j j',

I', m', . . . =1

3

c«j j . . . (a, ,d, . )

V. TWO-PAIR STATES:
INFLUENCE OF OVERLAP

In order to calculate the eigenstates of the total Hamil-
tonian (2), we have to take into account the complete
state space:

X(a jd ) . ~O) . (3&)

Again we solve the secular equation in the case of two-
pair excitations, but now numerically because the Bethe
ansatz does not work any more.

Based on the notation introduced before, the secular
equation is now

—Tref im rr«
Cnn imm''j Ui(en+1n'imm'j+Cn —1n imm''j )+ ~j 'Cnn'im+1m'j +Cnn im —'1m'j)

~ Trd(+ (Cnn'+ limm'j+Cnn' —limm'j+Cnn'imm'+ ij +Cnn'imm' —1j )

+c„„.; ~ [5„,W"+5„,W —W;"(6„,+5„„,)
—W 5,—W"'(6„. , +6,) —W;"'6„.„,]

ed ed+ ~n, n'~m, m'[Fi ( n +1n' +limm'j + n —In —lim' m'j ) j ( nn'im +1m'+ 1j + nn'im —]m' —]j ) j (39)

with the boundary conditions to be satisfied:

nn'iN+1m'j 1n'jnm'i

On'imm'j Cmnj'Nm'i

nn'imN+ 1j n 1imn'j
(40)

VI. SUMMARY

The true eigenstates of the three-level system with
charge transfer on a periodic linear chain should be delo-

nOimm
'j nm 'imNj

Equations (39) and (40) have been solved numerically by
matrix diagonalization for a finite system of X =6 cells.
The resulting discrete energy eigenvalues are shown in
Fig. 3, where the parameters are taken to be8'"=8'""=5 E' = —1 I, ""= —S, with
U2(3) U"=—U=O and U =3, respectively, and increas-
ing dipole moment R

~ e~ ( W,."'= W""/[(d +R; )/d j,
W =W /[(d —R;)/d], see Fig. l). We see that if R is
large enough we will get a separate, energetically lowered
bound-state subband even in the case of finite overlap.

calized Bloch states. However, the intercell interaction
(static and Forster-Coulomb interaction) leads to a
separate energy band in the two-pair-excitation spectrum,
which splits oA the continuum band caused by the
Forster term. This lowered energy subband is due to
charge-transfer excitons, correlated by the static
Coulomb interaction. The width of this band, 6, is
compressed as compared to the respective single-pair
band. Therefore the corresponding thermal state is
characterized by a reduction of the coherence length I„
and the local picture required for the information-
processing system tends, indeed, to be valid, on a time
scale small compared with the hopping time, r=A'/b, .
Exciting the system, which means creating a further
electron-hole pair, causes the excitation energy to depend
on the distribution of existing charge-transfer excitons,
thus giving rise to optical nonlinearity. These results
remain valid even in the presence of single-particle over-
lap.
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