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Optical properties of a two-dimensional electron gas: Evolution of spectra from excitons
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The evolution of the absorption and emission spectrum from an exciton to a Fermi-edge singularity as
a function of a quasi-two-dimensional electron-gas density is examined. Band-gap renormalization,
screening, shake up of the Fermi sea, and the effect of the finite hole mass are included. The real-time
response of the Fermi sea to the creation and annihilation of the hole in the valence band is treated non-
perturbatively. The time evolution of the self-energy and vertex corrections is shown to be governed by
a set of nonlinear differential equations, which allows for a very efficient numerical solution. The effect
of the finite hole mass is to wash out the Fermi-edge singularity in absorption.

I. INTRODUCTION

An absorption of a photon in a semiconductor creates
an electron in the conduction band and a hole in the
valence band. The interacting electron hole pair forms
an "atomic" exciton. The absorption spectrum is propor-
tional to the density of states of an exciton, with a dis-
tinct peak, corresponding to the bound state of the exci-
ton, shifted below the continuum be the exciton binding
energy Eb. If N free carriers are present in the conduc-
tion band, the absorption process involves correlation of
the hole with N+1 electrons. When the number of car-
riers N is small, the electron and a hole form atomic com-
plexes. For example, with only one electron in the con-
duction band and a localized hole, the lowest excitonic
transition would be lowered by the energy 2Eb —U,
where U is the Coulomb interaction energy between two
electrons in a bound exciton state. When the number of
particles 1V is large enough to think of the ground state of
electrons in the absence of the hole as the Fermi sea of
electrons, Mahan' has shown that the absorption spec-
trum develops a singularity at the Fermi energy. We
study here how the spectrum evolves from that of an
atomic exciton to the Fermi-edge singularity as a func-
tion of free carrier density in quasi-two-dimensional sys-
tems. The quasi-two-dimensional systems are of special
interest because the Fermi energy EF for a typical carrier
density is comparable to the atomic exciton binding ener-

gy Eb. In GaAs for carrier density n = 5 X 10"cm, the
Fermi energy EI; is approximately 20 meV, i.e., it is equal
to the two-dimensional (2D) exciton binding energy Eb
(for infinite hole mass). Such densities are obtained in
gated heterojunctions, modulation-doped quantum
wells, and double-barrier resonant-tunneling structures,
for which absorption and emission spectra as a function
of carrier density have been extensively studied.
Theoretical interpretations are either qualitative or
incomplete. They either include model interactions and
dynamical response of the Fermi sea, ' or static screen-
ing and band-gap renormalization but no response of the
Fermi sea. ' Neither approach gives both the line shape

and position of the spectrum. We incorporate band-gap
renormalization, screening, and dynamical response of
the Fermi sea to study the absorption and emission spec-
trum as a function of carrier density. Our approach fol-
lows the Combescot and Nozieres (CN) (Ref. 10) exact
formulation of the x-ray absorption in metals.

II. THEORY OF ABSORPTION

An exact expression for the absorption spectrum for
the localized hole (with infinite mass) in a noninteracting
gas of fermions was derived by CN, ' subsequently
rederived by Ohtaka and Tanabe, and generalized to in-
clude approximately finite hole mass by Unoyama and
Sham.

The starting point for calculation of the absorption
spectrum are the initial-state H, and final-state Hf Ham-
iltonians. The initial-state Hamiltonian describes
noninteracting quasiparticles in the conduction subband
with single-particle Hamiltonians t;, a quasiparticle ener-
gy spectrum ek, and single-particle states ~k ). The ener-

gy spectrum ek includes approximately electron-electron
interactions via static self-energy: the "Coulomb-hole"
term and screened exchange. The final-state Hamiltonian
describes th@ kinetic energy T of N+ 1 quasiparticles, in-
teraction energy with the valence hole via a screened
Coulomb interaction V, and the valence hole Hamiltoni-
an h [H=T+V(rt, )+h(rh)]. Screening of the valence
hole potential is assumed to take place instantaneously. "
The dynamics of the switching-on of the valence hole po-
tential during absorption process is then incorporated in
the Mahan-Nozieres-DeDomininicis (MND) Hamiltoni-
an:

H= g ekakak+ g Vk'q, aj, ak cqcq + g hqcqcq .
k k, k', q, q' q

Here ak creates a conduction-band quasiparticle in a
state ~k ) with energy ek, cq creates a valence hole in a
state ~q ) with energy hq, and Vg'kq. scatters the electron
from state ~k) to state ~k'), while the valence hole
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scatters from state Iq) to state Iq'). The absorption
spectrum at zero temperature is related to the real-time
current-current correlation function A (t):

iE,.tA(t}= g Mk qe
k, k', q, q'

X (q' ((0, lak )e ' '(a„'lo, &)e lq &M„, ,

A(t)= g Mk q. (ile' 'akcq. e '
'akcqli)Mkq . (2)

k, k', q, q'

Here Mk q
=P„,( k

I q ) are optical-transition matrix ele-
ments, I'„ is an interband momentum matrix element,
and (klq) is the envelope wave-function overlap be-
tween the electron and hole states. The envelope wave-
function overlap between the electron and hole states as-
sures that only s angular-momentum channel contributes
to absorption. The initial state i ) is the ground state of
the system prior to the absorption of a photon. It is a
product of the ground state of X electrons IO; ) and a vac-
uum for the hole. We can rewrite Eq. (2) as

where the initial-state energy E; is the ground-state ener-

gy of N quasiparticles in the absence of the hole. Follow-
ing Combescot and Nozieres, ' we go back to first quanti-
zation and define the state I'k)=aI, IO;) as a Slater
determinant of N+1 electrons occupying N lowest states
in the Fermi sea (states p with p (kF, where k~ is the
Fermi wave vector) and one state Ik ) above the Fermi
surface. The second step is to separate the Hamiltonian
H into the X+ I electrons part T+ V(r~ ), which is the
sum of single-particle Hamiltonians, describing electrons
scattering of the hole potential, with the hole localized at
rl„and the hole Hamiltonian h (rh ):

iE,. t —i[T+ V(rh )]tA(t)= g Mk, e ' (q' (gk e " S(t) Pk&lq)Mkq
k, k', q, q'

(4)

BS(t) . +l[T+ V(r~ )]t —i [T+ V(rh I}t= —ie hr, e h

Bt

with an initial condition S(0)=1. Inserting a complete
set of states l+&) q) of the operator T+h for the hole

and N+ 1 electrons into Eqs. (4) and (5) gives the final ex-

pression for the absorption:

A(t)= g M„q.M„qe ' g Fg, ) (t)S$1', (t)
P, q"k, k', q, q'

+ i [T+ V(rh )]t —I [T+ V(rh )+h(rI, )]t
where the S matrix S(t)=e " e
describes the propagation of the hole in the electron sys-
tern and satisfies the equation of motion:

III. ABSORPTION FROM THE LOCALIZED STATE

We first consider a special case when transitions in-
volve only a single strongly localized valence hole state

I qo ) . Such a state can be associated with an acceptor im-
purity in a quantum well, or potential fluctuations in the
width of a quantum well. With this assumption, the sum-
mation over all intermediate states I'Il ) in Eq. (7) can be
carried through exactly, and the S matrix has a very sim-
ple form

S~ I,"(t)=Sp „e

By bringing the valence hole to the origin, one can show
that matrix F separates into a time-dependent part corre-
sponding to the scattering of electrons by the valence
hole localized at the origin and a static form factor:

with the S matrix satisfying equation of motion

S$„' (t)= i g F—$
' ( —t)h Fq' ~ (t)S „' (t) .

a, a', q', q"'

We have defined the F and S matrices as follows:

Fkq', ')"(t)=
& q'I & pk le

"
I Wt3& lq" &

s$"kq(t) =
& q"

I & @&Is(t}Igg, & Iq & .

Hence the calculation of the absorption spectrum is re-
duced to the calculation of matrix F.

'
k —k'

x(qole ~ Iqo) (10)

where Fk k (t) is the probability that the (%+1)-electron
system, initially with one electron above the Fermi sur-
face in state Ik'), can be found at a time t measured from
the switching on of the valence hole potential at rI, =0, in
the state with N electrons in the Fermi sphere and one

7

i(k' —k")rh=Fk I, (t)&q'le "q"
& .

The real-time current-current correlation function A (t)
is finally given by a CN formula:

iE,. t
—ih t

A(t)= g M~Mke ' e Fk k(t)
k, k'& kF
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electron in a different state
I
k ). Fk k.(t) can be expressed

in terms of a single particle matrix elements pp p. ..

Fk k (t)=e ' '"
0'k k(t) g—0'k~(t)(% ')~~p~, k,(t)

cancels the direct term so there is no response for fre-
quencies lower than the chemical potential. The self-
energy corrections C(t) and vertex corrections G(t) satis-
fy a set of nonlinear dijj"erential equations:

y„„(t)=&kIe " ' 'Ik'&,

p,p
C}

Gk k. (t) = —iEkGk k (t)+i QGk k, .(t)Ek..Gk„k, (t),at /II

(13)
where h (0) is the single-electron Hamiltonian in the pres-
ence of a valence hole potential at the origin, and y ' is
the inverse of the matrix yt ~ with p,p'&k~. The first
te™{exp[ iC(t—) ] =Det(P) ) describes the response of X
electrons to the switching of the valence hole potential
and represents the dynamical self-energy of the valence
hole. The second term corresponds to the vertex correc-
tions and describes the scattering of the optically injected
electron above the Fermi sphere. The first term in the
vertex corrections y& & corresponds to a direct scattering
of the electron above the Fermi surface by the valence
hole potential, while in the second term the scattering is
mediated by electrons inside the Fermi sea via exchange
processes. Note that the CN formula for absorption in-
volves only single-particle states k, k ' unoccupied in the
initial single-particle basis.

The numerical calculation of the time evolution of the
current-current correlation function A(t) is nontrivial
due to Anderson orthogonality and infrared divergencies,
i.e., singularities in the long-time behavior of the system.
The long-time behavior in the CN formu1ation involves
invertions of large matrices y, , or a solution of a set of
singular integral equations. ' An alternative approach to
a similar class of problems in terms of differential equa-
tions has been proposed by Schonhammer and Gunnar-
son. ' The formulation in terms of differential equations
is implemented in this work in the final single-particle
basis IA, ), where states IA, ) and energies Ek are the eigen-
states and eigenvalues of the single-particle Schrodinger
equation h(0)IA, ) =Ek IA, ). To obtain the CN formula we
neglect the wave-vector dependence of the hole density
[the last term in Eq. (10)]. Using the identity'

pk k (t)= gk (kIA, &e
"

~&XIk &, the definition of
the matrix F~ ~. in the final basis as F~ ~.= gk k (k Ik)Fk k (A, ' k'), and the definition of the
effective matrix element mk = gk) k Mk ( k Ik, ), the for-

F
mula for absorption [Eq. (11)] in the s channel of the final
basis can be written as

a «t) =2 X &kGk, k(t»
Bt

with initial conditions Gk k (0)= gk (k ( A,
I
k ) ( k

I
&).

The initial condition contains the information about the
filling of phase space prior to absorption (phase-space
filling).

In Eqs. (12) and (13) absorption involves an electron
with a spin opposite to the given spin of the hole. Hence
vertex corrections involve exchange processes with only
one spin component of the Fermi sea. All electrons
respond to the appearance of the charge of the hole and
both spin components contribute to the hole self-energy
and screening. Hence the factor of 2 in the equation for
C(t).

The overlap matrix elements ( k IA, ) between the initial
and the final states are solutions of the Wannier equation
with attractive, screened electron-hole interaction:

k'
(14)

The spectrum E& contains bound and scattering states.
These states are built out of all plane wave states, empty
and occupied. Only s states are retained as they give a
finite overlap with the hole localized at the origin. The
bound state for an attractive potential in two dimensions
always exists, irrespective of the form of the potential. '

Since the effect of free carriers is to screen the interaction
the bound state exists for all carrier densities. This con-
clusion remains true even when exchange and correlation
are accounted for. ' By contrast, in three dimensions a
finite strength of the potential is required to bind a parti-
cle, and bound are not expected to play an important role
for sufficiently high densities of free carriers.

The quasiparticle spectrum e& is modified by the
Coulomb hole term and screened exchange terms due to
the repulsive electron-electron interaction:

iE t
—ih t

A(t)= g mme
' e 'Fk k (t)mk ek= +—g(Vkk Vkk ) g Vkk

A k, , b S (15)

Fk, k (t) =e"'"[&kk
—Gk k (t)]e

(12)

In Eq. (12) all final single-particle states contribute to the
absorption spectrum at a given time. This is to be con-
trasted with the original CN formula [Eq. (10)] which ap-
pears to suggest that only empty initial electron states ap-
pear to play a role. The actual strength of each final-state
contribution is determined by the time evolution of the
self-energy and vertex corrections. The vertex correction
contribution from the states below the chemical potential

where the bare interactions Vk k =2m.e /eoIk —k'I and
the screened interaction Vk k, = Vk k /e( Ik —k'I ) are
given in terms of the dielectric function e:

e(Ik —k I)=1+
a, Ik —k

I

(16)
' »f

I
k —k'

I
& 2k, ,

1 —+I —2k'/Ik —k'I if Ik —k'I »kz .
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Here ap is the bulk effective Bohr radius, ep is the static
dielectric constant, and m is the electron mass.

IV. ABSORPTION FROM THE VALENCE BAND

We now consider a hole in a valence band with energy
spectrum h =Pi q l2mh and a plane-wave basis of states
~q). For a hole originating from the valence band, the
static Coulomb hole self-energy of the valence state has
to be included in the band-gap renormalization. This is
done by removing the factor of —,

' in Eq. (15). With only
direct transitions allowed the transition matrix element
gives waVe-vector conservation ~k q ~k 5q k The
main task is to calculate the F and S matrices approxi-
mately. Recall that the F matrix contains all scattering
processes for the localized hole while the S matrix de-
scribes the propagation of the valence hole as it drags
with it excitations of the Fermi sea. This can be done in
a systematic way by expanding all intermediate excited
states of the (N+1)-electron systems in terms of states
with the specific number of electron-hole pair excitations
of the Fermi sea. We first demonstrate the results for the
no pair excitation spectrum. In the first step the com-
plete space of excited intermediate states of the (N+1)-
electron system is restricted to the set of states with N
electrons in the Fermi sea and one electron occupying a
state ~kp) above the Fermi surface: ~gp)~~/» ). Next

P
we define the final basis of electronic states as the basis
for a hole localized at the origin. Note that this is not an
excitonic basis, but rather an impurity basis. After prov-
ing the identity F» „". "'(t)=

& y» le "+""'ly»-)
=F»».(t), the equation of motion for the S matrix in the
final basis can be obtained from Eq. (7). Substituting this
result into Eq. (6) and transforming all quantities into the
final basis as in the localized hole case, we arrive at the
absorption spectrum in the final single-electron basis:

iE,. t —itE
A (t) =e ' e ' g mi (0)F&».(t)mi. (t) . (17)

Equation (17} differs from the localized hole result, Eq.
(12), by the presence of a time-dependent transition ma-
trix element m»(t). This factor mutes the infrared singu-
larities in the absorption spectrum. It satisfies the equa-
tion of motion:

mi (t)= i g [5i—p —6& p(0)]hp (t)m*(t) . (18)
a
Bt

P, a

The effective time-dependent hole Hamiltonian h in the
final basis is given by

hp (t)= g Fpttr(t)hp F (t) . (19)
P', a'

The matrix F is given by Eqs. (12) and (13). Hence the
time evolution of the hole is determined by the time evo-
lution of the electron system via the time dependence of
the electron response function F. The strength of the ap-
proximate formula for the absorption is that it repro-
duces exactly the infinite mass result, Eq. (12), when we
neglect the hole kinetic energy and identify the hole
energy with the band gap Eg. When there are no free

carriers in the conduction band, vertex corrections
vanish (G»» =0), the matrix F has a form
F» &.(t)=5i i exp( it—E» ), and an effective hole Ham-
iltonian takes on a simple form h p(t)
=exp(itE }h pexp( itE—p). By going into the excitonic
basis one can now demonstrate that the correlation func-
tion A (t) in the absence of free carriers reduces to the
single electron-hole pair (exciton) solution. Clearly, while
the approximate formula for absorption appears to inter-
polate between the two exactly known results, the only
way to test it is to include higher-order excited electron-
hole pair intermediate states.

V. EMISSION SPECTRUM

The main dif6culty is the calculation of the ground state
~f ). Of course, when a single localized state is involved,
the ground state is the Slater determinant of bound and
scattered single-particle states ~A, ). The calculation for
the localized hole has been carried out by CN in the basis
of scattered states. We note that again it is best to do the
calculation in the final basis for emission, i.e., plane-wave
states

~
k ) . The result is now very similar to absorption:

E(t)= gM e e 'e ' '"e "G»», (t)M».
k, k'

(21)

where Ef is the ground-state energy of the (N+1)-
electron system in the presence of the hole potential, and
G»» and C(t) are vertex and self-energy corrections.
Note that the summation is over all plane-wave states, ir-
respective whether they are occupied in the final ground
state or not. Which single-particle states contribute is
solely determined by the dynamical vertex correction.
Again, a set of nonlinear differential equations describes
the time evolution of the vertex G»» (t) and self-energy
C(t) corrections:

G»».(t)= —iE»G»». (t)+i gG»»"(t)E»-G»- » (t),a k"
(22)

C(t) =2 +E»G»»(t),
k

with initial conditions G»», (0)=g«» & k
~
g ) & g

~
k ) .

Hence the filling of phase space in the initial basis enters
via the initial condition. The Fourier transform of E(t)
gives emission as a function of frequency
E(co)=2Re Jo dt e '"'E(t).

After absorption of a photon the (N+1}-electron sys-
tem and a hole relax to the lowest energy state

~f ). The
stimulated emission spectrum involves the emission of a
photon with simultaneous annihilation of a valence hole
and one of the electrons from the conduction band. It is
given by a correlation function E(t) [ diferent from ab-
sorption A (t)]:

E(t)= g M», &fle'"'a»c, e ' 'a»c, If )M», ,
k, k', q, q'

(20)
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VI. RIGID-FERMI-SURFACE APPROXIMATION

The dynamical response of the Fermi surface, i.e.,
dynamical vertex and self-energy corrections, makes cal-
culations of the optical properties dificult. Hence the
rigid-Fermi-surface approximation is commonly used.
We shall discuss its validity for the localized hole case.
Let us start with absorption Eqs. (10) and (11). The ab-
sorption of photon corresponds to injection of a carrier
into empty states lk& above the Fermi surface. In the
rigid-Fermi-surface approximation one neglects the
response of all other electrons, except for instantaneous
screening of the hole potential. This means we neglect
the vertex corrections G(t) and the self-energy correction
C(t)=E; cancels the ground-state energy of the initial
state E, The absorption Az(t) in the rigid-Fermi-
surface approximation is given by the scattering of an in-
jected electron by the hole potential in the subspace of
empty states of the initial basis:

destroys an electron in an occupied state and a localized
hole. The missing state below the Fermi surface is a
"hole" in the final-state basis. All states lA, & for Ei, )p
are holes in the conduction band. Hence interband emis-
sion corresponds to the injection of an additional hole
above the Fermi surface of holes. ' We now freeze the
Fermi sea of holes, and consider only a response of an ex-
tra hole to the switching-off of the valence hole potential.
The final result gives a simplified formula for emission:

+ gE +1th
E (r)= pl@ l'e

'
e

(26)
1t

= g M, &aim&,
A, &A,F

where the matrix elements & A,
l
m & satisfy a generalized

Wannier equation in a final basis:

Ei&~lm &+

A„(t)= y Mk&kle '"' "lk'&M„.
k, k') kF

(23)
A, '(A, F

with E~,E~ & EF . (27)

—ith

(r) = pip I'e (24)

The single-particle Hamiltonian h (0) (including the lo-
calized hole) operates only in the subspace of empty
states of the initial Hamiltonian. By diagonalizing h(0)
in this subspace, a simple formula for absorption is ob-
tained:

This approximation gives resonant states above the Fermi
energy. If only one 1s state is occupied prior to emission,
the photon energy is increased by the exciton binding en-
ergy in this approximation, while for the exact solution
the photon energy is reduced by the binding energy.
Clearly, an exact solution is again necessary for low car-
rier densities.

where g is related to the Fourier transform of exciton
wave function in real space g =gk & k Mk & k

l
m &. The

F
exciton states &klm & (Mahan excitons) are built out of
empty plane-wave states in the initial basis and are solu-
tions of the generalized Wannier equation:

e&kklm &
— y &klVlk'&&k'lm &=E &klm &

k'& kF

with k, k') kz . (25)

The lowest Mahan exciton state evolves in a continuous
way from a bare exciton state in the absence of free car-
riers to a bound state below the Fermi surface. When the
density of free carriers is high and the hole self-energy
has been added by hand in Eq. (24) from Fumi's theorem,
Eq. (24) provides a reasonable approximation. However,
the continuous evolution of the Mahan exciton toward
the atomic exciton as the density of carriers is lowered is
clearly an artifact of the rigid-Fermi-surface approxima-
tion, and should be rejected. The notion of unbinding of
excitons in a Fermi sea is clearly unfounded in view of ex-
act results presented earlier. We also point out that exci-
tons in the rigid Fermi sea do not satisfy exact sum
rules' and should not be used for extracting carrier den-
sity from, e.g., absorption spectra. Mahan excitons de-
scribed here are often used in calculations of absorp-
tion. '

Let us now discuss Mahan excitons for emission. In
emission, we start with electrons occupying bound and
scattered states

l
A, & for Ei (p. The emission process

VII. RESULTS

Numerical results for emission and absorption are ob-
tained in three steps. First the Wannier equation [Eq.
(14)] for s states is solved on a finite set of energy levels
with Gaussian weights. Energy is measured in bulk Ryd-
bergs. We have found that typically a cutoff in energy of
48 Ry and a set of 100 points yielded a reasonable conver-
gence for a few of the lowest eigenvalues and eigenvec-
tors. Next the initial conditions for G& &. and effective
matrix elements m& are constructed. We find that 6& z
is almost diagonal for eigenvalues lower than the Fermi
level except for the significant overlap of the bound state
and states in the vicinity of the Fermi surface. G& &. be-
comes very small for states above the Fermi surface. The
matrix elements m& are significant for the bound state,
are very small for occupied states, and show a drastic in-
crease as we cross the Fermi level p. The relative weight
of the bound state versus the states at the Fermi level
changes with density of free carriers. This is shown in
Fig. 1, which illustrates m & as a function of energy Ez for
E~=1,2, 4, 8. We shall use the Fermi energy of free car-
riers Ez =k+/2m as a convenient measure both of carrier
density and implicitly of the Fermi wave vector kF. The
Fermi energy E~=2mnao Ry is directly proportional to
the density of electrons n. It is to be distinguished from
the Fermi level p which is the energy of the highest occu-
pied quasiparticle state.

The time evolution of the emission and absorption
spectrum is then calculated using a standard Runge-
Kutta routine. The spectra are calculated over a finite
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FIG. 3. The dependence of the absorption threshold ct)&,

highest occupied level p, the bottom of the band, and bound-
state energy E„as a function of Fermi energy E~.

higher energy part follows co&, while the lower frequency
part develops a step at frequency co3=co, —(ek —eo), cor-

responding to the bottom of the single-particle band.
Finally, we turn our attention to the effect of a finite

hole mass on the absorption spectrum. For small carrier
density the effect is mainly to renormalize the exciton en-

ergy and wave function. For higher carrier density, finite
hole mass leads to the destruction of the Fermi-edge
singularity. The absorption spectrum for EF=8 Ry and
hole masses: mi, =1000m, mh =10m, and mi, =4m (ap-
propriate for GaAs) are shown in Fig. 5. While the
Fermi-edge singularity is visible for a very heavy-hole
mass, it becomes shifted toward higher energies and
broadened as the mass decreases. This case corresponds
to an ultraclean two-dimensional electron gas in GaAs
quantum wells. We note that the rigid-Fermi-surface
(ladder) approximation with finite hole mass leads to a

FIG. 5. The absorption spectrum for valence-to-conduction-
band transitions for E+=8.0 Ry for two different ratios of the
hole to electron masses: mI, = 1000m, mz =10m, mI, =4m. The
effect of the finite hole mass is to remove the excitonic enhance-
ment at the Fermi energy. The dashed line shows the absorp-
tion when vertex corrections are neglected (but the same shift as
the heavy mass case is retained). We see that vertex corrections
give rise to the enhancement at the Fermi energy and remove
transitions to occupied states.

logarithmic divergence at the Fermi energy and a weak
bound state below the Fermi energy. ' Hence the ladder
approximation predicts an enhancement at the Fermi lev-
el, while our approximation does not. We are inclined to
believe that the enhanced absorption in the vicinity of the
Fermi level observed experimentally is due to hole locali-
zation. This is supported by the fact that no Fermi-edge
singularity was observed in extremely clean GaAs quan-
tum wells. ' The absorption spectrum shown in Fig. 5
contains the static Coulomb hole self-energy contribu-
tions to the valence hole energy, and is measured relative
to the bare band gap.

VIII. SUMMARY
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FIG. 4. The emission spectrum for a localized hole for
different Fermi energies EF= 1,2, 4, 8. Note that the position of
the peak coincides with bare exciton transition at Eb = —4 Ry.

We have used a Combescot and Nozieres approach to
develop a numerically tractable method to calculate low-
temperature absorption and emission spectra of
modulation-doped quantum wells involving localized
holes. The calculation takes into account band-gap re-
normalization, static screening, and dynamical response
of the Fermi sea. We show the evolution of the spectra as
the Fermi energy is varied over a wide range when com-
pared to the exciton binding energy. The absorption and
emission spectra are pinned to the Fermi level in the con-
duction band. However, when the hole self-energy is in-
cluded, the position of the actual emission (absorption)
line falls close to the bare excitonic transition. Hence,
the net result of correct treatment of dynamical self-
energy and vertex corrections are spectra which resemble
closely an asymetrically broadened exciton line. Addi-
tional information is available due to the second peak
structure in the absorption spectrum. The second peak is
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due to the bound exciton state. %'hen carrier density in-
creases, absorption spectrum evolves into a blue-shifting
Fermi-edge singularity while the emission spectrum be-
gins to resemble the single-particle density of states in the
conduction band, with enhancement at the Fermi level.

The effect of the finite hole mass is to wash out the
Fermi-edge singularity. For parameters corresponding to
the high-mobility GaAs quantum wells, no enhancement
at the Fermi level is expected.

The major shortcoming of our approach is the neglect
of dynamical screening and mutual interaction of local-
ized electrons. The static treatment of electron-electron

interactions in the absence of the hole gives a reasonable
description of extended states and band-gap renorm. aliza-
tion. It is however insufficient to treat the bound state in
the final basis. The more realistic treatment of electron-
electron interactions, finite hole mass, and finite tempera-
tures should be investigated in the future.
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