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We study, in the v=1 quantum limit, the spin- and the charge-density excitation spectra of
electrons confined in a parabolic quantum well in a strong magnetic field applied perpendicular to
the electron gas. The electron-electron interaction is treated in the Hartree-Fock approximation.
The inter-Landau-level dispersion relations show similar features with those calculated for a two-

dimensional electron gas. On the contrary, for the intra-Landau-level charge-density excitations we

found that, as the thickness of the electron layer inside the well increases, the dispersion presents a
soft mode. From this we conclude that, as the two-dimensional density of electrons in the parabolic

well increases, the system undergoes a phase transition, probably to a charge-density-wave state.

I. INTRODUCTION

The ability to grow selectively doped semiconductor
structures has made possible the study of the proper-
ties of two-dimensional electron-gas (2DEG) systems. In
particular the study of the 2DEG in presence of a strong
magnetic field applied perpendicular to the electron layer
has led to the discovery of the integer and fractional
quantum Hall effects (QHE's). The integer QHE can
be explained using an essentially one-electron analysis.
However, the explanation of the fractional QHE is not
possible in the framework of noninteracting electrons. It
was needed to introduce the concept of incompressible
quantum liquid in order to explain the fractional QHE.

A three-dimensional electron gas (3DEG) in presence
of a strong magnetic field is also expected to show in-
teresting and exotic properties. Depending on the
strength of the magnetic field, different kinds of bro-
ken symmetry ground states have been proposed. One
can expect a spin-density-wave (SDW) ground state
at moderate magnetic fields, and a charge-density-wave
(CDW) ground states s or a Wigner crystals s at high
magnetic fields. Unfortunately, in the three-dimensional
doped semiconductors, the interaction between the elec-
trons and the neutralizing charged impurities is so strong
that it precludes any experimental observation of any hy-
pothetical broken-symmetry ground state in the SDEG.9

In remotely doped semiconductors structures, the elec-
trons are spatially separated from the dopant atoms, and
this reduces the electron-charged impurity interaction.
Thus, in order to study the properties of a 3DEG under
a strong magnetic field, it seems more likely to follow the
evolution of the states of a quasi-2DEG under a strong
magnetic field when additional degrees of freedom, as-
sociated with the third dimension, are introduced. This
third dimension has been introduced into the problem
in differents ways: by means of a periodicity (superlat-
tice) in the third dimension, io by fabricating a double
quantum well, or by growing a wide parabolic quan-

turn well. ~2

Stormer et a! irep. orted measurements of the integer
QHE in GaAs-Gai Al As superlattices structure when
a magnetic field is applied perpendicular to the electronic
layers. The electronic spectrum of this superlattice ex-
hibits dispersion relation in the three spatial directions.
In this experiment the value of the Hall conductance is
interpretedio as 2e /h per layer. In the same kind of
layered systems, and in presence of a strong magnetic
field applied perpendicular to the electronic layers, Mac-
Donald, Oji, and Bryant found that, in the Hartree-
Fock approximation, the electron-electron interaction fa-
vors the localization of the electronic charge in individual
quantum wells and hence, the interactions drive a transi-
tion from three- to two-dimensional behavior as the elec-
tron density is increased. This could explain the experi-
mental observation of the integer QHE in superlattices. io

Boebinger et a! ihave st. udied the QHE in a high-mo-
bility double quantum well and they have observed that
as the barrier thickness between the two wells increa-
ses, the plateau corresponding to the Hall resistance!i/e2
is destroyed. Calculations in the Hartree-Fock approxi-
mation and in the single-mode approximation find
that the double-quantum-well system undergoes a phase
transition, probably to a CDW state as the distance be-
tween the wells increases. This phase transition has been
proposed to be responsible for the destruction of the
integer QHE in the double-quantum-well structure. ii

The purpose of this paper is to study in the strong
magnetic-field limit, the energy spectrum of a quasi-
2DEG as a function of the thickness of the electron layer.
In order to change the layer width we are going to use
wide parabolic quantum wells (WPQW's). Remotely-
doped WPQW have recently been proposed~ i7 as a sys-
tem where the transition between high-mobility quasi-
2DEG and quasi-3DEG can be realized. Poisson's equa-
tion implies that a parabolic potential Vq(z)=Az~ is
equivalent to the potential created by a uniform slab
of positive charge of three-dimensional density no
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Ae/2xe~, where c is the electron charge and (. is the di-
electric constant of the system. Electrons, which arise
from donor impurities located away from the well, enter
the well and screen this fictitious background, forming a
uniform layer of thickness ns/no, where ns is the two-
dimensional density of electrons in the system. In this
way it is possible to design heterostructures where a thick
()2000 k) slab of electrons exists in practice.

Those WPQW's have recently been growni by chang-
ing quadr atically the aluminum concentration in a
Al Ga~ As heterostructure. Magneto-optical experi-
ments have shown that the system holds a uniform
slab of high-mobility electron gas. Both the integer and
fractional QHE have been observed in WPQW's. Sha-
yegan ef at. 2o found that in the WPQW's the fractional
QHE collapses as the thickness of the electron layer in-
creases. This eKect was explained theoretically by He et
al. as an eAect of weakening of the short-range compo-
nent of the electron-electron interaction. In addition, the
WPQW system in the presence of a moderate magnetic
field applied parallel to the electron slab, has been pro-
posed as a system where a SDW instability, characteristic
of a 3DEGy can occur.

In this paper we restrict our study to the calculation
of the electronic properties of a WPQW system in the
presence of a strong magnetic field, applied perpendicu-
lar to the electron slab and corresponding to the filling
factor v=l. We are going to treat the electrons in the
Hartree-Fock (HF) approximation. First, we calculate
self-consistently the eigenstates and eigenvalues of the
normal state of the system and from this, the excitation
spectrum. By normal state we mean a uniform distribu-
tion of the electron charge in the plane perpendicular to
the growth direction.

The excitation spectrum of this system is obtained
from the poles of the response functions of the system.
To find the response functions we use the self-consistent
approximation discussed by Kallin and Halperin and
independently by MacDonald. 2 The poles of the spin-
density response function give the energies of the spin-
density excitations (SDE's) and the poles of the charge
density response function those of the charge-density ex-
citations (CDE's). In this framework, t'he existence of
soft modes indicates that the system undergoes a phase
transition.

This paper is organized as follows. In Sec. II we de-
scribe the approximation we use in order to obtain the
energies and wave functions of the normal state of the
WPQW. In Sec. III we introduce the formalism used in

I

order to obtain the CDE and the SDE spectra. Sec-
tion IV is dedicated to show our results, and we conclude
with a summary in Sec. V.

II. ENERGIES AND WAVE FUNCTIONS

In this section we calculate self-consistently in the HF
approximation the self-energies and wave functions of the
normal state of the WPQW.

The electrons are treated in the efI'ective-mass approx-
imation, they are characterized by an efI'ective mass m*
and an eAective Lande factor g'. These parameters, g*
and rn*, take the band efI'ects of the host semiconductor
into account. We do not include in our calculations the
variations of the effective mass and the effective Lande
factor across the well. Also we take the dielectric func-
tion of the host semiconductor as constant. In the ac-
tual WPQW's, 2 i 2O these quantities have only a small
variation from the center to the edge of the well and in-
cluding this variation in the calculation does not produce
qualitative changes in our results. Also omitted from
the calculation are the nonparabolicity of the conduction
band and the band-mixing efI'ects induced by confine-
ment. We take the z direction as the growth direction
and assume translational invariance in the z-y plane as
a consequence of our efI'ective mass approach. The mag-
netic field is applied in the z direction and we choose the
Landau gauge, A=(0, Bz, 0). Under these conditions and
using the fact that in the normal state the (z, y) part of
the single wave function is the same in the HF approxi-
mation as in the case of independent electrons, the en-
ergies and wave functions of the normal state in the HF
approximation take the form

ik y@„;i„, (r) = ~e' ~"y„(z kyl2)P", , (z—)ls,), (I)

s~ i 8 = (D + 2) 54J~ + E~ ~ (2)
Here I is the linear sample dimension, y„are the ortho-
normal eigenstates of the one-dimensional harmonic os-
cillator, s, is the z component of the electron-spin varia-
ble (+z), ls, ) is the spin-wave function, u, = eB/m'c
is the cyclotron frequency, and E = ghc/eB is the mag-
netic length. The energies do not depend on ky, and
therefore there is a degeneracy 1,2/2+12 of each level
which is associated with the difI'erent possibilities of loca-
ting the center of the one-dimensional harmonic oscilla-
tor. In Eqs. (I) and (2) P,", and E,", are the orthogonal
solutions of

l.
-y's B"+ V.( ) + VH( )1 &.", ( ) —) ( '»")~-,- (~)

n', P,q

d»V(~ lz —»I)&,"...(zi) &."...(») &,"'„,(z) = E,",,P,"...(z) (3)

In this expression p~ is the Bohr magneton, Vo(z) is
the man-made potential, V~(z) is the Hartree potential,
q is a two-dimensional wave vector in the z-y plane, S„„l
is given by the following expression,

2

+...(e) = fd*"'*v-(*)~.(~)

and V(q, lzl) is the Fourier transform, in the z-y plane,
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of the interaction potential between the electrons. In
our case the electrons interact by means of a Coulomb
potential screened by the dielectric constant of the host
semiconductor, so that

In Eq. (3) v(n, i, s, ) is the filling factor of the state
characterized by the quantum numbers (n, i, s, ); these
coefficients are chosen so that they verify the following
conditions: (i) the maximum value of v is unity, (ii)

1
n~ —— V n, 2, 8z

2X/2
A)C)Sg

and (iii) the total HF energy of the system

+ +

ET = ) v(n, i, s, ) s„;,,+ lP,
". , (z)l Vo(z)dz

A)$)Ss

g Pgy BSz (7)

is minimized. The filling factor of the system v is equal
to the sum of the filling factors v of the states.

The Hartree term due to the electrostatic interaction
of the electrons with themselves and with the impurity
charges is obtained from

[n(z) —ND (z)]

where ND(z) is the actual density of positive charge, lo-
cated away from the well, necessary to mantain charge
neutrality, and n(z) is the electron density

n Z =
2

V n)2)8z . Z

A)$)Sg

In Eq. (3) the last term of the left side corresponds to
the exchange self-energy, and V~(z) corresponds to the
direct term of the self-energy. In Fig. 1(a), the diagram-
matic representation of the self-energy corrections in the
HF approximation is shown. In the case of wide quan-
tum wells it is very important to take into account the
direct term of the self-energies; for WPQW's this term
is responsible for the existence of a thick slab of electron
gas 27,28

The calculation process consists of finding the filling
factor v(n, i, s, ) which minimizes the total energy, Eq. (7)
of the system, and then obtaining the energies and wave
functions. We remark here, that besides the HF and the
eR'ective-mass approximations, another extr a assumption
we use in Eqs. (1)—(9) is that the charge and the spin are
uniformly distributed in the z-y plane, in other words
that the system is in the normal state.

FIG. 1. Diagrammatic representation of the approxima-
tion used in this work for the calculation of (a) the self-energy
and (c) the vertex function. In (h) we show the scheme of the
single-particle Green's function.

modes of the system in the presence of a strong magnetic
field applied perpendicular at the electronic slab. The
poles of the response functions represent neutral excita-
tions of the system.

The charge-density response function has the form

y p(z, z', q, ~) = i dh—e' '([p(q, z', t), p+(q, z, 0)]),
0

where () denotes quantum-mechanical and thermal av-
eraging and p(q, z, t) is the Heisenberg representation of
the density operator

N

) e'~" b(z;),

III. RESPONSE FUNCTIONS
AND COLLECTIVE EXCITATIONS

In this section we describe the formalism we use in or-
der to obtain the response function and the excitation

where r; = (z, , y;, z;) is the position operator of the ith
electron and N is the total number of electrons in the
system.

In the same form the spin-density response functions
are
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Xny (z) z ) q, 4J) = i— ([trk(q ', t), y(q, , o)])
are the Heisenberg representation of the spin operators

N

2 ) e'~ 'b(z;) S;,

y, (z, z', q, ~) = i— dt e'"'([o., (q, z', t), o+(q, z, 0))),

(12)

where a'p = (o'~ 6 io'y)/~2 and o (q, z, t) = (a'~, cr„, a'z)

where S; is the spin angular momentum operator for the
ith electron.

Assuming Chat the system is in the normal state, the
response functions only depend on the modulus of q, and
the charge-density and spin-density response functions
can be written in terms of the vertex functions I'l' and
I' as

»(z z' g ~)=
2 g ).).C..(z)&*"',".(z)F, (O, g)(s!le~Is.), , j I'.",.(z', g, ~),

~l A CK

where A=p, o, , or ay and 8~=1, 0 .=2S, , and 0 ~=2', f is the Fermi distribution function and the label n
stands for the Landau level n, the band index i, and the spin index s, , e.g. , n = (n, i, s, ). The function F„„I is
defined as

for n' ) n, and for n' ( n is obtained using the identity F„„~(q) = F„', „(—q). In the last equation I„(z) is a
generalized I aguerre polynomial.

We treat the response function in the framework of the self-consistent HF approximation as we did before in the
calculation of the self-energies. We keep only the terms which correspond to a single exciton present at all times,
neglecting terms with two or more excitons present. With this rule, in the self-consistent HF approximation, the
vertex part of Eq. (13) satisfies the following integral equation:

r.",.(z', &, ~) = F„„(O,g) y,", (z') 0,",', , (z')(s, lO„+ls', )

&(& -) —&(& )
II (z g 4J) [g~ ~III ~l ~II (g) v~ ~ill ~ll ~l (g)]—E'.~II + Q~~I I ~ I I I

where

g (q) = b„, b, , ) e "-' ', F„„(q')F„„(—q')
q/

X dZ1
I II I III

dz2 e " "P,", (zi)P;, , (zq)g,", (zs)P,"„,. (zq)

and
2

v. .„,.„., (&) = b. .. b. . ., , F„„(O,-g)F„,„(0,q)

X 8zl
I II I II

dz2e " " P";, (zq)P,"I, (zy)P,"Ii,»(z2)4,"I,I(z2).

The diagrammatic representation of Che vertex func-
tion I is given in Fig. 1(c). The term in the ver-
tex function proportional to v~ »I ~1 ~11 [last term in
Fig. 1(c)] represents processes where the electron and
the hole annihilate each other at one point in space and
one electron-hole pair is created simultaneously at an-
other point. The term proportional to g~ II& II I [sec-
ond term in Fig. 1(c)] describes the Coulomb interaction
of the excited electron and hole. This term is neglected
in the random-phase approximation (RPA), which only

includes terms proportional to v ~I« ~I ».
We should mention here that the HF approximation

neglects any kind of screening of the Coulomb interaction
by the electron gas. This approximation is exact to first
order in the expansion parameter, which typically is the
interaction energy divided by the minimun energy gap.
In the work of Kallin and Halperin, in a 2D system in
the strong magnetic-field limit, the expansion parameter
was small and the use of the HF approximation was jus-
tified. In WPQW's and for integer values of v, the gap



3776 LUIS BREY

energy is comparable to the interaction energy and we
are less confident in using this approximation. A higher-
order approximation is quite di%cult and most probably
would give qualitatively similar results. Then we keep
working in the HF approximation.

The dispersion relations of the collective excitations
of the system, &u(q), are obtained from the poles of the
response functions which, as seen in Eq. (13), coincide
with those of the vertex functions and, as deduced from
Eq. (15), correspond to the eigenvalues of the matrix

(s I —s )p~sli 1$ ii + [f(s lii) —f(s I )]

x [g~ ~ill ~i ~»(q) —p~ ~iII ~« ~ (qI)]. (18)

The character of each excitation, spin, or charge density,
can be obtained from the structure of the corresponding
eigenvector. From Eq. (18) we see that the excitation
energies of the system are shifted from the difference in
energies of the electron and the hole by the Coulomb
binding energy (g term) and by a RPA energy (v term).
This RPA term does not appear in the SDE's, where the
electron and the hole have diferent z component of the
spin. It is not possible for an electron-hole pair with
antiparallel spins to recombine through the Coulomb po-
tential, in a RPA-like process as those which appear in
the CDE's.

Due to the magnetic field, the expected value of the
diA'erence vector position of the electron and the hole of
an exciton of wave vector q is E2q x z, where z is a uni-
tary vector in the z direction. Then, an exciton with a
very large q coresponds to a pair where the electron and
the hole are separated by a large distance, so that the
electron-hole interaction is very small. Thus the exciton
energy in the q ~ oo limit should be equal to the dif-
ference between the energies of the independent electron
and hole.

The consistency of the HF approximation we are us-
ing can be checked by looking at some long-wavelength
excitation energies. Independently of the shape of the
man-made potential Vp(z), and of the number of elec-
trons in the system, we should verify Kohn's theorem, 29

that when the wave vector of the exciton is zero, there
is a CDE with energy exactly equal to h~~. Also we
should get, in agreement with Larmor's theorem, that,
in q = 0, the lowest SDE energy is ~g*pI3B~. When the
confining potential has a parabolic form, we also should
obtain that, at q = 0, the energy of one of the CDE's has
the value huo, where ~0 is the bare harmonic-oscillator
frequency of the quadratic potential.

IV. H.ESULTS

In this section we are going to show our results for the
case of a parabolic potential and in the strong magnetic
field limit v=1. The parabolic potential is characterized
by a bare harmonic-oscillator frequency uo,

Vp(z) = ~m'~pz (»)
As mentioned above, classically the electrons trapped in
the well distribute themselves in a uniform layer of den-
sity

2

(2o)

and thickness ns/np
In order to describe the experimentally used

Gaq Al As WPQW's we take m*= 0.067, e=l2.5, and
g*=0.44. In our calculations the background of positive
charge, ND(z), consists of two layers of equal density,
200 A. thick and located symmetrically 2200 A. from the
center of the well. We have checked that, for reason-
able choices of the parameters, our results are insensi-
tive to the precise location of the positive charges. All
the calculations, unless we say otherwise, have been per-
formed for a parabolic potential characterized by an en-
ergy h~o ——2.92 meV. This value of ~o describes the curva-
ture of some WPQW samples. ~2 Regarding the magnetic
field, it is varied when changing ng so that a11 the results
correspond to the v=1 quantum limit (B = 2mnshc/e).

A. Energies and wave functions

In the v=1 quantum limit, v(n)=0 for all n, except
for the lowest-energy state. From the calculation of the
HF total energy, Eq. (7), we have checked that in this
limit the ground state is spin polarized'and the occupied
state corresponds to the quantum numbers (0,1,+). In
the following we are going to denote the value of the z
component of the spin by +, corresponding to the values

1
2
In Fig. 2, the variation of the energies z„;,. as a func-

tion of the two-dimensional density of electrons in the
system n& is shown. In Fig. 2(a), we show the energies
corresponding to states with the same spin as the occu-
pied state, and in Fig. 2(b) the energies corresponding to
states with spin Ripped with respect to the spin of the
occupied state. As commented at the end of the previous
section, the diA'erences of energies shown in Fig. 2 corre-
spond to the energy of a exciton where the electron and
the hole are infinitely separated and they cannot inter-
act, that is, to the long-wave-vector limit of the collective
excitations of the system. Then, the lowest gap in Fig. 2
is responsible for the plateau v=1 in the QHE.

From Fig. 2 we see that in a parabolic potential with
h~o ——2.92 meV and for densities corresponding to elec-
tron layers wider than 700 A. , the lowest gap energy cor-
responds to transitions where the spin is not Ripped. The
lowest energy transition always corresponds to an intra-
Landau-level excitation. Note that due to the exchange
self-energy, the smallest gap in the HF approximation
is much larger than would be obtained in the Hartree
approximation. Since this gap is responsible for the
plateau v=1 in the QHE, we conclude that in the normal
state, even for very large electron thickness, it is possi-
ble to observe this plateau in the transverse magnetore-
sistence.

From Fig. 2 we observe that except for very low densi-
ties the energy separation decreases with increasing nz.
This reduction is due to two reasons.

(1) The thickness of the uniform slab of electrons,
which is formed inside the parabolic well, increases lin-
early with ng, thus the eR'ective confinement due to
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FIG. 2. Variation as a function of the effective electron
thickness of the energy of the states (a) with spin paral-
lel to the magnetic field and (b) with spin antiparallel to
the magnetic field. The parabolic potential has a curvature
h, up ——2.92 meV and the filling factor is 1. The closed circles
show the states corresponding to the second Landau level.
The other parameters used in the calculation are given in the
text.

the sum of the initial potential and the Hartree potential
decreases with increasing n~.

(2) Since the value of v is fixed to 1, the variation of ns
implies the variation of the magnetic field and exchange
effects decrease when B increases.

The different behavior of the energy separation c„;
co p + at very low densities occurs because in this range
of n, the increase of the exchange effects due to the in-
crease of the number of electrons in the system is more
important than the reduction of the exchange effects due
to the increase of the magnetic field.

In Fig. 3 we plot the wave functions corresponding to
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FIG. 3. Self-consistent wave functions for a parabolic po-
tential with Accpp=2. 92 meV and a 2D density of electron
n, /no=2400 A& in the v=1 quantum limit. The other pa-
rameters used in the calculation are given in the text.
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the lowest energies of our system for a value of n, jno
equal to 2400 A. Since we are working in the v=1 case,
the wave function of the lowest state has the form of the
square root of the charge-density profile of the system.
Then from the shape of Pi + in Fig. 3(a), we know that in
the system exists a thick and rather uniform slab of elec-
tronic charge. The main difFerence between the charge-
density profiles, with and without a magnetic field, is
that the magnetic field smooths the small bumps which
appear without magnetic field at the edge of the elec-
tronic slab. This is because with v=1 the system has
only one state occupied.

In Figs. 3(b) and 3(c) are shown the wave functions
corresponding to the second Landau level with the spin
parallel to the magnetic field, P; +, and those correspond-
ing to the first Landau level with the spin antiparallel to
the magnetic field, Po . Note that in both cases the low-

est states, Pii + and qloo, have more weight at the edges
of the electronic slab than in the center. This reduces
the separation in energy between the states (1,2,+) and
(l, l,+) and between the states (0,2,—) and (0, 1,—). This
effect can be also observed in Fig. 2(b), where the state
(0,2,—) becomes degenerate at high densities with the
(0,1,—). The reason for this behavior can be understood
in the following way. Since the exchange interaction has
an attractive effect, in order to create in the center of
the well an almost fIat efFective potential for the occu-
pied state and a uniform distribution of electrons inside
the well, the sum of the man-made potential and the
self-consistent Iiartree potential should cancel the shape
of the self-consistent exchange potential. Then the sum
Vo(z)+ VH(z) acquires a concave form in the center of
the well and has a minimum at each edge of the elec-
tronic slab. Since the ground state is spin polarized, the
electrons with spin antiparallel to the magnetic field are
not affected by the exchange term of Eq. (3) and they
only feel the potentials Vo(z) and VH(z). Then the wave

functions of electrons with spin antiparallel to B are lo-
calized at the edges of the electronic slab. These wave
functions, localized at the edges of the electronic slab, be-
come more separated as the thickness of the electron gas
increases. Then, the interaction between such wave func-
tions becomes weaker. In this form the states (0,2,—) and

(0,1,—) become closer in energy as ns increases. Some-
thing similar happens to the (l, l,+) and (1,2,+) states,
in this case the energies of these states have an exchange
self-energy term, but this contribution is much smaller
than the exchange correction to the energy of the lowest
Landau level. In other words, in Eq. (3), Si o(q) is much
weaker than So p(q).
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are the following.
(i) CDE's corresponding to the poles of y~. In these

excitations the electron and the hole have the same spin
orientation. We denote the frequency of these excitations
by u (q). In this quantum limit, the poles of y coincide
with the poles of yz.

(ii) SDE's corresponding to the poles of y . In these
excitations the electron and the hole have difFerent spin
orientation. We denote the frequency of these excitations
by u (q). Since in this quantum limit the ground state
is spin-up polarized, y + does not have poles at positive
frequencies.

In Fig. 4(a) we show the variation of the energies corre-
sponding to the q=0 CDE's of our system as a function
of the 2D density of electrons. Note that due to the
quadratic form of the confining potential, one of the q=0
CDE's always has the value huo. i9 Also in Fig. 4(a) it

B. Collective excitatious

Once we know the energies and wave functions of the
system, we have the necessary ingredients for obtaining
the dispersion relations of the collective excitations. In
the v=1 quantum limit the matrix to diagonalize in or-
der to obtain the dispersion relations, Eq. (18), simplifies
considerably. It consists of independent blocks, each of
them describing one kind of excitation of the system.
Since in the v=1 limit only one spin state of the lowest
state is occupied, the two possible kinds of excitations

4 E

400 800 1200 1600 2000

as 0o
2400 2800

FIG. 4. Variation as a function of the effective electron
thickness of the q=o (a) CDE's and (b) SDE's of a parabolic
well with heep ——2.92 meV and in the v=1 quantum limit. The
closed circles show inter-Landau-level transitions. In (a) the
dashed lines correspond to the energies Sup and hw~. The
other parameters used in the calculation are given in the text.
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tor. Then we expect that the phase transition we have
found leads the system to some kind of charge-density-
wave ground state. Since the dispersion relations u+(q)
do not depend on the direction of the wave vector q, we
expect some crystallization of the electron gas in the z-
y plane. Since the soft-mode excitations are mixing the
lowest with higher states, the CDW phase should have a
far from homogeneous shape in the z direction.

In Fig. 7 we show the variation of the critical thick-
ness, d+, where the minimum of the dispersion relation
of the CDE's goes to zero, as a function of the curvature
of the well, uo. Note that the change in the curvature
of the well also implies a change in the designed 3D den-
sity of electrons no. Then in Fig. 7 we also show the
corresponding values of the density parameter

4
1 000

gy
3.5 2.5

900-

800-
U

700—

600 I I I I I I I I I I I I I I I I I

2.5 3.5 4.5 5.5 6.5
Au0(rneV)

7.5

FIG. 7. Variation of the critical thickness d for a phase
transition to a charge-density-wave state (see text) as a func-
tion of the curvature of the parabolic potential. The shaded
part denotes the region where the COW instability occurs.

m'e' ( 3
&s =

(4~no)
According to the argument that the occurrence of a soft
mode in u+(q) implies that the system undergoes a phase
transition to a CDW ground state, we can see Fig. 7 as
the phase diagram of the system, the shaded part corre-
sponding to the region where the electron gas has crys-

tallizedd.

From Fig. 7 we conclude that independently of the cur-
vature of the parabolic potential, for a sufIiciently thick
slab of electrons, the system undergoes a phase transi-
tion. The final nature of the new state cannot be in-
ferred from our calculation. However, we have obtained
some features that, in combination with other theoretical
works, give us some clues about the nature of the new
state. In Ref. 31 MacDonald and Bryant studied, in the
unrestricted HF approximation, a 3DEG in the presence

of a strong magnetic field; they found that in this system
the electrons not only crystallize in the direction parallel
to the magnetic field, but also in the plane perpendicular
to it. The electron gas forms charged rods oriented paral-
lel to the field as proposed by Kaplan and Glasser. In the
same unrestricted H F approximation, M acDonald, Oj i,
and Bryant studied the behavior of the ground state of
an electron gas confined in a superlattice potential when
a strong magnetic field is applied perpendicularly to the
interfaces. They found that the electron-electron inter-
action favors the localization of the electronic charge in
individual wells and the formation of a crystalline struc-
ture, perpendicular to the magnetic field, inside the wells.
From the results of these works z and from our results,
we infer that this state has a modulation of the charge in
the z direction at the time that the electron gas forms a
crystalline structure in the x-y plane. We think that the
modulation of the charge in the z direction is the equiv-
alent to the formation of CDW in the Kaplan-Glasser
rods, and is the equivalent to the localization of the
charge in individual wells in the superlattice case.

In order to check the dependence of our results on the
parabolic form of the well, we have studied the varia-
tion of the critical thickness d of a parabolic well of
hcuo ——2.92 meV, when a potential of the form ~

( z'i
lSLcos

I
2~

SL2

is added to the quadratic potential. We have fixed dsL
to 200 A and we have varied VsL and find that d is
nearly independent of Vsz, in the range between zero and
40 meV. Thus we expect that our results, obtained for
a parabolic potential, can be generalized to other shapes
of the confining potential. For instance, we think that
this instability has the same nature as that found in a
double-quantum-well structure.

It must be emphasized that our calculations should be
applied with some caution to current experiments, be-
cause the efFects of impurities have been completely ne-
glected in our model and because in the HF approxima-
tion we are neglecting correlation efFects. We expect that
higher corrections to the HF approximation only have
the effect of screening the Coulomb interaction and then
change the phase boundary line in Fig. 7 to higher d
We think that our calculations provides some ideas about
the properties of a quasi-3DEG in presence of a perpen-
dicular magnetic field and it could be a starting point for
further analysis. In particular a natural improvement of
our approach would be the so-called unrestricted Hartree-
Fock approximation, in which the density of electrons is
not restricted to be uniform in the x-y plane.

We are going to finish this section by commenting
briefly on the possible consequences on the transport
properties of the existence of a crystalline structure in
the z-y plane. This state, due to the periodicity in
the x-y plane, is expected to have a gap in the exci-
tation spectrum. But this gap does not allow the ex-
istence of a plateau in the Hall resistance since one
might expect this new periodicity to become pinned
by the impurities. We think that this is the reason
why in some magnetotransport experiments in double-
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quantum-well structurestt and in wide simple-quantum-
well structures the plateau v=1 is missed. However,
from the published magnetotransport experiments in
WPQW, we do not infer the loss of the v=1 plateau
in the QHE. Only in the Fig. 5.3a of Ref. 35, we ob-
serve a not very well formed plateau at v=1 for a density
of electrons n, /no 2000 A. . However, these weak QHE
features at v=1 become stronger as the temperature
was lowered below 100 mK. This last experiment corre-
sponds to the wider electronic layer obtained in WPQW.
We have mentioned that correlation effects could make,
in Fig. 7, the phase line separation change a higher d+;
then we think that more experimental work on the vari-
ation of the v=1 plateau in the QHE with the electron
gas thickness is needed.

V. SUMMARY

We have studied the dispersion relation of spin- and
charge-density excitation of a parabolic-quantum-well

system. We have found the following. (i) The q=0
lowest-energy excitation of this system corresponds to
spin-density excitations. In the limit q ~ oo and for low
density of electrons in the system the lowest-energy gap
is a SDE and changes to a CDE when the thickness of
the electron layer is around 500 A. (ii) The system un-
dergoes a phase transition, to some kind of ordered phase
as the thickness of the electron gas increases. VVe suggest
that this phase transition could produce the destruction
of the v=1 plateau in the QHE.
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