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Optical properties of excitons under an axial-potential perturbation
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The optical properties and electronic structure of isoelectronic defect bound excitons in semiconduc-
tors have been studied. A simple model is used to describe the electron-attractive and hole-attractive
isoelectronic defects. This eA'ective-perturbation Hamiltonian model gives a clear physical picture of the
two extreme cases of hole-attractive isoelectronic defect bound excitons, i.e., where the total angular
momentum of the bound hole is unchanged (J=

2 ) and where the orbital angular momentum of the
bound hole has been quenched (J= —,'). This model can also be applied to quantum-well (QW) struc-
tures. Optical properties of the lowest heavy —light-hole state related excitons in QW s such as transition
probabilities, splitting of exciton states in a magnetic field, and exchange splitting are also discussed

0
within this model. By analyzing the experimental data with magnetic fields up to 18 T for 90-A
CxaAs/Alo z6Gao 74As QW's, the g values of electrons and holes are estimated to g, = —0.26+0.05 for
electrons and gh =0.58+0.05 for holes.

I. INTRODUCTION

Studies of electronic structure and optical properties of
isoelectronic defects in semiconductors are interesting
both from an experimental and a theoretical point of
view. Many such isoelectronic defects have been studied
during the past two decades, e.g. , isoelectronic defects in
GaP, ' Zn Te, Si, ' and GaAs. " No first-principles
theory exists yet, but many properties of such defects are
understood from several experiments and simple mod-
els. ' The most widely accepted model is the Hopfield-
Thomas-Lynch (HTL) model, ' in which the first charged
particle is attracted by a short-range impurity and/or de-
fect potential, and then the second charged particle is at-
tracted by the Coulomb potential of the first particle.
Thus the defects can be classified as electron- or hole-
attractive isoelectronic defects according to whether the
first bound particle is an electron or a hole. For the
hole-attractive isoelectronic defects, two extreme cases
have been found in experiments. In the first case the
bound hole has an angular momentum J=—,', and in the
other case the bound hold has an angular momentum
J=—,

' and is characterized as spinlike. In the latter case
the hole's orbital angular momentum is said to be
quenched by the crystal potential.

In this paper the transition between the two extreme
cases for hole-attractive isoelectronic defects is discussed
by introducing a simple effective Hamiltonian. The re-
sults show a clear physical picture of what hole quench-
ing means and yield qualitative conditions for when it
will occur. The optical transition selection rules between
a ground state and exciton states are also discussed for
both cases. The electric-dipole interaction plays an im-
portant role for optica1 transitions of excitons bound to
such isoelectronic defects, both for J=—', and —,

' holes.
This is consistent with experimental facts, i.e., optical

transitions from a ground state to a bound exciton (BE)
singlet state in a singlet-triplet system (here the hole is
quenched with total angular momentum J=

—,
'

) and to BE
J= 1 states in a J=

—,
' hole exciton system (a hole with

J=—,
' and an electron with S=—,

' form J=1 and 2 BE
states) are allowed. The effective-perturbation Hamil-
tonian model is also extended to discuss the first
heavy —light-hole excitons in GaAs/Al, Ga„As quan-
tuin wells (QW's). The experiinental data with magnetic
fields up to 18 T from a 90-A GaAs/Al, „Ga„As QW
have been analyzed, and g values of electrons and holes
are obtained. To our knowledge, this is the first time that
optical data of excitons in GaAs/Al, Ga As QW's
with magnetic fields have been analyzed in detail.

The paper is organized as follows: Section II gives a
short description of the effective Hamiltonian. In Sec. III
the isoelectronic defects and selection rules are discussed.
Section IV gives a short discussion of excitons in quan-
turn well. Section V is a summary.

II. EFFECTIVE-PERTURBATION
HAMILTONIAN MODEL

The perturbation Hamiltonians for isoelectronic de-
fects have been discussed in detail both for bulklike hole
states' and spinlike hole states. ' The perturbation
Hamiltonians are constructed by assuming that the hole
has angular momentum J=—', or —,'. The crystal-field po-
tential is included in the perturbation Hamiltonian as an
effective term. Instead, one can start from the original
hole with orbital angular momentum I.=1 and spin
S' = —,'. The crystal field influences only the orbital
momentum of holes. Therefore, for a defect with an axi-
ally symmetric potential, the effective Hamiltonian of the
hole under a crystal-field perturbation can be written as'
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H = ——'b, I. S—D' l.1 3 z

r, states,

The first term describes spin-orbit interaction, and the
parameter 6 is the spin-orbit splitting constant for a
given host semiconductor. The second term describes the
essential part of the axial potential. The parameter D' is
given by the crystal potential strength. For a very strong
crystal potential with low symmetry (where the symmetry
is low enough to break all orbital angular momentum de-
generacies of the hole), the qualitative discussion of hole
quenching is given by Monemar, Lindefelt, and Chen. '

For simplicity, only the effects of the defect potential
along its main axis are considered in our discussion.

The eigenvalue equation for the effective-perturbation
Hamiltonian (1) can be solved by using the following
wave functions as a basis:

——') =(—')'
i 1, —I )ai, +(—')' i1,0)pI, ,

~-' -') =(-')'"~1 0&a +(-')'"~1»P

g, -3, & =/ I, I &a„;
I 7 states,

(2a)

I-,', —
—,
'

& =(-', )'"Il, —1&~I, —(-,')'/211, 0&pi, ,
(2b)

~-,', —,
' ) =(-')'"~ l, o &~„-(-')'"~1,»P„,

where ai, and Pi, are spin-up and -down wave functions,
respectively.

~
1,mi ) are orbital angular momentum wave

functions.
The matrix elements of H, with this basis are

/3 3)
/3 1)

—6 /3 —D'/3
0
0
0
0
0

0
—b. /3+D'/3

0
0

—(2/9)' 'D'

0

0
0

b, /3+ D'/3—
0
0

(2/9 )1/2D i

0
0
0

—b, /3 —D'/3
0
0

0
—(2/9) ' D'

0
0

2b, /3
0

0
0

(2/9)' D'

0
0

2b, /3

The eigenvalues of the perturbation Hamiltonian (1) are

Ei = —b, /3 —D'/3,
E =b./6+D'/6 —'[84 /9+(b/3 —D—') ]' (3)

E3 =6,/6+D'/6+ ,'[8b /9+(6/3 —D—') ]

The wave functions corresponding to the eigenvalues are

where

= A, (E, )l-'„——,
' &+ A (E;)I-,' —

—,
'

&

= —A (E;)I-,', —,
' &+ A2(E;)I-,', —,

' &,

(4)

3D'(2b, /3 E;)—
A )(E;)=

[Dz2[2Di2+9(2Q/3 E )2] I
I/2

A2(E, ) = 2D' 1/2

[2D' +9(2h/3 E; )]—(5)

l =2, 3.
E, corresponds to doubly degenerate

~
—,', +—,') states.

The eigenstates belonging to E2 and E3 are linear corn-
binations of

~ —,', +—,
' ) and

~
—,', +—,

' ) states. When D' is
zero, the eigenstates for E2 and E3 are original g, +—,

' )
and

~
—,', +—,

' ) wave functions, and Ei and E2 are degen-
erate. But when D' is not zero, the states

~
—,', +—,') and

~
—,', +—,

' ) interact through the crystal potential character-

ized by D'. The mixing of
~ —,', +—,') and

~ —,', +—,
' ) states

strongly depends on the relative ratio D'/b, . It is in-
creasing with increasing absolute value of the ratio D'/A.

The variation of energy levels with D'/6 is given in
Fig. 1(a). The corresponding expansion coefficients of the
E2 and E3 levels are shown in Figs. 1(b) and 1(c). Figure
2 shows the mixing between E2 and E3 states versus the
ratio D '/6 From th. is figure we can see that for
~D'/b

~
&0.5 the mixing is less than 5%. This means we

can neglect the coupling of E2 and E3 levels. Particular-
ly for D') 0 the lowest hole level is E&, which is not cou-
pling with the E3 level. When such holes form bound ex-
citons with an electron, if the electron-hole interaction is
much weaker than the crystal potential, it is good enough
to describe the hole by using E& level wave functions.
This is the case for hole-attractive isoelectronic defects
(see Table II). We conclude that when ~D'~/b, &0.5, it is
a good approximation to assign a total angular momen-
turn J=—,

' to the bound hole. The spin-orbit interaction
parameters for a few common semiconductors are shown
in Table I. By using those values in Table I, we can easily
estimate the limit of crystal potential strength where the
approximation of a J=

—,
' bound hole is still valid.

The extreme case is ~D'~ ))h. When D'—
))b, A~(E2)=( —,')', and A2(E2)=( —,')'/, the wave
functions corresponding to the doubly degenerate E2 lev-
el are ~1,0)ai, and ~1,0)Pi, . For the E3 level,
A, (E3)=(—,

')'/ and A2(E3)=( —,')'/, and so the corre-
sponding doubly degenerate wave functions are
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~1, —l)a and ll 1)fI)Ps. The states with wave functions
&~ »d 11,0)p], behave like S=—,

' spinors along the
crystal potential axis. Thus we reach the conclusion that
when D' is' is negative (corresponding to a compressed crys-
tal potential) the lowest hole level is E2, and it has spin-
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FIG. 2. Mixinixing of I 8 and I 7 wave functions for E3 and E
level vs ratio D'/A.

or 3 an

like wave functions when —D')) A. In this case the hole
is referred to as quenched by the crystal potential'. . It is
easy to show that when D' is positive, the crystal field
cannot quench the hole's orbital angular momentum f
an axia'

n um or
axial symmetry crystal potential perturbation. This is

consistent with available experimental data.

III. ISOELECTRONIC DEFECTS

As shown in the previous section, when the crystal field
is much weaker than the spin-orbit interaction, the hole
can be treated as a particle with angular momentum

hus the crystal-field part in the Hamiltonian can
be written as '

-0.5

1.4

0.96

0.52

0.08

-0.36

-0.8

-2

-2

-1 ~ 2

-1.2

-0 ~ 4 0 ~ 4
RATIO 0'/6

A2(E3)

-0.4 0.4

RATIO 0'/h,

1 ~ 2

(c)

D J2 J (J+ 1 )

3
(6)

Here J=—'=—„and the parameter D describes the effective
strength of the crystal field. The perturbation Hamiltoni-
an o isoelectronic defect bound excitons with J=—', holes
has been discussed in detail before, both with and
without a magnetic field perturbation. Table II is a sum-
mary of the parameters a (the parameter a describes the
electron-hole interaction) and D for various defects.

By comparing the splitting between E, and E2 levels,
one finds the relation D'=6D(b, 2D)l(2b, 6D). The- —
results in Table II show that the ratio iD'~ lh satisfies the
criterion iD'i/b, (0.5 for all centers listed there. This
means that it is a good approximation to neglect interac-
tions between I 8 and I 7 states.

Now we look at the selection rule for transitions of
such defect bound excitons. Since th 'te exciton state in-
volves one electron and one hole, the zero-magnetic-field

FIG. 1. (a) shows relative splitting between EI E2 and E
with the ratio D'/h./ . " is the spin-orbit splitting constant of
semiconductors. D' is a crystal-field parameter. (b) shows
wave-function coefficients of A](E, ) and A2(E2) [see formula
(4) in text& vs ratio D'/L. (c) shows wave-function coefFicients
of 3 ] (E3 ) and 4 z (E& ) [see formula (4) in text] vs ratio D' /h.

Spin-orbit
splitting 5 (eV)
Reference

ZnTe

0.92

Si

0.04

17

GaP

0.08

18

GaAs

0.34

16

TABLE I. S in-p' -orbit splitting of a few semiconductors.
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TABLE II. Parameters for a few isoelectronic defects.

Crystal
fields
D (meV)

Electron
and hole
interaction
a (meV)

Reference

Li-Li-0
bound
exciton
in GaP

1.66

0.77

Electron attractive
NNl pair
bound
exciton
in GaP

0.20

0.585

Be-related
bound
exciton
in Si

0.48

10

Cu-related
2.329 eV
in ZnTe

120

0.02

Hole attractive

Cu-related
2.346 eV
in ZnTe

0.06

Cu-related
2.26 eV
in ZnTe
A

51.2

0.22

51.6

0.20

effective Hamiltonian can be written as"' '
H = —aJS—D J-BE & z

where J=—,
' is the angular momentum of a bound hole

and S=—,
' for a spinlike bound electron. We form a basis

with the following wave functions:

total angular momentum J= 1 states,

(3)in13 3
&p (

i )iiz

Il, —1& =(-,')'"I —,', —
—,
'

&p, —
( —,')'"I—'„——,'&~, ;

total angular momentum J=2 states,

12,2&1 =I —,', —,
' &a, ,

12 1& =(—)' I-' -'&p +(-')'"I-' -'&~

12, —» =(-,')'"I-'„——,
'

&p, +(-,')'"I-'„——,
' &~, ,

12, —2&, =I —,', —
—,'&p, .

The eigenvalues of the Hamiltonian (7) are

E(J =1;m =0)=5a/4+D,
E("J=1"' "m =+1")=a/4+(D aD+a )'—
E(J=2;m =0)= —3a /4+D,
E( «J 2». cpm +1») a/4 (D2 aD+a2)1/2

E(J =2;m =+2)= —3a/4 D. —

The corresponding wave functions are

e(J =1;m =0)=11,0 &, ,

4(J =2;m =0)=12,0&J,

4(J=2;m =+2)=12,+2&J,
4("J=l" "m=+1") = —8 ("J=l" "m=+1")12 1& +8 ("J=l" "m=+1")11 1&

4("J=1";"m =+1") =8&("J=1";"m =+1")12,—1&&+82("J=1";"m =+1")11,—1&J,

where

(10)
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D[5a/2 D——2E("J=1";"m=11")]
B, "J= 1";"m =+1")=

(D [3D +[5al2 —D —2E("J=1","m =+1")] j }'
' 1/2

3D

[3Dz+[5a/2 D——2E("J=1";"m =+1")] j
( ccJ its, ccm girt)

2

4("J=2"'"m =+1") = B—("J=2" "m =+1")I2,1)g+B2("J=2";"m=+1")Ii,1 )g,
4("J=2" "m =+1") =B,("J=2";"m =El")l2, —1)~+Bz("J=2";"m=+1")I1, —1)~,

where

B2("J=2" "m =+1")=

D[5a/2 D ——2E("J=2";"m=61")]
(D [3D +[5a/2 D ——2E("J=2" "m =+1")]2j )&n

' 1/2
3D

[ 3D + [Sa /2 —D —2E ( "J=2";"m =+1") ] j

Once the eigenfunctions for the BE sublevels have been obtained, oscillator strengths for optical transitions between
the BE substates and ground state (with no bound particles) can be calculated. Such oscillator strengths are proportion-
al to the square of the electric-dipole matrix element:

M,,=&+, lQle, &, (12)

where Q is the dipole transition operator, 4; is a particular BE substate, and Vo is the BE ground state.
With the notation S, for total spin-wave functions (s is the total spin and m is the magnetic quantum number) of

bound electrons and holes in the BE states, Eqs. (8}and (9) can be rewritten in terms of hole orbital angular momentum
functions and total spin-wave functions:
J=1 states,

Il 1 & =(-')'"Il, l&s', +(-')'"[Il, l&s', —Il, o&s', ],
Il 0)J=(—')' ll 0)SO+( —')' [Il, l)S, ' —ll, —1)S']

I i, —i ),=(', )'"I i, —i )s,'+(-,')'"[I i,o)s —
I i, —i)s', ];

(13)

J=2 states,

I2,»J =
I i, »SI,

I2, 1),=(-')'"I i, i )s', +( ' )'"I i, o)s', ,

12,o&, =(-')'"I i,o&s', +(-,')'"[I i, i )s +
I i, —i &s']

I2, —1&,=(-,')'"l l, —i &s', +(-')'"I i,o&sp,
I2, —» I =

I 1, —1 &s

(14)

Since the electric-dipole operator influences only orbital angular momentum, the matrix elements are zero unless the to-
tal spin is the same in initial and final states and the difference in orbital angular momentum between initial and final
states is +1, i.e., AS =0 and EI.=+1. In the BE ground state there are no particles, and so both the total orbital and
spin angular momentums are zero; we denote this state as IO, O). This means that only J= 1 states are electric-dipole-
allowed final states in optical absorption experiments. One can calculate that

1&o,olQli, i &, I'= l&o, olQli, o&, l'= I &o, olQI1, —i &, I'=c (const) (15a)

and

l&o, olQI2, 2) I
= I&0,0IQI2, 1&,l'= l&o, olQI2, o&, l'

=
I &O, OIQI2, —1& I'=

I &O, OIQI2, —» I'=0 . (15b)

To calculate relative oscillator strengths of optical transitions from the BE ground state ( IO, O) ) to different substates of
the BE, we let C = 1, and we have
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I(J=1;m =0)= l(o, olQl+(J=l;m =0) & l
=C= 1,

I("J=1";" =+1")=1(O,OIQI p("J=1";"m=+1")&I'= IB2("J=1";"m =+1")I'&
= lB ( "J= 1"' "m =+1") l

I(J=2;m =0)= l(o, olQl%'(J=2;m =0) & l'=o,
1")—l(o, olQle("J —2" "m —+1-)& l' —lB ("J—2» -m =+1»)l c

=lB ("J=2" "m=*1-)l'

I(J=2; m = +2 ) = l (0,0 I Q I
'p( J=2; m =0 ) & I

' =0 .

The ratio of the oscillator between E( "J=2";"m =+1")states and E( "J= 1";"m =+1")states is

R =I( "J=2" "m =+1") /I ( "J= 1" "m =+1")

lB2("J=2";"m =+1")l' l2(D2 —aD+a2)»2 —(2, —D))
lBz("J=1";"m =+1")l [2(D aD+a —)'~ +(2a D)]—

(16)

(17)

We would like to point out that the formula (1) in Ref.
19 is the ratio of lB, ("J=1";"m=+1")l /
lB2( "J=1";"m =+1")l; it should be given generally by
formula (17) here. The relative oscillator strengths of
different BE levels are shown in Fig. 3(b). The ratio R is
shown in Fig. 4.

For defect centers which have even lower symmetry,
formula (6) may give an insufficient description of
crystal-field e6'ects. It is necessary to introduce more
terms, ' but a discussion along the same line as here can
be applied to these lower-symmetry cases.

When the crystal field is negative and satisfies
—D &&4, the bound hole can be treated as a spinlike
hole. If we consider only the isotropic electron-hole in-
teraction, the perturbation Hamiltonian can be written as

6 ' 5

4.2
Z
I-I- 1.9
CL
M
LLI -0 ~ 4
I-

LLI -2. 7
K

- 5
-3.2

Al

0

+1

0

2 +2

-1.56 0.08 1.72 3.36
RATIO D/a

HBE= —a(Sh+L) S, . (18a)

L and Sh are orbital angular momentum and spin opera-
tors for holes. S, is the electron-spin operator. Corre-
sponding wave functions are ll, o&ah and ll, o&pz (this
has been derived in Sec. II) for holes and a, and P, for
electrons. We note that the L.S, term can be neglected
since it does not give any contribution to the total energy.
This is the reason why a bound hole can be treated as a
spinlike hole. So formula (18a) can be rewritten as

HBE= —aS~ S, .

Such spinlike electrons and holes interact to give
singlet-triplet states. ' ' The splitting between singlet
and triplet states is AE =a, and the corresponding wave
functions of each state are as follows:
singlet state,

e,=(-,' )'"l l, o &(a,p, —p„a, )

— (b)

0
3.2

Q)
X 1 ~ 5
U
LLI 1.2I-
K 0.9
I-

0.6
O
V)0

0.3)
I-

LLI
K -1.56 0.08 1.72

RATIO D/a

1 0

2 +1

3 ~ 36

=ll 0&s'.

triplet states,

(19) FICx. 3. (a) bound exciton energy-level splitting vs ratio D/a.
(b) relative oscillator strengths of the electric-dipole-allowed
transition bound exciton states vs ratio D/a.
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1 ~ 6

T

II 1.2

0 ' 8
II

+~ 0.4

Al
II 0

-3.3 -1 ~ 98 -0.66 0.66
RATIO 0/a

1.98 3.3

FIG. 4. Calculated ratio between the oscillator strengths of
the substates "m =+1"("J=2")and "m =+1 "("J=1")vs ra-
tio D/a.

0„=~1,0)a a, =~1,0)S,',
4,O=( —,

')'~ ~1,0)(aqP, +Pea, )

=il, o&S', ,

e, , = il, o&P„P,= il, o&S

(20)

According to the previous discussion on J=—', holes, the
oscillator strengths of transitions from BE ground state
to each of the BE states are as follows:
singlet state,

I =[(O,O~Q~V )[ =const; (21)

triplet states,

r =
I & O, 0lql e„&I'

= &O, olqle„) I'

=(O,olqle, , & i'=0 . (22)

Here ~0, 0) is the BE ground state with no particles. Q is
the electric-dipole operator. Electric-dipole transitions
from the ground to the singlet state are allowed, and
transitions to the triplet states are forbidden.

For moderately strong crystal fields, the mixing be-
tween I 8 and I 7 states must be taken into account, and it
is not possible to assign a total angular momentum of
J=—,

' or —,
' to the bound holes.

IV. QUANTUM-WELL STRUCTURES

Many sophisticated theories have been developed for
calculating the electronic structures of quantum wells. '

The following discussion for heavy —light-hole-related ex-
citons gives a very clear physical understanding of the
optical and magnetic properties of excitons in QW's.
From a group-theoretical point of view, the problem of
excitons in QW's is similar to an exciton bound to an
isoelectronic defect with an axially symmetric potential.
The discussion in Secs. II and III can be applied on
heavy —light-hole excitons if we simulate the splitting be-
tween heavy and light holes by introducing an equivalent

H= aJ S D[J, ——J(J+—1)/3]
+@~(g,B S+g~B J) . (23)

80

60-
-HH

E
I-
K

U
K
LLI

K
UJ

40-

20-

100 200

Lz

FIG. 5. Simulated D' parameter vs QW size L, . The LH-HH
curve gives the splitting between light- and heavy-hole states.

axial crystal-field potential, i.e., E2 E—, in formula (3).
Figure 5 gives the dependence of the parameter D' on
well width for single GaAs-A1, „Ga„As QW's. If 5%
mixing between I 8 and I 7 can be neglected, formulas
(7)—(15) can be used to discuss the lowest heavy —light-
hole exciton state in a single GaAs-A1, ,Ga„As QW. As
derived from formulas (10), (ll), and (15), we know that
the heavy-hole exciton should split into two doubly de-
generate states. Figure 6 shows a schematic picture of
the electronic structure of excitons in a QW. The degen-
eracies of heavy-hole (HH) and light-hole (LH) excitons
are lifted by electron-hole interaction (which is described
by the parameter a ), giving three doubly degenerate
states ( A, 8, and D in Fig. 6) and two nondegenerate
states (E and C in Fig. 6). The optical electric-dipole
transitions from the exciton ground state (no particles in
this state) to states B, D, and E are allowed and the tran-
sitions to A and C are forbidden. The relative oscillator
strengths are given by formulas (15) and (16). The split-
ting between the heavy-hole exciton states A and B is in
the order of 1 meV for 100-A GaAs/Al, Ga„As QW's.
This means that for high-quality QW samples at very low
temperatures, double in photoluminescence spectra peaks
of heavy-hole excitons can be observed since tempera-
tures relax the electric-dipole transition rule. But, on the
other hand, only one dominating absorption peak can be
observed in absorption measurements because absorption
follows the electric-dipole selection rule. This is con-
sistent with the experimental data available. The
crystal-field strength parameter D can be determined by
the splitting between light- and heavy-hole excitons, and
the exchange splitting of the electron-hole pair can be
determined by comparing the relative intensities of light-
and heavy-hole exciton absorption. The degeneracies of
BE states (A, B, and D) are lifted when an external
magnetic field is applied. To understand the optical
properties of heavy —light-hole-related excitons in a mag-
netic field, we introduce Zeeman terms in formula (7):
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E& (8)= —3a /4 D —
IJ,~B—(g, /2+3g/, /2);

light-hole states,

EF(8)= 5a /4+D,

(24)

(25)

Here a is an electron-hole interaction parameter, D de-
scribes the splitting between the heavy- and light-hole ex-
citons, g, and g& are g values of electrons and holes, p~ is
the Bohr magneton, and 8 is an applied magnetic field. If
we apply a magnetic field along the QW growth direc-
tion, the 8 states of heavy-hole excitons and the D states
of light-hale excitons mix. The corresponding eigenval-
ues of the Hamiltonian (23) are as follows:
heavy-hole exciton states,

E„(B)= —3a /4 D+—piiB (g, /2+ 3gz /2),

HOLE STATES

f3/2, +1/2x

O
(3/2, g3/2~

QW effects
which are
simulated
by 0 potential

EXCITON
STATES

LH
0 exciton&~ ~
C K

x0I-
HH O

A
exciton

e-h interaction

Ec(8)= —3a /4+D;
mixed states between heavy- and light-hole excitons,

FIG. 6. Schematic picture of the electronic structure for the
heavy —light-hole-related excitons in a GaAs/Al, „Ga„As QW.

[A +ED(8 =0)+ A'+E/i(8=0)] [[A+ED(8=0)—A' E~(B =—0)] +4F I'
Ei 2(8)= +

[ —A+ED(8 =0)—A'+E/i(B =0)] [[A ED(B =0—) —A'+E//(8 =0)] +4F I'
Es 4(B)= +

(26)

The new parameter in these eigenvalues are

E (8=0)=—+(D aD+a )'—a
D 4 7

Ez(B =0)=— (D aD+a )—'~—a

B,(J=1;m =+1) (
—g, 3g„)p//8 —82(J =1;m =+1) (g, —Sg„)p//B

4 4

B,(J=2;m =+1) ( —g, —
3g/, )p//8 82(J=2;m=+1) (g, —Sg's)PaB+

4 4

8, (J = 1;m =+1)B,(J =2;m =+1)(—g, —
3g/, )p&B

82(J =2;m =+1)82(J=1;m =+1)(g,—Sgs )IJ/iB+

[Sa /2 D 2E&(B=—0)—]D
B,(J=1;m =+1)=

(D I 3D + [Sa /2 D 2E//(8 =0) ] ]
—)—'

82(J=1;m =+1)=

B,(J=2;m =+1)=

82(J=2;m =+1)=

3D

[3D +[5a/2 D —2ED(B =0—)] I

[Sa /2 D 2E&(B=0)—]—D
(D2I 3D~+ [Sa /2 D 2E//(8 =0)—] I

)'—
1/2

3D
[3D +[Sa/2 D 2E//(8 =0)] J——

In Fig. 7 the Zeeman splitting pattern of heavy —light-
hole excitons with magnetic fields up to 18 T is shown.
The data points are experimental results from Ref. 22,
where center shifting of each state with magnetic field is
removed. A least-squares fitting procedure between B

C, (meV/T)

0.1499
0.2102

C (meV/T )

0.0178
0.0160

TABLE III. Parameters of C& and C2.
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FIG. 7. Fan diagram of excitons for a 90 A
GaAs/Alo 26Ga0, 4As QW with magnetic field from 0 to 18 T in
the layer growth direction. The solid lines are computed from
formulas (24)—(26) in the text. Squares correspond to the experi-
mental results after removing center shift with magnetic field
(experimental data from Ref. 22).

MAGNETIC FIEI 0 (T)

FIG. 8. The center magnetic shift of A and 8 states in Fig. 6.
Solid lines are computed from formula (22) in text, and squares
are experimental data (Ref. 22).

theory and experimental results gives the following pa-
0

rameters for a 90-A GaAs/Alo 26Gao 74As QW:

a =1.05+0.02 meV,

D =5.95+0.02 meV,

g, = —0.26+0.05,

g~ =0.58+0.OS .

hE(B)=C,B +C2B (27)

The coeKcient C&, which describes a linear shifting with
magnetic field 8, is zero for excitons in bulk materials. A
nonzero c, is characteristic of two-dimensional (2D) car-
riers. The origin of C& is Landau splitting of 20 carrier
energy levels in a perpendicular magnetic field. The di-
amagnetic shift parameter C2 is close to the value for
bulk GaAs (0.02 meV/T ).

The center shifting of the two components ( A and B ) of
heavy-hole excitons with magnetic field is shown in Fig.
8. The points are experimental results from Ref. 22, and
the solid curves are calculated from formula (27) and pa-
rameters in Table III:

V. SUMMARY

In summary, the properties of isoelectronic defect
bound excitons in semiconductors have been discussed.
The quenching mechanisms of bound holes are due to the
strong negative crystal-field perturbation for an axially
symmetric potential, since the crystal-field perturbation
causes mixing between I 8 and I"7 symmetry wave func-
tions for holes. The selection rule for BE recombination
with electric-dipole interaction has also been examined;
the results show that electric-dipole transitions to J= 1

states for J=—,
' holes and transitions to a S=O state for

spinlike hole isoelectronic defect bound excitons are al-
lowed. By extending this simple model to quantum-well
structures, the optical and electronic properties of the
first heavy- and light-hole excitons can be easily under-
stood. The g values of electrons and holes in quantum
wells are obtained by fitting experimental results.
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