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Gauge-invariant formulation of the intracollisional field effect including collisional broadening
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A gauge-invariant formalism is presented for describing nonperturbatively the effects of the electric
field on electron-phonon scattering in a nondegenerate semiconductor. The Kadanoff-Baym nonequili-
brium formulation of many-body systems is employed to treat the intracollisional field effect and col-
lisional broadening on equal footing. %'e derive an analytic, gauge-invariant model for the spectral den-

sity function and for the density of energy states that accounts for both effects simultaneously in a rela-
tively simple and rigorous way.

I. INTRODUCTION

The semiclassical description of charge-transport phe-
nomena in semiconductors, whether based on the
Boltzmann equation' or on Monte Carlo techniques, re-
lies on the Fermi golden rule for the calculation of the
transition rates. The sharp 5 function appearing in these
quantities implies that both energy and momentum are
well-defined observables of the system. In other words,
when a particle suffers a collision with one of the crystal
modes, its energy and momentum can only change by an
amount equal to the energy and momentum of the pho-
non involved in the scattering event.

As the size of the sample decreases, however,
quantum-interference effects may come into play since
now the charges may maintain their phase coherence
over distances comparable to the characteristic length
(e.g., the gate length or a depletion length) of the device.
The uncertainty relations may therefore play an impor-
tant role and the broadening of the electron momentum
should be considered. Furthermore, the mean collision
duration and the mean free time also may not be negligi-
ble compared with the transit time through the device
and the long-time limit required to establish the conser-
vation of energy in the Fermi golden rule will break
down. This phenomenon is called collisional broadening
(CB). Now that collisions cannot be treated as instan-
taneous, the presence of an electric field contributes fur-
ther to modifying the energy difference between the ini-
tial and final states. This is the intracollisional field effect
(ICFE).

A theory of transport capable of overcoming the limi-
tations of the semiclassical approach is then needed, espe-
cially under the present-day push by the technological
possibility of fabricating devices of nanometer dimen-
sions. A theory of this kind can be formulated by treat-
ing the electron energy %co and its momentum k as in-
dependent quantities, related to each other according to a
spectral density function A(k, co) of finite width, rather
than through the sharp 5 function of the Fermi golden
rule.

In real space, the spectral function A(1,2) can be
defined in terms of the anticommutator of the fermion

G "(1,2) = ——'( I@(1),4 '(2) I )e(t, —t, ) . (1.2)

Indeed, by comparing (1.1) and (1.2) it is clear that the
spectral density is known, once G" has been determined.
The retarded Green's function satisfies Dyson's equation,

G "(1,2)=G@(1,2)+ f d 1 d2 G@(l, l)X"(1,2)G "(2,2),
(1.3)

where GE is the retarded propagator for an electron in
the presence of the electric Geld, but without scatter-
ing. ' '" This allows us, at least in principle, to deal with
arbitrary field strengths. X" is the "retarded self-energy"
describing the interactions of the electrons with the crys-
tal and, for nondegenerate electron systems, it is, to a
good approximation, a functional of G" only. '"

Solving Eq. (1.3) is not an easy task, mainly because of
the complications arising by the nonconservation of the
electron wave vector, ' and the subsequent mixing of
space and time coordinates that appears when the in-
teractions are modified by the electric field.

Recently, ' a technique was proposed in order to deal
with these problems and to derive a spectral density func-
tion that included both ICFE and CB simultaneously.
The approach was based on the idea that scattering
events do not occur between states described by the plane

field operator 4(1) of the particle at the space-time point
(r&, t, ) and the conjugate field operator 4 (2) at another
point (r2, t2), namely

A(1,2)=(I4(1),4t(2)I ) .

Here, the angular brackets ( ) indicate a thermo-
dynamic average for equilibrium situations and an aver-
age over the available states for nonequilibrium systems.
One of the advantages of a spectral function defined in
this way is that products of field operators of the type ap-
pearing in Eq. (1.1) can be put in a gauge-invariant form
(see Sec. II), thus allowing the formulation of a quite gen-
eral theory whose properties do not depend on the choice
of the gauge. Another advantage is that A(1,2) can be
calculated within the Kadanoff-Baym formalism ' based
on the retarded Green's function
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waves of a free electron, as was the case with previous
formulations, but between the states of an electron in the
field, namely the Airy functions of the first kind. The for-
malism was formulated in the scalar-potential gauge in
terms of the Airy coordinate s, interpreted as the
quantum-mechanical analog of the classical electron
turning point in the field direction z. For example, it was
found that

1
GE(ki, s, co) =

%co c(k—
)i , eEs—+i g

(1.4)

and, from this,

AE(ki, s, co) =2m5(Aco . E(k~—) eEs )—, (1.5)

where c(ki) is the kinetic energy of the electron in a para-
bolic band on the plane perpendicular to the direction of
the field. In this way, Eq. (1.3) could be solved analytical-
ly and a high-field spectral density A( kis, co) including
quantum effects was derived. The method was, however,
limited by not being gauge invariant, thus making the in-
terpretation of the results uncertain because of the possi-
bility that the approximations made could be gauge
dependent and therefore physically incorrect. Also in
the case of exact expressions such as (1.4) and (1.5), the
resulting physical picture could be dependent on the
gauge as can be understood, for instance, by comparing
(1.5) with its gauge-invariant counterpart

II. FORMALISM

A. Gauge-invariant transform

Let us consider the product g(1,2) =~II(1)(p (2) of field
operators. In terms of the Wigner coordinates

I=I ) 12, 7 7i 72

ri+I2 Vi+72R=, T=
2

' 2

it can also be expressed as

where e(k)=A' k /2m and O=(fieE) /(2m )' . Here,
as well as in the remainder of the paper, an overtilde
denotes gauge-invariant functions.

Our aim, therefore, is to implement the Airy-
coordinate formalism in order to formulate a gauge-
invariant theory of wider and more general validity. To
accomplish this, in Sec. II we present the details of the
new formalism and explain with a simple example how a
function expressed in terms of Airy coordinates can be
cast into gauge-invariant form. In Sec. III, by an ap-
propriate choice of the self-energy function, we solve
Dyson's equation and derive a gauge-invariant model for
the spectral density A(k, co). Finally, the density of
states p(co) is calculated in order to show how the con-
comitance of an external field and the scattering process-
es modifies the electron energies.

AE(k, co)=—Ai( —[A'co —E(k)]/0),1

Q~

or, in the time domain,

(1.6) g(r, r; R, T)= rII(R+r/2, T+r/2)
X(Ir (R —r/2, T r/2) . — (2.1)

1 . (eE) 3 . E(k)
AE(k, r) = —exp i r—i—

24k'I (1.7)
We not want to prove that, for a particle of charge q, if

P and A are the scalar and vector potentials, respective-
ly, the function g ( k, co,R, T ) defined as

g(k, co, R, T) = d7 eiw(cu, r, T, k, r, R)g(r R T)(2' )'~' &2m.

w(co, r, T,k, r, R) = f dk r co+ —p(R+Ar, T+A~) —r. k+ A(R+gr, T+g~)
1/2 q q

—1 /2 Ac

(2.2)

remains unchanged under the gauge transformation

A~ A'(x, t)= A(x, t)+Vy(x, t), P~rtr'(x, t)=P(x, t) ——1 a~(x, t)
c t

(2.3)

where y(x, t) is an arbitrary scalar function. The proof goes as follows.
From elementary quantum mechanics' we know that the wave function in the new gauge is related to the wave func-

tion in the original gauge by

4'(x, t)=exp i y(x, t) %(x, t) .
Ac

(2.4)

By substituting this into Eq. (2.1), and Eq. (2.3) into Eq. (2.2), we have

g(k, co, R, T)= e'" exp i y(R+r/2, T+r/2) exp i y(R——r/2, T r/2) g(r, &, R, T),—q
(2~)3~2 2m. Rc Ac

(2 5)

g(x t)+ r Vy(x t) =w+bw .
Ac Bt '

Ac
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In order to obtain a gauge-invariant g, b, w must cancel the factor e+'~z "' '~z "' in (2.5). Indeed, by remember-
ing, from (2.2), that x=R+ i(r and t = T+Ar, we can write b, w as the total derivative

hw = — f dA,
' = — [y(R+r/2, T+r/2) —y(R —r/2, T—r/2)],q»2 dy(x t) q

AC —1/2 d A, AC

and we see that the cancellation occurs.
Thus, we have proved that even though the wave functions and the electromagnetic potentials change with the gauge,

products like (2.1), and therefore the various Green's functions, are independent of the gauge, provided that we trans-
form them by the prescription (2.2). For an electron (q = —e ) in homogeneous, steady-state fields, (2.2) reduces to

g(k, co, R, T)= d7 ei( ee+(e A/)E. R) r e
—ik.rg (r & R T)d I'

&2~ )3/2

for g calculated in the scalar-potential gauge (g& ) with P = —E.R, and to

g(k, co, R, T)= e' ' exp i k—+ ET —r gA(r, r, R, T)d7; dI' e
2~ (2m) /

(2.6)

(2.7)

for g calculated in the vector-potential gauge (g A) with
A= —CRT. In the Appendix, we give two simple exam-
ples of how (2.6) and (2.7) may be applied.

B. Airy transform

d
F(ki, z, z', co)= f f Ai((z —s)/L)

L 2

XAi((z' —s')/L )F(ki, s,s', co),

(2.9)

When a potential U(z) is applied, the eigenfunctions
'P(r) of the system can be factorized as

V(r)=e ' 'p, (z),
with i)o, (z ) determined by

since in this case

g&, (z ) =(1/L )Ai((z —s )/L ),
with L = (A /2meE )

'/ as the normalization length
defined by the condition

~2 + U(z)+
2m dz 2m

ip, (z ) =E, (ki)q), (z ), f dz q),*(z)y,.(z)=5(s —s') .

where the index s labels the eigenvalues that can consti-
tute either a discrete or a continuous spectrum. In the
Hilbert space of the eigenfunctions q), (z), for any func-
tion or operator F, we can define the transformation

C. The two transformations combined

Assume now that s, s', and co are not independent
variables and consider functions of the type (see Sec. III
for an example of a function of this kind)

F(ki, z, z', co) = g ()(2, (z)F, , (ki, co)q), ,(z') .
$, $

(2.8)
F(ki, co (eE/A)s, co —(eE/A)s') . —

In particular, for the uniform-field case, this becomes
the Airy transform'

In order to put this function into gauge-invariant form,
we have to apply (2.9) and then (2.6), namely

dZ dZ ik (Z+z/2) ik, (Z —z/2)F k&,k„k,, r = exp i co+ Z e e
2~ ~'2~ 2~

XF(ki, co —(eE/A)s, co —(eE/A)s' ),
where z and z' in (2.9) have been replaced by Z+z /2 and Z —z /2 in the center-of-mass coordinate space.

By writing

(2.10)

F(ki, co —(eE /A)s, co (eE/A)s') =-dt . eE
exp i co — s t f exp —i co — s t F(ki, t, t )

dt' eE
&2m. &2m

and using the integral representation'
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Ai(x ) = dQ iu /3+ ixu

2&

Eq. (2.10) reduces to

F(k, r)=v'2m. L F(ki, haik, /eE+r/2, irik, leE r/—2)Az(k„r) .
eE (2.11)

F(k, r) =F(k~, r) AF(k„r),
where

(2.12)

F(r)= f e ' 'F(Q)
&2m.

with

Q=co eEs!A . —

The k, dependence is now carried only by the unper-
turbed, field-dependent spectral density function A z

Here we notice that Ak, leE can be regarded as the k, -
dependent "center-of-mass" time T(k, ) since A'k, is the
electron momentum in the field direction and eE the ac-
celerating force due to the field. Thus, in our formalism,
the unperturbed, field-dependent spectral function AE
can be exactly factored out of all the functions (Careen's
functions, self-energies, correlation functions) we will be
dealing with. This resembles a formal analogy to Eq.
(2.21) of Ref. 11 for the definition of the "reduced func-
tions. " In the present case, however, A& contains infor-
mation about the motion along the field direction only.
This motion is also described partly [through T(k, )] by
the F function on the right-hand side of Eq. (2.11), which
also gives us information about the motion on the plane
perpendicular to the field direction.

By the same procedure, a function F(co eEs/A—), of a
single (co eEslk) —argument, can be put into gauge-
invariant form. In this case we have

which also contains an explicit dependence on the electric
field. This is an interesting result: it reveals that the
transverse and parallel components of the motion are
separated and can be treated independently. Equation
(2.12) also implies that the Fourier transform from r to co

of Eq. (2.12) is just the convolution product

F(k, co)= fdQF(ki, Q)A~(k„co—Q) . (2.13)

This property will be very useful in calculating the
quantities of interest. Furthermore, remembering the ex-
pression (1.6) for AE(k„co)given in the Introduction, we
have

F(k,co)= fdQF(ki, Q)—Ai( tiiiQ —[A'co —e(k, )]I/O) .

(2.14)

This result states that in order to transform a function
f defined in (s, co) space into gauge-invariant form, we
simply have to take its single Airy transform

f(s)= f dz Ai(—(z —s)/L)f(z),1

I.
with L, z, and s replaced by S, A'Q, and fico e(k, ), re-—
spectively.

We can also establish a connection between Eq. (2.13)
and (2.11). Let us take the average of (2.11) over the k,
dependence of the center-of-mass time T(k, ). This
means that we only have to average the function
F(T(k, )+r/2, T(k, )

—r/2):

dk,
(F(A'k, leE+r/2, haik, leE —r/2) ) = f F(Ak, /eE+r/2, irik, leE —r/2), (2.15)

where U =&2irL is the volume element in (k„s) space. Again by writing
r r

Ak, w dQ Ak,
F(haik, /eE+r/2, Rk, /eE —r/2)= f exp i

' +——Q f exp i
' ——Q F(Q, Q'),

V'2ir eE 2 &2m eE 2

the above average (2.15) becomes

(F(flak, /eE+r/2, irik, leE —r/2) ) = — F(r) .
1 eE

(2.16)

By inserting this in place of F(A'k, IeE+r/2, Ak, leE r/2) in Eq. (2.11)—we obtain precisely Eq. (2.12), which is valid
for functions diagonal in co eEs If& in s space. —

D. An example: 6 ~(k, co)

As an example of how the above procedure is employed, let us transform GE given in Eq. (1.4) into gauge-invariant
form. In order to use (2.12), we need to know Gz(ki, r). This can be calculated as follows:
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d(co —(eE/ft)s) . eE
GE(k~, r) = exp —i co — s r GE(ki, s, co)

2ir

By the prescription (2.12), and s(k) =s(ki)+ E(k, ) then, we have

G z(k, r) = ——e(r)exp i — r i— '7
l . (eE) 3 . e(k)

24Am
(2.17)

in agreement with previous results, ' and, by Fourier-transforming the ~ variable,

G ~(k, co)= ——IGi( —[A'co —E(k)]/0)+i Ai( —[fico —s(k)]/8)], (2.18)

where Gi(x ) can be evaluated in terms of Airy functions. '

III. DYSON'S EQUATION AND ITS GAUGE-INVARIANT SOLUTION

As explained in the Introduction, the calculation of static properties such as the spectral function and the density of
states of the system interacting with the environment requires the solution of the full Dyson s equation (1.3) for the re-
tarded Green's function.

If the electric field is applied along the z direction, Dyson's equation can be written as

G "(k zi, z', )co= Gz( kiz, z', co) +f dz, f dz2Gz(ki, z,z„co)X"(ki,z„z2,co)G "(kJ z2 z', co), (3.1)

or, more simply, by using the transformation (2.3),

G "(ki,s, s', co)=GE(ki, s, co)6(s —s')+GE(kj, s, co)f dszX"(ki, s, s2, co)G "(ki,s2, s', co) .

Equation (3.1) can also be put in gauge-invariant form by the transformation (2.6) and it reads

(3.2)

dt, dt, d co,dm2
G "(k,co)=G E(k, co)+ f f f f exp[it&(co —co&) it2(co& —co2)]G—E(ki, k, —(eE/2A')t„co+co& —co&)

2K 2'
X X "(k~, k, —(eE/2fi)(t, t2 ), co, )G—"(k~, k, +(eE!2ft)t2, co&) . (3.3)

The solution of Eq. (3.2) requires, as a preliminary ingredient, the knowledge of the self-energy X (ki, s, s2, co),
whereas for the solution of (3.3) we need an expression for 2 "(k~, k, eE(t, t2)/2—h, co&). —

In the Airy representation, the self-energy can be calculated by the methods described in Ref. 12. For a system of
electrons weakly interacting with nonpolar-optical phonons in equilibrium, it turns out to be independent of the trans-
verse momentum and the k, dependence is replaced by the Airy coordinate s. It reads

r

71

f ds .i z —s
AiL2

z $2

L

d(ki —q~)
GE kj —

qx s', co gcoo
(2ir )

(3.4)

where q and No are the phonon momentum and occupation number, respectively,
~

V~ is the electron-phonon matrix
element, and r) =+ 1( —1) corresponds to emission (absorption) of a phonon of frequency coo by the electron of energy
fico. Equation (3.4) is exact in the sense that, within the present physical model (first Born approximation), no
mathematical approximations were made to obtain it. Furthermore, X includes the electron-phonon —interaction ma-
trix elements and it is a function of the difference of the co and s variables, namely

2"(s,s2, co) = X"(co—(eE/A' )s, co —(eE/A)s2), (3.5)

as can be immediately verified.
On the other hand, a model for X to be used in Eq. (3.3), which includes the intracollisional field efFect to the lowest

order, has been proposed by several authors. ' ' In our formalism, this can be expressed as
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Re[2 "(co)]=0,

1m[X "(co)]=g l
V No+ f Im[G ~(k, co —i)coo)]

2 (2'�)

(3.6)

= —2irp3D g l Vl No+ 0' [Ai' ( —g)+gAi ( —g)],
2

with g=(A'co —i)h'coo)/8 and ptcD=sr V(2m /A' )
~ the N-dimensional free-electron density-of-states factor.

This model neglects the real part of the self-energy, which determines the renormalization of the quasiparticle ener-
gies, and because of the averaging procedure over k, ignores the dependence of the electron momentum along the field
direction. In any case, however, neither (3.6) nor (3.4) allow Eq. (3.3) or Eq. (3.2) to be solved in an easy and obvious
way. A better model, which does not ignore the above features, can be obtained by realizing that due to the singular na-
ture of the self-energy (3.4) in s —s2, the s2 dependence of the product X"(ki,s, s2, co)G "(ki,s2, s', co) in Eq. (3.2) is dom-
inated by 2", and that, therefore, we can move G "(ki,s2, s', co) outside of the integral in (3.2). This results in the replace-
ment of the self-energy (3.4) by its average over the variable sz,

T

3eE (, )igiPzD eE ~
l

2 i)+I dt . t ir
CO S 0 2 0 t3 /2 ]2 4

(3.7)

where g=(@co eEs —il—iiicoo)/0. Equation (3.7) can be
transformed into gauge-invariant form by the prescrip-
tion (2.13) and it reads

~ "(k„~)= y l

Vl' N, + ~ F(k„~),g+1
vl

Eq. (2.13) to transform it into gauge-invariant form; that
is,

G "(k,co) = f d 0 G "(ki,A) J~(k„co—0) . (3.10)

The gauge-invariant spectral density can now be im-
mediately calculated, and it is given by

Re[F(k„co)]= O' Ai'(g)Bi'(g) —gAi(g)Bi(g)
(2ir ) A (k, co)= f dQ A(ki, Q) JE(k„co—0) (3.11)

+ e(g)

Im[F(k„co)]=— 8' [Ai' (g) —gAi (g)],(2' )'

(3.8)
with

2 (ki, II ) = —2 ImG"

—21m'"(0)
[A'II —E(ki) —ReX"(0)] + [ImX "(0)]

where now /=[fico —E(k, ) —i)iilcoo]/8. The general be-
havior of Im[ X "(k„co) ] is very similar to that of
1m[X"(co)], except that now an explicit dependence on k,
has to be considered. Furthermore, the real part of X',
which describes how the unperturbed energy of the elec-
tron is modified by the presence of the interactions (in-
cluding the electric field), is now taken into account. The
analytical and physical properties of a self-energy of the
type (3.8) have been extensively discussed' in the Airy-
coordinate representation (s, co) and an extension to the
present case is straightforward and will not be repeated
here. %'e notice, however, that, because of the many in-
tegrations and the mixing of momentum and time vari-
ables appearing in (3.3), the self-energy (3.8) is apparently
not sufficient to diagonalize this expression of Dyson's
equation. Nevertheless, the form (3.7) for the self-energy
allows Eq. (3.2) to be solved immediately, and we obtain

G "(ki,s, co) = 1

iiico —eEs —E(ki) —2"(co—(eF. /iri)s )

(3.9)

Since the full retarded Green's function above is only a
function of the difference co —eES/fi, we can again use

(3.12)

Figure 1 shows the spectral density function A(k, co)
for different values of the electric field, as a function of
the dimensionless variable %co/8 (8/A'coo=0. 004, 0 12,
0.55, and 2.54 for E= 1, 5, 50, and 500 kV/cm, respec-
tively). Because of the approximately equal weight that
3 (ki, A) and Az(k„co—0) gives to the integral (3.11) at
these values of the field, A(k, co) is not the positive
semidefinite quantity which is required in standard
Monte Carlo simulations. However, at very high electric
fields ( ~ 500 kV/cm), or for higher scattering rates,
where the dominating contribution in (3.11) arises from
the broad Lorentzian-type shape of A(k&, Q), the oscilla-
tory behavior of A is characterized by a rather large
period (the first negative value of A appears at electron
energies irico~ 10A'coo) with the amplitude of the oscilla-
tions decaying very slowly as the energy increases. As
the field strength is reduced, the oscillations are
compressed to a much smaller range of energies (the first
negative value of A appears at Rm =0.5Au0 for E=50
kV/cm) and their amplitude now decreases very rapidly.
Finally, the oscillatory behavior dies out at very low
fields, where Az approaches its 6-function behavior, and
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Lorentzian-type shape oof Athe more familiar '

does an ecau12 d b ause of the normalization prope
[see E . (1.6)].

The zero-field, zero-scattering limit can a so
ated. From (3.12) and (3.7) we have

lim A (k„Q)=&2~5(fiQ —e(k, ) ),
E~O

and from Eq. (1.7),

k —Q ) =+2m.5(%co—iiiQ —e( kz»',lim AE ki, co—
E~O

therefore,

A k to =2mfd-Q5( iirQ—e(k, ))5(A'ttI —iiiQ —e k,Af„,k, to—

dQ A (ki, Q) AE(k„co—Q)P(tIi) =
(2ir )

= f dQ pj(Q)pii(co —Q),

where

dk~(Q)= f A(k3, Q)
(2~)'

iiiQ —ReX "(Q )—+ tan

and

dkz
p (~—Q)= f wE( „~—

(3.14)

(3.15)

=2ir5(iiia) —e(k) ), (3.13)
P 1

(2'�) &0
A'(co —Q )

O~

(3.16)

as in the semiclassical theory.
Once the spectral density is known, we can ca cu

the density of states per spin,

(to) = A (k, co),P =
(2 )3

as follows:

Fi ure 2 shows the density of states p~~.. This is the den-

ner %co is increased,
P~~

osci ates e-gy
tween zero an wicd t

'
e the free-electron orm o e

of states,

P1D 1

(2m. ) &fico —iiiQ

O-
Cl

E= i E= 5 Explicitly,

OO-

O-
02

~pt
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where e(ftQ %co)—is the step function.
Figure 2 also shows the density of states p~ correspond-

ing to the component of the motion on the plane perpen-
dicular to the field direction. This is the density of states
for a two-dimensional system. Here, however, the sharp
step-function behavior, typical of the free-electron sys-
tern, is smeared by the presence of the interactions.

Finally, Fig. 3 shows the total density of states (3.14)
for different values of the electric fields. Here, as well as
in

p~~
of Fig. 2, the oscillations denote the existence of pre-

ferred energies (rather, energy subbands) for the electron,
caused by the presence of the electric field. These sub-
bands, however, are compressed to a very small energy

range as the electric Geld decreases, until they collapse to
form a continuous spectrum at E +5 kV/cm with the
zero-field behavior restored at high electron energies. On
the other hand, the negative-energy tail, also present at
low fields where the oscillations have already disap-
peared, shows the effect of the collisional broadening. All
this, together with the features of the real part of the
gauge-invariant self-energy (3.8), essentially confirms, at
least qualitatively, the results obtained previously'
within the scalar-potential-gauge formulation.

IV. CONCLUSIONS

Spectral density is an object of central interest in
theories of interacting many-body systems. On one hand,
it gives information about the quasiparticle spectrum of
the system, such as densities of states or lifetimes. On the
other hand, quantum kinetic theories based on nonequili-
brium Green's-function techniques often require the
knowledge of the spectral density as a prerequisite. Solu-
tions for the spectral density for nontrivial systems under
highly nonequilibrium conditions, such as those encoun-
tered in many semiconductor microstructures, are scarce,
and in most cases restricted to limiting cases only (e.g. ,
weak fields or weak scattering). The recent results of
Bertoncini et al. ' are an exception: By introducing a
convenient set of variables ("Airy coordinates"), a solu-
tion for the spectral density is found that treats scattering
and field effects on equal footing. The solution was ob-
tained by making use of the singular nature of the self-
energy function in the Airy representation, and it
preserves the sum rules that any proposal for the spectral
density must obey. However, the interpretation of results
given in Airy coordinates is not straightforward because
of the explicit gauge dependence. Therefore, in the
present paper, we have undertaken a general analysis of
the interrelationship of Airy-coordinate results and their
counterparts in a gauge-invariant formulation. As an il-
lustration of the techniques, we consider a number of ex-
amples, the results of some of which are already known.
Our main formal results are contained in Eqs. (2.11) and
(2.13), which allow one to transform any function found
in Airy coordinates to a gauge-invariant form. As a non-
trivial application, we consider the model electron-
phonon system studied in Ref. 12, and analyze the result-
ing spectral densities and densities of states as a function
of the applied field (Figs. 1 —3). We find a transition from
a collision-dominated regiine for low fields (pure col-
lisional broadening) to a field-dominated regime for high
fields.

Our results provide a starting point for further work.
The ultimate goal is to find a solution for the quantum
distribution function, such as the Wigner function, from
which observables such as number density or current can
be extracted. There are at least three possible ways to
proceed. The first would be to construct a joint spectral
density, as suggested by Reggiani et al. ,

' and apply the
quantum Monte Carlo technique. ' However, the nonpos-
itive definiteness of the spectral density requires either an
approximation scheme or nonstandard simulation tech-
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niques. Another possibility is to construct a simulation
technique directly in the Airy-coordinate representation;
this approach is presently being pursued. Finally, the
techniques developed in the present work can be applied
to the Kadanoff-Baym quantum kinetic equations in or-
der to derive a gauge-invariant distribution function f(k)
that will replace the "distribution function, " f(s, to), of
the Airy representation, ' from which a straightforward
evaluation of the current is not possible. Work along

these lines is in progress, and we hope to report our re-
sults in the near future.
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APPENDIX

Example 1:Let us apply the transformation (2.2) to the retarded Green's function, '

l l & ~, e
G&(k„t,;kz, tz ) = ——8(t, t, )5(k, ——kz+(e /A')E(t, tz ) }—exp —— dt'e k, + Et'—

calculated in the scalar potential gauge with P= —E R.
First, let us Fourier-transform (Al),

dk, dk2 ik& r&
—ik2. r&

G&(k„t,;kz, tz)= ——8(t, tz) f — e ' ' ' '5(k, —kz+(e/A')E(t, tz})—

X exp —— dt'c k&+ —Et'
o

1

r

l dk) e l t) —t2 e
8(t —t ) — exp ik, r& i k&+——E(t& tz) rz—exp —— dt'e k&+ Et'—

(2~)' A A' o fi

or, using the center-of-mass coordinates,

l dki . e r i e
G" (r, r;R, T)= ——8(r) exp ik, r —i —E R——r exp —— dt'e k, + Et'—

(2~)' ' R 2 A o fi

Now we can apply (2.6):
r

G (kozR T)=f exp i co+ —E R r f e '"'G&(r rR T)—- &2~ fi (2m) i

e' ' dk&5(k, +(e/2')Er —k)exp ——f dt'e k, + Et'—
o v'2~ h o

l ~ d7 i~7- l ~ t e ee'" exp —— dt'c k&
— Ev.+ Et'

fi o v'2~ A o
' 2A' 2A'

i ~ d~;~~ i ~/2, ee' exp —— dt'c k, + Et'
o V'2n A' ~n ' 2'

=6 "(k,co) . (A2)

Example 2: Let us now transform the Careen's function, '

l l6„"(p„t„'pz,tz ) = ——e(t, tz )5(p& —pz)exp —— —dt'cp, — A(t').
'2

calculated in the vector-potential gauge.
Using the same procedure as used in example 1, and applying (2.7), we can write
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i d~; dr . e dP iP( g i 7+7-/26 "(k,co;Rz, T)= —— e'
3 exp —i k+ E—T r f e ' exp —— dt'E p, — E—t'

&21T (2' ) (2rr) A T /—2 f2

d+ iuw T+ 7./2
dp, $(p, —k —(e/iri)ET) exp ——I dt'E p, — E—t'

fi o V'(2' ) T—/2

i dv; ie' exp —— dt'c k ——Et'
i)t'«(2ir ) fi —n fi

=G "(k,co), (A3)

as in Eq. (A2).
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