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We describe a method for performing density-functional calculations for topologically disordered
condensed matter. This method combines the recursion and the linear-muffin-tin-orbital (LMTO)
methods, and uses the tight-binding representation. In the present version, the I MTO matrix
elements are evaluated in the atomic-sphere approximation (ASA). Various levels of approxima-
tion for the ASA Hamiltonian, such as the two-center tight-binding one, are systematically derived

and tested. The method is applied to crystalline bcc Fe and to amorphous FesoB2o. Charge self-

consistency is only treated for the average Fe and the average B atoms. The Fe—B bonding is found

to be covalent. A Stoner theory is derived and used to describe the ferromagnetism. The structures
of our density of states for ferromagnetic Fe8082p agree in detail with reliable photoemission data.

I. INTRODUCTION

0rtr. ,rt'r. ' = (Xrtr. lXrtjr-~) (2)

of the one-electron Hamiltonian and overlap matrices,
rather, the real-space behavior of the orbitals, i.e. , their
explicit r dependence, must be known. Furthermore, the
orbitals must form a reasonably complete set for the va-
lence electrons. In (I) and (2), R and I denote the site
and the angular-momentum character of the orbital.

In order to calculate the electronic structure of topo-
logically disordered solids and liquids it is customary to
solve the one-electron Schrodinger equation with an it-
erative, real-space scheme and to obtain local quantities
such as orbital-projected densities of states. This local
point of view has been extensively discussed by Heine,
Bullett, Haydock, and Kelly, ~ who advocate the recursion
method as the most e%cient real-space scheme. Other
schemes include the moment method and the cluster-
Bethe-lattice method. Common for all schemes is that
they require a basis,

I X), of localized orbitals. In or-
der to carry the iteration to reasonable convergence one
must include several hundreds of atoms, and this is pos-
sible only when the basis is well localize. d and minimal;
e.g. , it has near-neighbor range and includes only one 8,
three p, five d, and, possibly, seven f orbitals per atom.

For the calculation of charge transfers, magnetic
moments, and interatomic forces using the density-
functional formalism, self-consistency of the charge and
spin density is usually needed. In such cases it is not
suf6cient to specify the elements

With the recursion method a complication arises be-
cause the recursion is carried out with a matrix which is
either 0 '8, or 0 if~'R0 f, and this matrix must,
in practice, be truncated to near-neighbor interactions.
This is normally an uncontrolled approximation because
short range of the orbitals merely ensures short range of
the Hamiltonian and overlap matrices, and not of 0
Similarly, the matrix 0 ifz'R0 if2 is the Hamiltonian
in the basis of Lowdin-orthonormalized orbitals which
have fairly long-ranged oscillations. A further complica-
tion arises from the fact that the valence-charge density
at a given atom originates not only from the orbitals at
that site but also from the overlapping orbitals from the
neighboring sites and, hence, not only on-site but also
off-site elements of the density matrix in the orbital rep-
resentation are usually needed. However, a recursion cal-
culation merely yields a diagonal element of the density
matrix, and, in order to obtain the oA'-site elements, it is
therefore necessary to perform recursions using not only
atom-centered orbitals as initial states but also a large
number of bonding and antibonding linear combinations.

In this paper we explain and demonstrate how first-
principles electronic-structure calculations with the re-
cursion method may conveniently be carried out using a
basis of linear muffin-tin orbitalss (LMTO's) in a tight-
binding (TB) representation. s s

As is well known, the LMTO set is a minimal ba-
sis, in the sense mentioned above, and it is complete
for the muKn-tin or atomic-sphere potential used for
its construction and over an energy range of about one
Rydberg. We shall perform the recursion using the
Hamiltonian in the Lowdin-orthonormalized representa-
tion, 0 if 'R0 if~, that is, we shall use the long-ranged
orthonormal —rather than the TB—representation. The

1991 The American Physical Society



3578 NOWAK, ANDERSEN, FUJIWARA, JEPSEN, AND VARGAS

long range causes no problems because the eKect of trun-
cating the range of the Hamiltonian is controlled in the
following way: In the LMTO formalism, 0 it~'tt, '0
may be expressed as a power series of a matrix, h =
H —e„, where II is an efFective, two-center TB Hamil-
tonian and e„ is an arbitrary energy (diagonal matrix)
chosen at the center of interest. If this power series
is truncated after the first-order term and, hence, the
orthonormal Hamiltonian is approximated by the two-
center TB Hamiltonian, the recursion yields a density of
states (DOS) whose features have energy positions cor-
rect to first order in their distance from c„. If, on the
other hand, the truncation is performed after the second-
order term the range is twice that of the two-center TB
Hamiltonian and the resulting DOS features will have po-
sitions correct to second order in their distance from z„,
and so on. The fact that the spectrum of such a trun-
cated Hamiltonian is distorted far away from c is not
merely a disadvantage but may even be exploited: Since
the energy resolution obtained by recursion to a given
level is inversely proportional to the band width, the res-
olution may be increased if the recursion can be carried
out with a Hamiltonian whose spectrum is compressed
outside the region of interest. Such a truncated Hamil-
tonian can usually be found by suitable choice of the TB
representation.

With a basis of LMTO's it is not necessary to cal-
culate ofF-site elements of the density matrix provided
that the so-called atomic-sphere approximation (ASA)
is used. This is so, because in the ASA the eigenvalue
problem for the Hamiltonian matrix is equivalent with a
tail-cancellation condition for the orbitals [the Korringa-
Kohn-Rostoker (KKR) condition] and, as a consequence,
the imaginary part of the Green's function can be ex-
pressed as one-center expansions which merely need on-
site elements of the density matrix.

A preliminary version of the recursion- TB-LMTO
method was applied by one of us to crystalline bcc Fe, to
amorphous Fe, to amorphous FespB2p, and to amorphous
Cu Zri ~ alloys. For the two latter amorphous solids,
models with about 1500 atoms were used and the recur-
sion was terminated according to the prescription of Beer
and Pettifor. iz Charge self-consistency was achieved for
the average Fe and for the average B spheres, and the
on-site structure constants of the two-center TB Hamil-
tonian were approximated by site-independent interpo-
lations between the values obtained for the fcc and bcc
structures. The method in its present form has been ap-
plied recently to amorphous Si, Ca7Als glass, amor-
phous Pd, and to study the possibility of calculating
electric-Geld gradients with recursion. ~6

The paper is organized as follows. In Sec. II we first re-
view those features of the TB-LMTO method which are
important for its application to recursion. Then we dis-
cuss in detail how the charge density may be obtained.
Finally, the recursion method is brieQy reviewed and a
new terminator is introduced. In Sec. III we compare
recursion with band calculation for bcc Fe. As a pre-
liminary to discussing the electronic structure, chemical
binding, and ferromagnetism of amorphous Fe8pBqp, we
present in Sec. IV a band calculation for the crystal Fe2B.

At the end of this section we develop a Stoner theory ap-
propriate for treating the ferromagnetism of Fe B~ . In
Sec. V we then present and discuss our results for amor-
phous Fe8pB2p. First, we demonstrate the application of
our method at various levels of sophistication. Then, we
use the most accurate results to make comparisons with
experiments, and to discuss the chemical binding and the
ferromagnetic electronic structure. Finally, in Sec. VI we
conclude.

II. METHOD

The recursion method as well as the solid-state LMTO
method have been described in detail elsewhere. In
the present section we shall state and explain the re-
sults needed in order to apply the recursion method with
LMTO's. We start considering the LMTO formalism and
then we give a brief account of the recursion method and
introduce a linear terminator.

A. Structure constants

In solids and liquids the (classical) kinetic energy of the
valence electrons between the atoms is close to zero, and
LMTO's are therefore, most simply, chosen to have en-
velope functions which are solutions of the Laplace equa-
tion. A conventional solid-state LMTO, go&&(r —R), thus
has an envelope function proportional to the 2~-pole field
~r —R,

~
YL, (r —R). If R. takes the values of all the

sites in the the solid and if L takes the 4 (sp), the 9 (spd),
or the 16 (spdf), angular-momentum values, we obtain
the set of conventiona/ LMTO's, ~g ). This set may be
linearly transformed into an equivalent set of screened
LMTO's, ~y ). The envelope of the screened LMTO,
yRI(r —R), has 2 -pole character near R, but, in addi-
tion, it has screening poles at the neighboring sites. Each
set of screened LMTO's is characterized by a set n of
screening cons/ants, n~g, and these may, for instance, be
determined so as to give the LMTO set short range, or so
as to make it nearly orthonormal. For the conventional
set, the screening constants are zero. The following two,
site-independent sets of screening constants

n = (n, n&, nt&ij
= (0.28723, 0.02582, 0.0) = ni,

for sp screening and

n: (ng, np, na, ne&2}
= (0.34850, 0.05303, 0.01071,0.0) = nii

for spd screening have been found numerically to
give short-ranged envelope functions for all, reasonably
homogeneous, three-dimensional structures. The cor-
responding LMTO sets are referred to as tight-binding
sets. '

The envelope of y&1 (r —R.) may be expanded about
the site R.' in a spherical-harmonics series and the ex-
pansion coeKcients S&,1& &I are the so-called screened
struc/ure cons/ants. For a given o, , they form a Hermi-
tian matrix which will turn out to be the structural factor
of the two-center Hamiltonian for the LMTO set.
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The conventional structure constants have the follow-
ing ofF-site elements:

where the z axis is chosen along R.—R.' and d = ~R, —R,'~
is the interatomic distance. A length w is introduced to
make the structure constants dimensionless. In order to
turn the z axis away from R —R' one may use Table I
in Ref. 19. Alternatively, one may use the table given in
Ref. 5, or the general formula, given in the same refer-
ence, valid for any z direction and for any I and I'. The
on-site elements of the conventional structure constants
vanish per definition.

The screened structure constants are given in terms of
the conventional ones and the screening constants by the
"Dyson equation:"

@CL ~0 ce ~p
RL,R'L' ~RL,R'L' + g ~RL,R"L"~R"Z"+R

Rll L/I
7

or, in matrix notation,
(6)

$'0(] QO)
—1 —1

[(
—1 QO)

—i
I

—1

where a is considered a diagonal matrix with elements
~m.

If n is given by Eq. (3) or Eq. (4), and if the length to
entering the definition of So is taken to be the average
Wigner-Seitz radius, i.e., if

(8)

where V»t, is the volume per site, then the screened struc-
ture constants are so localized that they eA'ectively vanish

when the interatomic distance d exceeds the radius of a
cluster containing about 20 atoms for spd screening and
about 50 atoms for sp screening. These structure con-
stants are named the tight-binding structure constants
S . The choice (8) for to is indeed not crucial; for in-
stance, the structure constants with o, = o.

&
or o,

&&
are well

localized, even for the extremely inhomogeneous struc-
ture consisting of a surface of a semi-infinite solid when
tv is taken to be the signer-Seitz radius of the bulk. i7

For an amorphous system one could thus calculate the
tight-binding structure constants by inverting, for each
site, the Hermitian, positive-definite matrix n i —So in
(7) for the cluster centered at that site. The dimension of
the square matrix to be inverted is approximately 20 x 9
for spd screening and 50 x 4 for sp screening, that is,
about 200.

The og site elem-ents of the tight-binding structure
constants, which will turn out to be the structural factors
of the "hopping integrals, " follow the universal interpo-
lation formulai"

~ee'~ = ~ee'~ exp( ~ee'md/~)

rather closely, provided that the distribution of sites
within a distance of order 10to/A is reasonably homoge-
neous and that m is taken to be the local average Wigner-
Seitz radius. The parameters A and A are given in Table
I, and we see that the screening set o,&&, which includes
quadrupole screening (s,p, d), gives a somewhat shorter
range (A 3.5) than the set n& (A 2.5), which in-
cludes screening with monopoles and dipoles only. On
the other hand, if quadrupole screening is included, the
I MTO basis set must (usually) include the d orbitals in
order to be reasonably complete, regardless of whether
there are d states or not in the energy range of inter-
est. Similarly, if one is willing to always include the
f orbitals, a set n&&&, slightly more localized than nii,
could be used. The on-site elements of the tight-binding
structure constants do not vanish. They depend sensi-
tively on the local environment and have no approxima-
tion in terms of a simple, structure-independent interpo-
lation formula. This will be shown by the example of

TABLE I. Parameters of the interpolation formula S~zl ——Ae "" for the ofF-site elements
of the TB structure constants. We have used sp screening (set I) and syd screening (set II). The
screening constants n& and n&& are given by Eqs. (3) and (4), respectively. ut is the average Wigner-
Seitz radius given by (8). From Refs. 9 and 17.

sscJ

SECT

PP
sdcF

ado'
dd CF

pu7r

pd x'

ddt
ddb

Art

—184.7
371.7
791

—575
—1422
—3685
—359.9

837
1997
—844

ad screening

3.293
3.301
3.331
3.440
3.535
3.905
3.935
3.965
3.998
4.708

Ai

—43.57
81.77

182.7
—84.51

—288.6
—1018
—241.5

487.6
1272
—821

sp screening

2.559
2.503
2.529
2.444
2.671
3.199
3.589
3.558
3.657
4.494
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amorphous FespBpo. These "crystal-field" elements are,
however, given explicitly in terms of the ofF-site elements
by the Dyson equation (6): Since So has no on-site el-
ements, only the off-site elements of S appear on the
right-hand side of Eq. (6). A simple approximation for
the on-site elements of a tight-binding structure matrix
is thus obtained by using Eq. (6), together with Eq. (5)
for S and the approximation (9) for the tight-binding
hopping integrals, S

C. Augmentation functions
and potential parameters

The augmentation functions y and j for a given muf-
fin tin or atomic sphere of radius sR are obt, ained from
the spherical average, v~(lr —R, l), of the potential V(r)
by solution of the corresponding radial Schrodinger equa-
tions at some chosen energies c„Rg and at the neighboring
ones e ~+ de. Specifically, if p~(e, r) is the solution of
the Eth radial Schrodinger equation, normalized to unity
in the sphere,

B. LMTO's and the two-center Hamiltonian

Given an envelope function, the LMTO is now con-
structed by continuous and differentiable augmentation
inside certain muon-tin or atomic spheres with func-
tions, y~L, (r —R) and j&&,L, (r —R,'), to be specified
later. We may thus write

&XI,(r —R) = "Irl.(r —R) + v'RL, (r —R)

f
SR

V ~(e r)'r'« —= (~~~(e)') = 1

then the augmentation-function y is defined by

Fm(r) = gm(s~ae, r),

and the energy-derivative function,

8 +Iver(e, r)
&vRC

(12)

+ ) &5 I, (r —R.')her r, ~1.
R', L '

where a&&(r —R.) is the envelope function truncated in
side all spheres~ and the y and y functions are truncated
outside their respective spheres. In shorthand matrix no-
tation we express the cr. set of LMTO's as,

I» = I& &+ ly.& + ls

where, for instance, (rip) is a row vector with element
(rlpRI, ) = y~L, (r —R), and (plr) is a column vector
with elements (p~L, lr)—:p&L(r —R), and where h~ is
a matrix. Equation (10), crudely speaking, says that the
"head" of the envelope is given the proper atomic wig-
gles through smooth augmentation with a y function,
plus a y function times the on-site element of h, and
that the "tail" of the envelope is orthogonalized to the
core states of the neighboring atoms through smooth aug-
mentation with j functions. The latter are constructed
in such a way that, when multiplied with the proper coef-
ficients h~, they smoothly match onto the envelope func-
tion. This means that the j functions by construction
must have the proper radial logarithmic derivative at the
sphere boundary, and that the coef5cients h are deter-
mined by the condition of continuity of the orbital. They
are given by

+RL,R'L' —~v RE~RR' ~LL ' + hRL, R' I '

is seen to be orthogonal to y in the sphere. The
augmentation-function p for the o. set is now defined as
follows:

n( ) ~( ) ( )
~ &([1+(& —&v)o ]y(e, r)&

&v

(»)
with the constant o determined, in Eq. (18) below,
to give j the same radial logarithmic derivative at the
sphere as the envelope tails, i.e. ,

cjln
Ij (r)l

Blnr
= D((s/~) ' ' —(s/~)'~/[2(2&+ 1)])
—:D (s). (14)

D(~'(s)) =

The definition of D (s) is seen to be equivalent to

(s/u)) +' D (s) —E

2(2E + 1) D (s) + E + 1

For simplicity, we have dropped the subscripts RE from
Eq. (13) and onwards.

The position- and width-po/entia/ parameters c~ and
dL, , which enter the definition (11) of the two-center,
first-order Hamiltonian, may be expressed in terms of
the value and the radial logarithmic derivative of y at
the sphere boundary as follows:

cat 6~R bL I + gdIrr SRg Irlgl gclrl q ( )

in terms of the structure constants and certain potential
parameters, c —g„and d, which depend on the values
of y and y at the sphere boundary, and which will be
given in Eqs. (16) and (17) below. The Hermitian matrix
defined by Eq. (11) will turn out to be the first order-
Zamiltonian in the atomic-sphere approximation (ASA)
(in atomic Rydberg units); it is seen to have the tioo-
center form.

. +. . .ID(V(s))+~+1][D (s) —D(V(s))]
D~(s) + l+ 1

(16)

(d~) i/z (s/2)i/z(s/~)&+i/2y(s)
D~(s) + E+ 1
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It is the existence of a Wronskian relation between y
and rp which makes it possible to evaluate the two-
center, first-order Hamiltonian without calculation of y.
This means, for instance, that a rough estimate of this
Hamiltonian may be obtained merely from atomic or-
bitals, chosing the e„~'s as the atomic energies and
the p~(r)'s as the atomic orbitals renormalized to the

spheres. This estimate corresponds to taking the poten-
tials in the spheres as truncated atomic potentials. More
realistic estimates of the position parameters, the c's, can
be obtained by including the overlap of the neighboring
atomic potentials as a perturbation.

The potential parameter needed to specify p in (13) is

the so-called overlap parameter,

—D ( )~[D(j ( )) —D(~(
D(~'(s)) —D (s) )

which depends on the potential parameters rp(s),
D(p(s)), and D(j&~(s)). Another meaning of this overlap
parameter is that c'„Rr+1/o~~ is the energy for which the
LMTO tails alone solve Schrodinger's equation inside the
sphere at R for the angular momentum /, i.e. , it is the
energy where D~(s) = D(p~(s, s)). If, for a given Rg,
this energy lies inside the range of interest, that is within
half a Rydberg from s„~ or so (i.e., if o~~ ) 2 Ry ),
then the LMTO's for that sphere and angular momentum
can usually be deleted from the basis set because the tails
of the other LMTO's suffice to solve Schrodinger's equa-
tion throughout the energy range of interest. If these
orbitals are not deleted, so-called ghost bands might oc-
cur. In those rare cases where not only s„Rr + 1/o&& but
also c~ lie inside the range of interest, and, consequently,
the Bg LMTO's cannot be deleted, it may be necessary
to change the representation, e.g. , from the n&& to the n&

representation.
As an example, we give in Table II the potential param-

eters for bcc Fe whose band structure we shall consider
in Sec. III. The potential parameters depend on the scale
constant m through the definition (15) of D (s). The
width parameter d~, according to (17), also contains the
factor (s/m) 2r+'.

D. Ham. iltonian and overlap matrices

For the LMTO basis of Eq. (10) one finds the following
expression for the overlap matrix:0:—(xlx) = (1+ho)(1+ oh) + hph+ LKlz).

thermore, used matrix notation with 1 being the unit
matrix and with the potential parameters o and p being
diagonal matrices with elements oRg and

respectively. The potential parameters p are the small
parameters of a linear method and s„~r + z~(p~r) ~~2 are
the "energy windows" inside which such a method can
be expected to yield useful results. The widths of these
windows are usually several Rydbergs. The last term in

Eq. (19) is the integral over the product of two envelope
functions in the interstitial region. This integral may be
calculated analytically for the conventional, unscreened
envelopes, and the transformation to a tight-binding rep-
resentation then requires left and right multiplications
with the tight-binding structure constants.

For the IIamiltonian matrix one finds

&—:(x I
—&+ &(r) Ix)

= h(1+») + (xls. Lx) + (xl&wMT(r)Lx).

Here,

(2o)

(xls„lx):—(1+ho)s„(1+ oh) + hs„ph

can be lumped together with the overlap matrix, pro-
vided that the matrix z commutes with all other matri-
ces, i.e., if all s„~r 's have been chosen identical. V~MT(r)
in the last term of Eq. (20) is the difference between
the full potential and the potential used to construct the
LMTO set, that is,

Here, and in the following, we drop the superscripts o,

when the equation holds for a general a. We have, fur-
&NMT(&) =—&(&) —) .»(Ir —Rl),

TABLE II. Self-consistent potential parameters for Fe. The spd screening parameters o&& given
in Eq. (4) were used. sF,=au=2. 662 a.u.

Rydbergs

Fe s
Fe p
Fe d

—0.306
0.330

—0.189

0.159
0.0671
0.0154

—10

—2.12
—1.73

1.78

—0.474
—0.325
—0.263

p
—1/2

5.1
6.6
0.80
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is the full potential in the interstitial region and the non-
spherical part inside the spheres.

In the atomic sp-here approximation (ASA) the intersti-
tial region and the nonspherical part of the potential are
supposed to vanish so that, in each of the expressions (19)
and (20) for the overlap and Hamiltonian matrices, the
last term is neglected. The ASA is a reasonable approxi-
mation provided that there are very few electrons in the
interstitial region or that the touching muon-tin spheres
can be substituted by "space-filling" atomic spheres, i.e.,
atomic Wigner-Seitz spheres, whose overlap does not ex-
ceed 20% (i.e. , if sn+ s~ ( 1.20lR. + EUl). This substi-
tution is possible for closely packed materials, as well as
for those open structures which, through the addition of
interstitial spheres, can be closely packed.

The so-called combined correction for the ASA in-
cludes the last term of the overlap matrix exactly, and it
includes the last term of the Hamiltonian matrix in the
approximation:

where V~MT(RI, R'I') is some simple estimate of the
non-ASA part of the potential in the region where the two
orbitals overlap. For TB orbitals, this region is localized
so that the estimate can be quite reliable.

The overlap matrix given in Eq. (19) is dominated by
the first term. For use with the recursion method, it is
therefore convenient to transform to the so-called nearly
I otodin-orth, onormalized set,

&' = e. + h'+ h'e. ph'+ (x'I~~MT(r)lx')

+" & p" + Lx l&NMT(r)Lx )

where

and

l~") = )~)(l+ oh)

h'r = (1+ho) ih = h(1~ oh)

(24)

(25)

or, equivalently,

h~=h —hob~ =h —h~oh=h —h o h +.
(26)

In Eqs. (22) and (24) it may sometimes be advantageous
to use (1+ oh) = 1 —oh&. The nearly orthonormal
representation could equally well have been obtained di-
rectly from Eqs. (13)—(15), by introducing it as that rep-
resentation for which all the overlap parameters vanish.
The corresponding screening constants y are thus seen
to be determined by the potential parameters D(rp&(s))
through

lx") = Lx)(1+oh) '

In this basis, the overlap and Hamiltonian matrices take
the following simple forms:

O~ = 1+ humph~ + (rc~ l~~),

(sir/m) +' D(j irt (s)) —E

2(2E+ 1) D(p~~(s)) + g+ 1
'

Note that y, like cP, depends on the scale constant m.
The expression, equivalent to Eqs. (25) and (26), for the
two-center Hamiltonian in the nearly orthonormal repre-
sentation, may be obtained from (11) as

H~ = e„+h~ = 2'+ v d~S'y d~

The range of this matrix, and hence that of the nearly
orthonormal orbitals (10), is determined by the potential
parameter y, and Fig. 5 of Ref. 7 shows how, for bcc and
fcc vanadium, the oscillations of S~ extend to d/w —4,
i.e. , to about the sixth-nearest-neighbor shell.

E. Standard potential parameters

The position parameter c& (16) of the nearly or-
thonormal representation is the second-order estimate
of the energy corresponding to the boundary condition
D(y(e, s)) = I. —1. S—imilarly, the width parameter d&

(17) is the first-order estimate of 2s(s/io) + &p(c, s)
i ioy(c, io)z. This means that c~ and d are more insen-
sitive to the (somewhat arbitrary) choice of e, than are
c and d which are merely first- and zeroth-order esti-
mates, respectively. For tabulations, one therefore uses
c& and d& or, in standard notation, C = 6' and 4 = d~.
Given tabulated values of C, E, and y, one can obtain
e, d, and o, for any choice of o. , and vice versa, using
the expressions

co e dec i/~

(28)

For nearly all elemental, close-packed metals, the four
potential parameters, C, b, , y, and p have been ob-
tained from self-consistent LMTO-ASA band-structure
calculations and are tabulated in Refs. 5 and 7 at the
equilibrium Wigner-Seitz radii (s—:ui). In the latter
reference, the self-consistently calculated atomic-volume
derivatives, e.g. , dC(s = io)/din s, the pressure dependen-
cies have been tabulated as well. These atomic-sphere
potentials thus correspond to atomic spheres which are
kept neutral. Alternatively, from the values of C, A, p,
p, and the tabulated value of the potential at the sphere,
one can, using Eqs. (205)—(207) of Ref. 7, find the atomic-
volume derivatives, denoted b/b ln s, of the potential pa-
rameters corresponding to frozen atomic-sphere poten
tials. The diR'erence between these two types of deriva-
tives, d/din s and b/bins, expresses the importance of
self-consistency in the elemental solid.

Although computed for crystalline phases, the
potential-parameter tables in Ref. 7 may be used to esti-
mate the potential parameters for noncrystalline phases.
This is simpler than performing charge-self-consistent
recursion-method calculations of the type that we shall
describe later. If the noncrystalline phase is mona/omic,
the tabulated parameters should merely be extrapolated
to the proper density (i.e. , sx = to+' ~ snon-x = ionon-x)
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using the tabulated self-consistent atomic-volume deriva-
tives, d/din s, which hold for radius deviations of about
+5%. In case the noncrystalline structure is so open
that there are spheres which overlap by more than 20%,
one should, after the extrapolation to the proper density
(zu„~„x), choose a new snon-x (( conan-x) in such a way
that the overlap is now 20% or less. The corresponding
extrapolation of the potential parameters to the smaller
radius (s„„x)should be performed using the frozen-
potential derivatives (b'/bins). Subsequently, A and p
should be multiplied by the factor (s„„x/io„„x)2+i
in order to take into account that to no longer equals s,
but the average Wigner-Seitz radius given by (8). The
parameters of the two-center tight-binding Hamiltonian

may finally be calculated using Eq. (28) with n = n&&.

Due to charge transfer, it is harder to estimate the
potential parameters of an intennetallic alloy but, if it
is possible to fill space with slightly overlapping atomic
spheres whose sizes do not deviate grossly from those
of the constituent metals, that is, if Vegard's law holds
approximately, then one can usually assume that the
spheres are suFiciently neutral that the above-mentioned
construction works. s Otherwise, a charge-self-consistent
calculation for the noncrystalline material seems to be
needed. Recent experience with estimation of potential
parameters for substitutionally disordered alloys is de-
scribed in Ref. 21.

F. Hamiltonian for the recursion method

The Hamiltonian in the comp!etely orthonormal repre
sentation,

ls

g —i/2~@ —i/2 (gp) —1/2~&(gp) —i/2 (3o)

In the ASA, and to third order in h7p /2 this may be
expressed as

H = H~ + (h~e„ph~ —~2h~ph~e„— 2ie, humph~)

( ,'h~ ph~h~ +—,' h-'h" ph') + . — (»)
where the only nondiagonal matrix is h~. The term in
the first parenthesis is of second order in h~p t and of
first order in the fluctuation of the z„'s, that is, effec-
tively, of third order in the deviation of the energy from
the average z . We thus realize that II& —= z, + h~

equals the Hamih, 'onian H to second order. If we now
use the power series (26) for h~ in terms of h, we see
that the general-representation two-center Bamiltonian,
II in (ll), equals the IIamiltonian H to first order Al-.
though H~ equals H to first order for any choice of n for
which no o parameter diverges, the energy range over
which the eigenvalues and eigenvectors of the two-center
Hamiltonian are useful approximations to those of H, of
course depends on the values of the o parameters and,

hence, on the chosen representation, a.
The recursion method operates with either a non-

IIermitian matrix 0 g or with the 8amiltonian,
H = Q i/2&D i/2, in the completely Lowdin-
orthonormalized basis. With LMTO's, the latter matrix
is as easily obtained as the former and, since Green's
functions derived from a EIermitian matrix are simpler
to deal with than those derived from a non-Hermitian
matrix, then we use H. This we write as

H = II'+ I (x'lvNMT(r) Ix') —2(K'—l~')II'
—-'H~(K~(~~)] + (32)

including now the term (~~ l~~) in the overlap matrix
(23) to first order. The energy deviations defined in
connection with expression (31) are included explicitly
to second order. For an infinite noncrystalline solid or
liquid, H must in principle be generated in the follow-
ing way: First, we use tight bindin-g structure constants,
S from Eq. (7), to construct a two-center tight-binding
Hamiltonian, h from Eq. (11), an interstitial overlap
matrix, (z lz ), and the non-ASA term of the Hamil-
tonian Qy lVNMT~y ) in a representation of tight-binding
LMTO's. Then, the second-order Hamiltonian h~ is ob-
tained from the power series in Eq. (26) and (tc~~tc~)
and (y~jVNMTly~) are obtained using the transforma-
tion (22). These expressions are finally substituted in

(32), thus yielding H as a poujer series in the two-center
tight- Ibinding PamiAonian h

The matrix actually used in the recursion calculation
is some truncation of H. It should be noted that not
only can the matrix inversions required to obtain the
exact matrices h~ and (O~) i/2 not be performed for
an infinite noncrystalline structure, but these matrices
are also not wanted because they cannot be stored in
the computer due to their long range. The power se-
ries may, however, be truncated at the point where, over
the energy-range required (e.g. , the range of the occupied
valence bands), the accuracy is sufficient. 22 In practice,
we have found it possible, with suitable choices of the
z 's and the tight-binding representation, to truncate
already after the first- or, in a few cases, after the second-
order terms in h . Moreover, we use the AHA, possibly
with the combined correction (21). The useful result is
thel efore

H = II~ —h~o~h~+ ((~~l~~)V@MT
—~2II (~~lK ))+, (33)

where we often drop one or both of the last two terms.

G. Charge density

As was mentioned above, with the recursion method
we can compute one of the two Green's-function matri-
ces, (e+ i0+ —H) or (e+ i0+ —0 g), and the
corresponding expressions for the charge density per en-
ergy range are
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To calculate the charge density n(r) which is the inte-
gral of N(s, r) up to the Fermi energy, we must therefore
be able to evaluate either the completely orthogonal or-
bitals gO i, or both lg and lgO, in r space and
to perform the RI summations implied in Eq. (34). For
a given r these summations can only be performed if the
orbitals have short range, and this is generally not the
case for lgO ~, and hardly for bo/h lQ and lgO ei-

ther. With LMTO's, the expression for 0 ii2 is simpler
than that for 0 i, as may be realized from Eqs. (19),
(29), and (23), so in the following we shall stick to the
first, expression in Eq. (34) and discuss how the problem
posed by the long range of the Lowdin-orthogonalized
orbitals gO i~2 may be circumvented. The density-of-
states matrix obtained with the recursion method is thus

N(e:) = —vr 'Im Tr(s+ i0+ —H)
' = ) u, b(s —s, )ut,

2

(35)

with H given by Eq. (31) and where, in the last expres-
sion, we have transformed to the eigenrepresentation, so
that the energies z&, the column vectors u, and the row

vectors ut satisfy

partial wave normalized to unity in the sphere for all
energies [see Eq. (12)]:

&(& &) =—V (r)+~'(r)(s s-.)+4'(r)(s s-.)'/2+

(38)
Hence, the charge density n(r) may be expressed in terms
of the zero, first, and second energy moments of the on-
site elements of the density-of-states matrix in the or-
thonormal representation N(s).

The wave functions in Eq. (36) are only orthonormal
in the ASA, and to first order in hopi~2, but the latter re-
striction is easily released by using for p(s, i ) the Taylor
series (38) to second order, and truncating the product
p(s)p(s) after the terms of order (s' —s„) . This proce-
dure consistently uses basis functions which are correct
to the same order as the Hamiltonian.

Self-consistent calculations in the ASA merely require
the spherical average of the charge density, and this is
given by the diagonal elements of N(s), which are partic-
ularly easy to evaluate with the recursion method. The
charge density, spherically averaged inside the sphere at
R is thlls

nR(r~) = (4ir) ') (p(r)'n"l y2p(r) j~(r)n&')
e

Hu. = u-z. u. u I ——b~-~, and ) u u'=1.
2

+h'( )'+ P( )P'( )1 '"&
(39)

2. Second-order Hamiltonian

AVe first consider the case where H:—II —h o h
H'i, that is, where the density-of-states matrix (35) has
been obtained from Eq. (33) without the combined cor-
rection for the ASA. The linear combination of nearly or-
thogonal orbitals specified by an eigenvector of H~ may,
using Eqs. (10) and (24), be written as

lz'&ui = [lz&+ I g '&(&~ —&.)]u, + IK & [1—o (sg —s.)]u, ,

(36)

because u. diagonalizes h~ + c . This means that, in-

side each sphere, the multicenter expansion on the left-
hand side of Eq. (36) can be expressed by a single-
center partial-wave expansion. In the approximation that
Oi 1, this "LMTO tail-cancellation condition" '

thus leads to the following one-cen]er expansion of the
energy-resolved charge density in the sphere at R. :

~(s, r) = ).).V eie(s, re)V Re (~, ree)
e e'

x ) ).yr. (re)NIeL, eeL (s)Yg, (rR)

(37)

Here, rR = r —R. and the radial functions p(e, r) are
given by the first two terms of the Taylor series for the

with the moments
8'F

ele:(s' s ere) ) +Re, Iee (~) (40)

One normally tries to chose each z~Re at the center of
gravity of the occupied part of the M-projected band,
i.e. , such that the first moment in Eq. (40) vanishes.

The charge density may also be expressed as a multi-
center expansion

n(r) ) ) +RL(r —~)nIeL, R'L'+Ie'L'(r ~')
R,I R',I'

(41)
in terms of the tight-binding LMTO's. Since ly~)
ly )(1 —o hi), the density-of-states matrix in the tight-
binding representation is [1—o (e —s )]N(s)[1—o (s—s, )]
and the density matrix entering in (41) is

s[ 0 (s sv)]Re NRL, R'L' (p)

x[1 —o (s —s )]ere (42)

This may be expressed in terms of the energy moments
of N(s). Expression (41) is more cumbersome to eval-
uate than the one-center expansion (37), because many
more elements of the DOS matrix are needed, and the
recursion method only yields one at a time. Similarly,
the charge density in the interstitial region may in prin-
ciple be obtained from Eq. (41), but it is presumably
easier to continue the one-center expansion of Eq. (37)
to rR & sR, despite the high angular-momentum compo-
nents (E, I.' ( 4) needed for large err

In order to go beyond the ASA for the orthonormal-
ization, we should instead of Eq. (36) use
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lX')(&') "u, = l~') [1 —~2h'p(s/ —s.) —2(~'l~')lu,
= (IV)[I ——,'(s/ —s.)'p]+ li')(~ —s.))u, ——,'[IV )+ li')(& —s.)][I —o (&/

—&.)]&~ l~ )
x [1 —o (s, —s„)]u, + [~ ) [1 —o (s, —s.)]u, , (43)

where the last approximation has the virtues of yielding a computable expression and the correct normalization.
As regards the first term, we have already seen that, for the ASA, the correct orthogonalization may be obtained
by substituting the wave function in the curly brackets by the second-order Taylor series (38). The last term in
Eq. (43) gives rise to the interstitial charge density, and the second term is caused by the renormalization due to the
integral over the interstitial region. In the simplest approximation, where we drop all energy dependencies and only
renormalize the spherical part of the charge density, this second term is

&&R(&R) = (4&) ) FRe(&R) ) ) (+RL, I+R"I."))iR I, R/.

where n& ~ is the integral up to the Fermi level of the
density-of-states matrix N(s).

We finally consider the case where the Hamiltonian H

includes the combined correction to the ASA, i.e. , where
the density-of-states matrix has been obtained from the
full expression (33). In that case u no longer diagonal-
izes H& exactly, and there is no exact tail cancellation.
The charge density would thus have to be expressed by
a multicenter tight-binding expansion like Eq. (41) but
with the density matrix

n =(1—oh)i
in the approximation O~ 1. Since very many matrix
elements of N(s) are required in this matrix product, we
recommend being pragmatic and using the formulas de-
rived under the condition of tail cancellation.

2. First-order IIamiltonian

The recursion to yield N(s) is often carried out using
from Eq. (33) only the two-center tight-binding Hamil-
tonian, i.e. , H—:H . In this case the energies are only
correct to first order and, for constructing the charge
density, one should use radial functions Eq. (38) whose
energy dependencies are consistent with those of the den-
sities of states. Straightforwardly, one would truncate
the Taylor series for the radial charge densities after the
first-order terms, but this spoils the positive definiteness
of each radial charge density and may occasionally, when
the energy is far from the respective z„, lead to a nega-
tive partial charge density. We therefore prefer keeping
the second-order Taylor series for the radial functions
and then correct the energy argument so as to keep the
energy-dependent shape of each radial function consis-
tent with that of the band (e.g. , for an unhybridized
band the wave function must change from bonding to
antibonding when the energy changes from the bottom
to the top of the band). The formalism to be compared
with Eq. (36) and onwards is then as follows.

The wave function is

~y~)(O~) '
u, = (~p) + )(p~)h~)u , + (r. )(1 —o h.~)u,

+~'( )(s-s.)II —(s-s )"l (44)

This result can be obtained from the first term of
Eq. (43). The spherical average of the charge density
is thus given by

( ) = (4 ) ') ( V( )' '"+ 2V( )P( ) "'
e

+l~'(~)' —2V (~)~'(~)o

(45)

in terms of the zero, first, and second energy moments
(40) of the diagonal elements of —z ilm(s+i0+ —H )

to first order in h&. Since u. now diagonalizes the two-
center tight-binding IIamiltonian H, and not H~
H —h o h + ., tail cancellation occurs merely to
first order in h . We shall use the approximation

H~u, = P(s, )u, ,

where s/ are the eigenvalues of H = II, and c~(s) is
defined to be a diagonal matrix with the elements

~R/(~):—& —(~ —&&R&)

cR/(s) is thus the energy t, o second order, neglecting hy-
bridization eAects. This approximate treatment of the
second-order efFects on the wave functions enables us to
use the procedures of the previous subsection to enforce
orthonormality. The energy argument z of the radial
function in Eq. (38), but not that of N(s), should thus be
substituted by s~(s'). In Eqs. (40) and (42) s —s„should
be substituted by s~(s) —s„.

The two-center tight-binding Hamiltonian (11) only
depends on the potential via the values and radial deriva-
tives at the sphere boundary of the radial wave func-
tions; the first and second energy derivatives do not en-
ter in the expressions (16) and (17) for the potential pa-
rameters c and d. For constructing the charge density,
one may therefore prefer to avoid computation of second
energy-derivative functions, at the cost of second-order
nonorthogonalities, by using in Eq. (37)

V (s, r) = V (r)[I —&(& —& )'&]
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H. Self-consistent potential

In density-functional band-structure calculations with
the LMTO method it is customary to achieve self-
consistency only for the spherically-symmetric part of the
charge density and in the ASA. Despite this approxima-
tion, the full charge density not made spherical obtained
as the result of solving Schrodinger's equation (possibly
including the combined correction) for this ASA poten-
tial has been found highly accurate, and so have the
total energies calculated from it. Due to its simplic-
ity, this is the self-consistency procedure that we rec-
ommend be followed also for disordered solids and liq-
uids. The potential for the erst iteration towards self-
consistency is usually obtained from superposed atomic
charge densities, 2 or from the elemental solids as de-
scribed at the end of Sec. II E, and the following poten-
tials are then constructed as follows.

Given an ASA charge density from a recursion calcu-
lation, the Hartree plus exchange-correlation potential is

vR(r) = d r' — + p (nR(r))
2n~(r') a, 2ZR

,„ lr —r'l
2zR

lR, —xUl'R'gR

inside the sphere at R, and in the ASA. Here nR(r) is the
sum of the valence-electron density, given by Eqs. (39)
or (45), and the "frozen" core-electron density obtained
from an atomic calculation. The integral in the first term
is in the sphere and can be reduced to the sum of two
radial integrals. ZR is the nuclear charge in that sphere.
The third term is the exchange-correlation potential. The
last term is the electrostatic Madelung potential, spheri-
cally averaged in the sphere, from the net nuclear minus
electronic charges, ZRI, from all the other spheres. The
input potential for the next recursion calculation is now
a mixture of (46) and the previous potential.

The long-ranged Madelung term in Eq. (46) cannot
be summed directly in the disordered structure, and
the pair-correlation functions of the disordered struc-
ture have to be used. Alternatively, one may for closely
packed solids use the procedure of adjusting the sphere
radii sR at each iteration step so as to keep the spheres
neutral and, hence, to avoid the Madelung term.

For a two-component system like Fe8o820 we treated
the Madelung potential in the following approximate
way: The Madelung sum for the potential at site R, ,

~R'

„, „IR—~'l '

is approximated by the integral

Zlp11 R + Z2p12 + 3 I (47)Ql

for all atoms of type 1, and by

Z1P21 R + Z2P22 R
Q/ 7

for all atoms of type 2. Here p;& are the average, atomic,
partial pair-distribution functions. We thus use the same,

average Madelung potential for all atoms of the same
type. To avoid cluster-size effects and slow convergence of
the integrals, we multiply the pair-distribution functions
by a damping factor such that for large distances (shorter
than the dimension of the cluster) p;z tends towards the
partial density of the j component Nz/V, with V being
the volume containing N& atoms of type j.

I. Density-functional total energy

For a given muffin-tin or atomic-sphere potential,
v~(r), not necessarily the self-consistent one given by
Eq. (46), the kinetic energy is the sum of the one-electron
energies minus the potential energy:

c)T = ) ) s„lignIir. p nm

In the ASA the total energy is simply

E = T+) UR+) ),, (49)

vs (r)nR(r) d r.

where

U A P 6 ~ A P + I d P d P
2Z n(r')

is the intrasphere interaction between the electrons, and
between the electrons and the nucleus in that sphere.

Current total-energy expressions employing the charge
densities not made spherical are considerably more in-
volved than Eq. (49).2 ~ For calculatingstructuralen-
ergy changes we recommend the simple frozen-potential
procedure which amounts to calculating the total en-

ergy difference as the change, in the sum of the one-
electron plus Madelung energies.

J. Recursion with terminators

The recursion method is based on work by Lanczos
and is essentially a method for transforming a symmet-
ric matrix into a tridiagonal form. The application of
the I anczos method to solid-state physics problems was
given by Haydock and co-workers. '2 a2 His recursion
method is a real-space method for the calculation of one
diagonal element of the Green's function; its imaginary
part gives the orbital-projected (or partial) density of
states (PDOS).

The basic idea is to generate an orthogonal subspace
of dimension n by repeated operations with the Hamilto-
nian matrix H on a starting vector. The starting vector
corresponds to that orbital for which we wish to calculate
the PDOS. If ui denotes the starting vector, the recur-
sion procedure which generates the orthogonal subspace
lu„) is as follows:

b1u2 = Hu, —a1u„ (50)

~n~~n+] —H +~ +~+n ~n-1&n-1'

The a„, b„1 are the coefficients to orthogonalize H u
to the preceding vectors, u„and u„1, and b„ is the



ELECTRONIC-STRUCTURE CALCULATIONS FOR AMORPHOUS. . . 3587

coefFicient to normalize un+& to unity.
The recursion coefficients are given by

(51)

bl a2 b2

b2 a3 b3 (52)

From the Green's-function matrix G(z) associated with

H,

G(z) = (53)

the PDOS for the initial orbital is

Nii(s) = Nii(s) = ——ImGii(s+ i0+),

By using the tridiagonal form for the Hamiltonian, Gii(z)
has a continued fraction form:

tl +1H u„.
They describe higher-order moments of the PDOS for the
initial orbital and represent the influence of increasingly
remote orbitals.

The new vectors generated by the Lanczos recursion
method defined in Eq. (50) generate an orthonormal set
in the I&rylov subspacess (ui, H ui, H2u„. . . , H" ice, ).
The basic I anczos procedure can be viewed as a Gram-
Schmidt orthogonalization of the set of I&rylov vectors.

The new basis is therefore generated by repeated op-
eration with H, each operation allowing the electron to
hop further from the initial orbital. This procedure is
very easy to implement numerically, because we need to
perform only matrix multiplications. However, some care
has to be taken. Round-ofF errors due to finite precision
computers, make possible that the new vectors gener-
ated after some iterations are not orthogonal to all the
preceding ones.

In the new, orthogonal basis, which has orbital number
1 in common with the original basis, the Hamiltonian has
the tridiagonal form.

= —,
' (sz —sa)

Normally, for this case, one uses the "square-root termi-
nator" which assumes that after the nth level, the co-
eKcients remain constant and equal to their asymptotic
values. The result is

s —a~ —i/4bz —(s —a~) 2
T s

2
(55)

which ensures that the continuum of states is in the range
of a —2b~ & z ( a + 2b

The asymptotic values are generally not known and
in practice the square-root terminator often gives spuri-
ous oscillations in the PDOS curve. This is due to the
abrupt matching between the known calcula. ted coefIi-
cients and the asymptotic ones. The most commonly
used evaluation of the asymptotic values is due to Beer
and Pettifor. ~2

When a gap is present, the recursion coefIicients
oscillate rather than tend to an asymptotic value.
The square-root terminator should therefore not be ap-
plied, and if it is used, it yields a PDOS with spurious
oscillations. More sophisticated ways of terminating the
continued fraction for such cases have been devised by
Nex. 36 37

Our scheme for the terminator, appropriate for a gap-
less situation, is based on a linearization of the continued-
fraction representation of Gii(s) (54). It can easily be
shownss that in the asymptotic region, the continued
fraction after the nth level G» may be written as a(n)

Fourier series

(56)

semi-infinite, linear chain. The physical interpretation of
a terminator TI "~, which is applied after n levels of re-
cursion, is to substitute the remaining part of the chain,
after the nth atom, by an efI'ective medium.

The problem is now to find a closed form for the ter-
minator Tt "l(z). For a continuous bounded energy band,
the coefficients a„and b„ tend asymptotically to constant
limits, a~ and b, which are related to the band edges
s~ and sT (bottom and top of the band)s through

a =
~ (sT +s~)

Gii(z) =
Z —Qy—

Z —Q2—

b2

b2
where

z —a
cosP =

z —a„—T&"&(z) and the b sequence is defined as

(54) b2„ i —2(b —b„) and ~2 —aoo an

We have introduced a terminator T&"&(z) at the nth level;
this does not alter the first 2nth moments of the PDOS.
In practice, we stop the recursion after about 10 levels for
s and p orbitals and after about 20 levels for d orbitals.

The transformation of H to tridiagonal form is equiva-
lent to the transformation used in the problem of calcu-
lating the PDOS associated with the surface atom of a

with the property b„~ 0 when n ~ oo.
The b sequence is known up to a certain level for given

asymptotic values, if one assumes that Eq. (56) holds
from the first level (n=1). The idea is now to extrapolate
the b sequence from its first known values so that it tends
smoothly to zero.



3588 NOWAK, ANDERSEN, FUJIWARA, JEPSEN, AND VARGAS

The fitting was done by a least-squares procedure, as-
suming that after some level I all terms of the sequence
are linear combinations of all preceding ones:

M

by ——) c~by ~, k) M. (57)

This relation is equivalent to assuming that the 6 se-
quence can be written as follows:

M

b„=) d z," (58)

where z; are the roots of the following polynomial:

(59)

III. BAND-STRUCTURE AND RECURSION
CALCULATIONS FOR bcc Fe

In order to demonstrate the quality of recursion cal-
culations we first considered a crystal, and compared
the orbital-projected densities of states (PDOS) obtained
by a standard band-structure calculation, using k-space
sampling via the tetrahedron method, with those ob-
tained by recursion for a finite cluster, consisting of 400
atoms coordinated further to second-nearest neighbors,
and the terminator described above. Since one purpose
of the present paper is to study amorphous Fe8pBgp, we
cho se the crystal to be elemental bcc Fe.

Equation (58) is the same as the one used by Allansg to
find the best fit of the b's.

If one uses Eq. (57) separatedly for the a and b se-
quences the problem is reduced to the one studied by
Trias, Kiwi, and Weissmann.

The procedure was implemented numerically as fol-
lows: Given 2M pairs of calculated recursion coeffi-
cients and a guess for (a, b ), usually the values calcu-
1ated with the Beer and Pettifor method, one can solve
Eq. (57) for the c; coefficients, then check if all roots of
the polynomial of Eq. (59) satisfy ~z;

~

& 1; if they do, one
uses Eq. (57) for k ) 2M to extrapolate the 6 sequence;
if they do not, one changes a and 6 and repeats the
procedure.

In this way we avoid spurious peaks in the PDOS due
to abrupt matching of the coeKcients in the continued
fraction. The band edges are fairly close to the ones
calculated with the Beer-Pettifor method, ~ and the in-
tegrated quantities (over the complete energy range) co-
incide with those calculated using the Cambridge Recur-
sion Library of Nex. Recently it has been demon-
strated that the relation given in Eq. (56) holds, not
only in the linear case and that, in general, the b se-
quence is a nonlinear function of the recursion coe%-
cients. By using this new, more general form for Gii

"(nl

(56) together with the extrapolation procedure, we get
further improvements using the same information as in
the linear method presented here.

In this paper, a PDOS is defined as a diagonal el-
ement (or a. partial trace) of the DOS matrix (35) in
the orthonormal LMTO representation, e.g. , NRr(s):—

NRr Rr~(s). Due to LMTO tail cancellation, this
orthonormal-orbital PDOS is also the one entering in the
one-center spherical-harmonics (partial-wave) expansion
of the energy-resolved electron density in Eqs. (37)—(40).

A. First-order band-structure calculation

For the band-structure calculation, as well as for the
recursion, we used the ASA and the first-order Hamil-
tonian II in Eq. (11). The expansion energies s„r were
chosen at the centers of gravity of the occupied parts of
the PDOS; that is, such that the first energy moments,
defined by (40) with q=l, vanish. The screening con-
stants were those for spd screening given by Eq. (4).

We did not perform self-consistent calculations, but
used the self-consistent pote tial parameters listed in Ta-
ble III of Ref. 7 (these calcul tions included the f orbitals
and employed the third-order Hamiltonian). With the
help of Eqs. (28), we then transformed these standard
potential parameters into the position and width param-
eters, cg and dg, needed in the two-center tight-binding
Hamiltonian, H = c+~d S~d in Eq. (11).These param-
eters are listed in Table II [together with those additional
parameters that would be needed to construct the third-
order Hamiltonian (31)j. The structure matrix S was

generated as described in Sec. IIA, by inversion of the
(15 x 9) x (15 x 9) = 135 x 135 matrix n ' —S ob-
tained when including the 15-site cluster which contains
the central site and its two first-neighbor shells.

The result of the band-structure calculation is shown
in the left-hand side of Fig. 1. With our choice of the
expansion energies r~ in the middle of the occupied part
of the PDOS, these PDOS curves obtained for the first—
order Hamiltonian are quite accurate for energies up to
the Fermi level (c~ = —0.11 Ry). This may be appre-
ciated by comparison with any good-quality calculation
for bcc iron. Figure 7 of Ref. 7, in particular, shows
the PDOS for the first-, second-, and third-order LMTO
Hamiltonians with the same potential and c~ s as used in
the present paper. The unoccupied, high-energy parts of
the s and p bands, however, are highly distorted, pressed
down in energy. That this must occur follows from the
fact that the first-order Hamiltonian has the two-center
tight-binding form, and this fixes the shape of the bands
to being cosinelike. For the level convergence of a re-
cursion calculation, this narrowing of the (uninteresting
part of) the sp band turns out to be a virtue rather than
a vice.

Had we, on the other hand, been interested in the un-
occupied part of the energy bands, say in the energy re-
gion around 0.4 Ry, the c„'s should have been chosen
there and the position and width parameters, c and d,
would then be different. Moreover, since in that energy
region there are no d bands, the basis should not con-
tain d LMTO's in which case sp screening would be more
appropriate. (A basis with d LMTO's might yield ghost
bands switching between the 3d and 4d bands. )
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FIG. 1. PDOS curves in units of states/(atom Ry) for
paramagnetic bcc Fe calculated with the first-order Hamil-
tonian II and spd screening. The left panel shows results
obtained by k-space integration (Ref. 7). The results obtained
using recursion with 7, 9, and 17 pairs of coe%cients for the
8, p, and d orbitals, respectively, are shown in the right-hand
panel. The first-order expansion of the Hamiltonian was cho-
sen to be around the centers of gravity of the occupied DOS.
These energies are e„& ———0.47, —0.33, and —0.26 Ry for
E = s, p, and d, respectively. The calculated Fermi level is
r+ ———0.11 Ry and the DOS integrated to r+ are n&=0.83,
0.85, and 6.32 electrons per atom.
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FIG. 2. The recursion coeflicients a and b„(Ry) for d „,
d„, and d~ orbitals, of the central Fe atom in the bcc cluster
of 400 atoms. After n 20 the coe%cients split due to finite-
size efFects.

nonpolarized (paramagnetic) band structure by using
first-order perturbation theory. The latter approach,
with a few further approximations (see Sec. IV), leads
to the generalized Stoner model 42 which allows one to
determine the magnetization simply from the value of
the Stoner parameter I and the shape of the paramag-
netic DOS around the Fermi level. The latter is what we

have estimated in Fig. 1, and I is an (essentially) atomic
parameter which takes the value 65 rnRy for Fe." (This
value is supposed to be used with the Fe DOS, rather
than with the slightly smaller Fe d PDOS. )

The generalized Stoner model for an elemental ferro-
magnet says that the magnetization is determined by

B. First-order recursion calculation
IN(m) = 1, (60)

The PDOS obtained by recursion are shown in the
right-hand panel of Fig. 1 and they are seen to agree
rather well with the more accurate ones obtained from
the band-structure calculation. The result for the re-
cursion coeKcients a„and b„up to level 30 for the 3d
orbitals with fzs symmetry is shown in Fig. 2. One sees
that after the 20th level the coeKcients corresponding to
the xy, yz, and xz orbitals are different. This is due to
the lack of cubic symmetry around the central Fe atom
in our cluster of 400 atoms. We have a similar splitting
after the 20th level for the e& orbitals. The coeKcients
for the three p orbitals split already after the 13th level
because the p orbitals are less localized than the d or-
bitals. The nth-level recursion coefficients are related to
closed paths of length n, in units of the hopping range.
For the evaluation of the PDOS we used 7, 9, and 17
pairs of recursion coeFicients for the 8, p, and d orbitals,
respectively. These numbers ensure that the finite-size
effects are negligible, and also that the symmetries are
preserved.

C. Stoner model for ferromagnetic Fe

The ground state of bcc Fe is ferromagnetic with the
magnetization m = 2.2@~/atom, and this is also what
standard self-consistent spin-polarized band-structure
calculations give. Essentially the same result is obtained
if the spin-polarized band-structure is obtained from the

where the function N(m) is the average of the (para-
magnetic) DOS per spin N(e), with the average taken
around the Fermi level over such an energy range that
the area under the DOS is m. Explicitly, N(m) may be
constructed as follows: For m given, one determines the
Fermi levels e&1(m) and e&t(m) such that the two equa-
tions,

8'F 8F7

2m = N(e)dh = N(e)de,
fFl 8F

are satisfied. Then

N(m):—m/(e~T —eF~) .

(61)

(62)

Condition (60) is generalized in the sense that the usual
Stoner condition, IN(e~) & 1, gives the condition for
(weak) ferromagnetism, whereas (60) is the spin-self-
consistency condition giving the value of the magneti-
zation. A more usual way of expressing this condition is
to say that the exchange splitting mI should create the
magnetization rn. In the following section we shall see
how this Stoner model for an elemental ferromagnet may
be used for the Fe Bq system.

Using now the DOS in Fig. 1 to estimate the mag-
netization, we obtain the somewhat too low value m =
2.0@~/atom, both for the band and for the recursion cal-
culation. The reason is our use of the first-order Hamil-
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tonian, which yields a slightly wrong DOS shape around
the Fermi level. Since the exchange splitting is small
(mI = 140 mRy), the problem could have been solved by
choosing expansion parameters z~ at the Fermi level. Al-
ternatively, one could have used the second-order Hamil-
tonian.

From the generalized Stoner condition (60), we under-
stand t,hat the magnetization depends crucially on the
crystal structure and the lattice constant, because these
change the shape and the value of the DOS, respectively.
Elemental Fe is a good example of this: At high pressure
(& 100 kbar) Fe is hcp and has no moment. The reason
is that for the hcp (and fcc) structure the DOS is es-
sentially flat near the Fermi level of Fe (but has a. peak
near the Fermi level of Ni). Amorphous Fe which pre-
sumably has a local structure between bcc and fcc/hcp
is ferromagnetic, but with a magnetization significantly
smaller than that (2.2p~) of bcc Fe.

Since the magnetization depends so strongly on the de-
tails of the DOS around the Fermi level, some care must
be taken with the terminator in the recursion method; in
particular, no spurious oscillations should be allowed in
this region. Recently, the recursion method was used to
study magnetic properties of binary alloys. 43

an Fe atom. We performed a standard self-consistent
LMTO-ASA band-structure calculation for FezB includ-
ing the s, p, and d LMTO's for Fe and B.The sphere sizes
were chosen such as to minimize the overlap (sF, = 2.660
and sB = 2.061 a.u.).

A. Paramagnetic electronic structure

Figure 4 shows the results for the total DOS and for
the PDOS averaged over inequivalent atoms of the same
kind. Also the PDOS integrated to the Fermi level, the
partial occupations, are shown. The DOS has a two-peak
structure which is predominantly Fe d-like and which re-
sembles the two-peak structure in elemental Fe (Fig. 1).
The latter is known to result from the bcc structure with
its eight nearest and six second-nearest neighbors (fcc
and hcp Fe, for instance, have a totally different DOS
structure), but in Fe2B an Fe atom is differently coordi-
nated, as seen from Fig. 3. We shall find a similar two-
peak structure in amorphous Fe8p82p and, here again,
conclude that this is not a sign of a local bcc-like coordi-
nation.

Since the Fe sphere in FezB has nearly the same size

IV. BAND-STRUCTURE CALCULATION
FOR CRYSTALLINE FeqB

As a further preliminary to our study of the electronic
structure of amorphous FespB2p, we considered crys-
talline FezB ( Fes7833), which is the simplest crystal
related to FesoBzo. (Fe Bi crystallizes mostly in Fe2B
and pure Fe, but also FesB microcrystals are present.
The latter are stochiometrically closer to FespB2p than
FezB, but it has a more complicated orthorhombic struc-
ture with 16 atoms per cell. )

Fe28 is tetragonal (a=b=5.109 and c=4.249 A) with
the A12Cu structure and 12 atoms per primitive cell. 4

Figure 3 shows the distribution of Fe and B atoms around
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FIG. 4. PDOS and partial occupations for crystalline
Fe28 system obtained by a standard third-order LMTO-ASA
band-structure calculation. For boron, only the crystalline s
and p PDOS are shown, the d contribution to the occupied
part of the DOS is negligible, and the number of d electrons is
0.149. In the upper panel, the DOS and the occupation curve

per Fe2B is shown.



ELECTRONIC-STRUCTURE CALCULATIONS FOR AMORPHOUS. . . 3S91

as in elemental bcc Fe, it is meaningful to consider the
self-consistent sphere charges. They are zF, = —0.21 and
zB ——0.42, and this means that electrons are transferred
from B to Fe. By comparison of the partial Fe occupa-
tions with those of elemental Fe, given in the caption of
Fig. 1, one may say that the 0.21 electrons transferred to
Fe consist of 0.37 Fe d electrons plus 0.16 Fe sp screening
holes.

B. Stoner model for Fe B~

Experimentally, Fe B~ alloys are ferromagnetic
down to z 0.4, and like in bcc Fe their electronic struc-
tures are considerably modified due to the spin polariza-
tion. The simplest, way of treating this would be with
an approximation like the generalized Stoner model for
the elemental ferromagnets, if possible. This will now be
discussed.

In local spin-density-functional theory the perturba-
tion felt, by an up-spin —down-spin electron due to the
spin polarization, m(r)—:n1(r) —n&(r), is

AV& (r) = +sb(n(r))p~(n(r))m(r)/n(r) (63)

to first order in m(r)/n(r). The basic assumption of the
Stoner model is now that this perturbation is such that
it only causes spin polarization through repopulation of
states at the Fermi level, and not by changing the char-
acter of occupied states (as happens, for instance, in the
case of antiferromagnetism). The Stoner model thus triv-
ially applies when the perturbation is uniform. For a real
solid, where n(r) is the density of all the electrons, AV(r)
varies strongly inside any atom, but in a manner which is
characteristic for that atom, because n(r) is essentially an
atomic property, and so is, to some extent, , the shape of
m(r). Consequently, this variation does not necessarily
invalidate the Stoner model for elemental ferromagnets
where the perturbation is periodic, but not uniform, and
as we know it works well for ferromagnetic 3d metals.

In order to proceed, let us use the ASA for b, V(r).
The exchange splitting of an average state at the Fermi
level is, to first order and using Eq. (37) for the average
state,

sl sT ) ) '" 2b(nR(r))p, (nR(i)) mR(r) 2 2 NRe(sF)

=) ) IRemR =) IRmR
R R

(64)

In the last line we have dropped the argument sF of the
DOS. Moreover, we have used the definitions

N—:) NR=) NRe,
R Re

and mR is the integral of mR(r) in the sphere.
The radial dependence of the magnetization is, under

the above-mentioned assumptions, given by

mR(r) ~,NRe(sF)= ) 'PRe ~F)r
N ( )e

and here, like in the last approximation in (64), we as-
sume that for the different materials we consider, the
ratios between the s, p, and d PDOS for Fe at the Fermi
level do not vary much. Under this condition the Stoner
parameter I is an atomic property.

We now consider the redistribution of states in the
neighborhood of the Fermi level. Like in (61) and (62)
we may define the energy-averaged total DOS and the
energy-averaged P DOS. These satisfy

NR(m) —= mR(m)/(st —sF'), (68)

where m is the total magnetization.
Since s~& —s&~ in Eq. (62) equals s& —s& in Eq. (64),

we may introduce (67) in (64). The Stoner condition for
the alloy is thus

1 = ) NR(m) IR.
R

(69)

XFe

x )-=()"XFe R=1
(70)

and from now on drop all subscripts. The Stoner condi-
tion for the magnetization is thus

For Fe Bi ~ alloys, the B PDOS is negligible in com-
parison with the Fe PDOS at the Fermi level. We can
therefore restrict all R. sums to the Fe atoms. IR is then
constant and equal to IF~. With XF, being the number
of Fe atoms per cell, we finally denote the average over
all Fe sites by

and

N(m) = m/(s+~ —6'&~) = ) mR(m)/(s&~ —s~&)

—:) NR(m) (67)

—= (NN((m)))/(N) = (N((m)))
1

+(» &N((m)))i(N) (»)
here N:—(N)+AN. The condition for the ferromagnetic
instability is simply
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(72)

The exchange splitting e& —z&, which is not supposed to
fIuctuate in the Stoner model, is

(73)

For an Fe~B~ ~ alloy, the condition for ferromagnetism
is thus, to first order in the fluctuations, exactly as for
elemental Fe and with the appropriate Stoner parameter
and DOS being those of Fe, but averaged per Fe atom.
[We remember that the DOS in the above formalism is
per spin. If as in the figures of the present paper we
use the DOS for both spins we should use 2/I on the
left-hand sides of Eqs. (71) and (72).j

For Fe2B we find, using I = 6& mRy and the DOS in
Fig. 4, that the material is ferromagnetic with a magne-
tization of about 2pti/Fe. This is the number of states
under the large DOS peak at the paramagnetic Fermi
level. In the ferromagnetic phase, and in the rigid-band
picture, the spin-up and spin-down average Fe PDOS,
(N(s)), are like the one shown in the figure, but with
the respective Fermi levels shifted to either side of the
peak. Specifically, s& s~ + 70 mRy and s& E;~ —60T

mRy. Eventually, the spin-up and spin-down Fe d PDOS
should, of course, be shifted in such a way that their
Fermi levels are lined up. The Fe sp PDOS, and the B
PDOS should be left paramagnetic.

V. RECURSION CALCULATION
FOR AMORPHOUS FesoB2O

A. Structural model

We used the structural model for amorphous Fe8pB2p
proposed earlier by one of us. This model was gener-
ated by random packing of 1500 hard spheres, and then
relaxed using a truncated Morse potential. The cluster
was a sphere with free boundaries. Since the experimen-
tal partial pair-correlation function shows no B-Bpairs,
an additional constraint that two B atoms can never be
closer than 1.26 times the average Fe-Fe distance was
imposed.

B. Details of the calculations

X. Recursion

For the recursion, we used a cluster consisting of the
400 innermost atoms of the 1500 cluster. The size 400 is
a compromise between accuracy and computer time. It
seems to be sufficiently large for the innermost 50 atoms
to be bulklike when using recursion with 20 pairs of co-
efficients for the d and 8 for the s and p orbitals. This
question was addressed in the calculation for pure bcc Fe
in Sec. III. The local and the site-averaged PDOS were
calculated for a sample of 10 Fe and 10 B atoms randomly
chosen among the 50 innermost atoms.

During the self-consistency iterations the PDOS were

calculated with the usual Beer-Pettifor terminator. The
final PDOS were calculated with the more elaborate ter-
minator described in Sec. II J. Both terminators gave
essentially the same shape for the PDOS, but the one
due to Beer and Pettifor yielded small spurious peaks
near the band edges, where the more elaborate termi-
nator gave smooth behavior. Its disadvantage is that it
requires five times more computation.

2. Structure constants

First, we generated the screened structure constants
SRL &,l„connecting each of the 400 sites (R) with its
16 nearest neighbors (R') including itself. We used
spd screening on all Fe and 8 sites. When generat-
ing the structure constants by inversion of the matrix
n —S for a small cluster, as described in connection
with Eq. (7), we found that the results obtained with 16-
atom clusters hardly diff'ered from those obtained with
45-atom clusters. The structure constants were finally
stored as a (400 x 9) x (16 x 9) rectangular matrix.

8. Sphere, radii

We used the ASA for simplici, and this is presumably
justified because Fe8p82p is rat er closely packed. Prom
the experimental composition

pound
density we found the

value ac=2.581 a.u. for the average Wigner-Seitz radius.
The radii of the Fe and B spheres used in the I MTO-ASA
calculation were chosen equal to the ones used in the first
ASA calculation for FespB2p, they were sF,——2.703 a.u.
and sB——1.907 a.u. We convinced ourselves that these
radii were reasonable by the following arguments. From
the condition of space-filling,

= 0.8sF +0.2sB,

and taking the ratio st/sB to be the same as between
standard, tabulated atomic radii, we found the very sim-
ilar radii: st ——2.711 a.u. and su= 1.844 a.u. (The fact
that this Fe radius was close to that of elemental bcc
Fe, confirmed that the amorphous structure is, indeed,
rather closely packed. Had the previous calculation not
existed, we would probably have chosen the Fe sphere as
in elemental bcc Fe; this would have left the size sB——

2.191 a.u. for the B sphere. ) Finally, we checked that
the overlap between the spheres in the amorphous struc-
ture did not get unacceptably large. By this we mean
that the linear overlap defined as (si + s2 —di2)/di2 be-
tween two spheres almost never exceeds 20%. For com-
parison, the overlap in elemental fcc, bcc, and sc crystals,
which have, respectively, 12, 8, and 6 nearest neighbors,
is 10.5%%uo, 14%%uo, and 24%%uo. The distribution of overlaps in
the amorphous Fe8pBgp cluster calculated for a sample of

3000 pairs of overlapping spheres is shown in Fig. 5.
It is seen that, whereas the Fe-Fe overlap is satisfactory,
the Fe-B overlap is only marginally so.

g. ESamiltonian

The potential parameters were calculated self-
consistently for the average Fe and the average B atom
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by the simplest possible first-order procedure described
in Sec. II F 2. The self-consistent calculations were thus
performed with the Hamiltonian in Eq. (33) truncated
after the first-order term, i.e., with the two-center tight-
binding Hamiltonian H = c+ ~d S~d = c + h from
Eq. (11). The z~ parameters were, as usual, chosen at
the centers of gravity of the occupied PDOS. The charge
density was averaged over all Fe and over all B spheres,
and the potential was assumed to be the same in all Fe
and in all B spheres, as explained in Sec. II H. After self-
consistency was achieved, the final PDOS calculations
were carried out to second order, using the HamiltonianI hoh in E-q. (33).

After a prehminary calculation, which included the B
d partial waves and the B d PDOS, we decided that
their inclusion was not warranted. Consequently, the
two-center tight-binding Hamiltonian II was truncated,
such that it included only the sp partial waves on B, in
addition to the spd partial waves on Fe.

C. Results

1. sects of structure-constant approximations

Here and in the following, the DOS is defined as
N(s') = 0.8NF, (s) + 0.2Nn(s), with NFe(s) being the Fe
PDOS summed over all orbitals on an Fe site and aver-
aged over 10 random Fe sites, and similarly for Nn(s).

on-site elements were properly site dependent and calcu-
lated according to Eq. (6) by hopping to the neighbors
using So and hopping back using S, approximated by the
interpolation formula. In 6(c) the structure matrix was
calculated "properly" by inversion of the matrix n i —So
for 16-atom clusters. Finally, in 6(d) the structure con-
stants and the self-consistent potential parameters were
as in 6(c), but the second-order Hamiltonian was used
for the final DOS calculation.

Figure 6(a) demonstrates that the use of approximate
on-site elements can lead to significarit errors. In partic-
ular, the bottom of the band (B s-like) has developed a
spurious tail and what should have been a shoulder at
about —0.5 Ry (B p-like) has become a broad maximum
at —0.7 Ry. Obviously, the B s- and p-orbital energies are
too low, and the simple reason is that B does not have
between 12 and 8 nearest neighbors, as assumed when
taking the on-site elements as the average between fcc
and bcc, but rather, 6 or less. [From tables in Refs. 6, 7,
and 9 one may see, that for the sc structure, which has 6
nearest neighbors, the on-site s-element of the structure
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In Figs. 6(a)—6(c) we show the DOS calculated with
the first-order Hamiltonian 0, and with various ap-
proximations for the structure constants 9, described in
Sec. IIA. In all cases the calculations were performed
self-consistently, that is, a particular approximation for
the structure constants was done consistently through-
out all iterations In 6(a) . and 6(b) we used the inter-
polation formula (9), with the parameters from Table I,
for the off-site (hopping) elements. The on-site elements
were taken in 6(a) to be site independent, and equal to
the average between the fcc and bcc values; this is the
prescription used in the original calculation. ii In 6(b) the
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FIG. 6. DOS per atom in amorphous FegpBgp, calculated
with different approximations. (a)—(c) First-order Hamilto-
nian. (d) Second-order Hamiltonian. The structure constants
were obtained from (a) the interpolation formula for the off-

site elements and the average of the bcc and fcc values for
the an-site elements, (b) the interpolation formula for the o8'-

site elements and using the Dyson equation (7) for the on-site
elements, (c) and (d) exact inversion.
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TABLE III. Self-consistent potential parameters for Fesp B2p. The syd screening parameters n&&

given in Eq. (4) were used. sF =2.703 a.u. , su=1.907 a.u. , and zo=2.581 a.u.

Rydbergs

Fe s
Fe p
Fe d
Bs
Bp

—0.415
0.172

—0.250
—0.842

0.275

0.153
0.0655
0.0188
0.206
0.098

—10

—1.68
—1.42

1.66
4.50
5.24

—0.584
—0.419
—0.315
—0.763
—0.455

p
—1/2

5.1
6.7
0.77
6.8
5.6

constant is 3.72 rather than 3.05 and 3.09 for fcc and
bcc, respectively. Multiplied by the potential parameter
d~, ——0.'2 Ry (Table III), this yields a displacement of
0.14 Ry for the B s-orbital energy. ] In the self-consistent
calculation, this leads B to donate too few electrons to
Fe and, consequently, also to errors in the potential pa-
rameters. This is, for instance, the reason why the Fe
d-like peak is too narrow and sits at too low an energy.

Proper calculation of the on-site elements, but keeping
the interpolation for the hopping integrals, requires very
little extra computation and, as seen in 6(b), improves
the calculation considerably. The DOS is now correctly
positioned and has the correct general shape. For many
purposes, this is a useful approximation.

Calculation of the structure constants by inversion of
a 150 x 150 matrix for each site is far more expen-
sive than interpolation, but it improves the details of the
DOS, as seen in 6(c), and is essential for the site depen-
dence of the PDOS. We checked that the self-consistent
potential resulting from the cheap approximation 6(b) is
sufficiently accurate to yield a DOS like the one shown
in 6(c) when used in a recursion calculation employing
the proper structure constants. In other words, the dif-
ference between the DOS in 6(b) and 6(c) is due to the
difference in the structure constants, rather than in the
potential parameters.

The self-consistent potential parameters obtained with
the first-order Hamiltonian and the inversion scheme 6(c)
are given in Table III.

3Q Fe80 B20
Total

20—

0."Fe
2Q -n=8.19O

aL 1P
tR

0"Fe-d
20 -n=6.62

10-
p I I

1
'Fe-P

0,, n=0. 87

1

'Fe
0 n=070
"B

& -n=2. 2~
B-p
n= 1.34

I—

ul

C)
0,,I—

LLj 2-
Cl

P I I

'B-s
2 -n=0.91

p I I I

-1.2 -0.8 -0.4
e(R )

0

FIG. 7. Total DOS per atom, average local PDOS, and
average local s, p, and d PDOS in FespB2p using the first-
order Hamiltonian.

8. Effects of H'amiltonian approximations

Inclusion of the second-order correction hoh in the re-
cursion is costly, because it requires one (o is diagonal)
matrix multiplication and increases the range of the hop-
ping, but as seen in 6(d) it considerably improves the
states far away from c„. This is seen even more clearly
by comparison of the site-averaged PDOS for the first-
order Hamiltonian shown in Fig. 7 with those for the
second-order Hamiltonian shown in Fig. 8. Most strik-
ing is the improvement of the B s PDOS at the bottom
of the band and the resulting decrease in the number of
B s electrons from 0.91 to 0.61 per atom. Neglecting hy-
bridization, the second-order correction is —(s' —s„)~/o
and this moves energies downwards when o is positive,
and upwards when o is negative. From the values of
o and z~ in Table III one may then realize that near
the bottom of the band, the visible change in the B s
PDOS is mostly due to the improved description of the
Fe s band with which it hybridizes; remember, there are
no B-B nearest neighbors. [At the bottom of the band,
—(s —s )~/o i = 60 and —4 mRy for Fe s and B s,
respectively. ] For energies above the Fermi level, that
is, further away from the c~'s, the effects of the second-
order correction are easy to see in Fig. 8; for the Fe s and
p PDOS they are essentially as described for bcc Fe in
Sec. III. Recently, Bose, Jaswal, and Anderseni4 demon-
strated for the Ca7Als glass that the computationally
fast approximation of including the hoh correction only
for those hopping integrals which are already nonzero in
H works surprisingly well.

For the following discussion of the electronic structure,
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Fe in Table V of Ref. 7. This tabulation gives this den-
sity times the atomic volume (i.e. , the number of "free"
electrons) as 3.06 electrons/Fe. The reduction is there-
fore 0.14 electrons/Fe and the resulting charge transfer
is thus zF ———0.11 and zB——+0.44. In conclusion, the
electron transfer is from 8 to Fe, but it is not large, and
it is similar to what we found in Fe~B.

That the potential in the Fe sphere is not very different
from the one in elemental Fe can be seen by comparison
of the Fe potential parameters in Tables II and III. Con-
sidering the differences in the radii and in the order of the
Hamiltonians used, the only significant difference in the
potential parameters is a downwards Madelung shift by
less than 0.1 Ry in Fe80Bgp. This shift is small compared
with the bandwidths in Fig. 8 and the simple neutral-
atomic-sphere estimation of potential parameters, which
simply takes the ones tabulated for the elements, would
therefore hold quite well.

This analysis supports our conclusion that the bonding
in FesoB~o is predominantly covalent between Fe and 8,
and metallic between the irons.

Q. 8-s
2 -n=0.61

P I I

-l.2 -Q.S -Q.4

c (Ry)
Q

FIG. 8. As Fig. 7, but using the second-order Hamilto-

we shall use the results obtained with the second-order
H amiltonian.

8. Chemical binding

One of the most striking aspects of Fig. 8 is that the
number of 8 s electrons is as small as 0.6 and the num-
ber of B p electrons as large as 1.4. Naively, one would
have expected an ionic picture in which B donates its p
electron to Fe and keeps its two s electrons. The picture
offered by Fig. 8 is, however, a strongly covalent one,
in which the 8 s PDOS is broken up into an occupied
bonding part (at about —0.8 Ry on the scale of the fig-
ure) and an empty antibonding part (above the frame
of the figure) due to the interaction with the Fe s and
d orbitals. The large 8 p occupancy is coming from a
strong Fe—8 bond, presumably of Bp, —Feds, ~ i charac-
ter, which gives rise to the strong peak at —0.5 Ry. A
somewhat similar picture was offered by FegB in Fig. 4.

The charge transfer in Fig. 8 is seen to be zF, ———0.25
and zB ——+1.0. In order to illustrate the sensitivity of this
number to the choice of sphere sizes, we now estimate
what the charge transfer would be for Fe spheres with
the same volume as in elemental Fe metal (at normal
pressure). This volume is 4.6% smaller and the corre-
sponding reduction in the number of electrons may be
estimated by assuming that the density on the surface of
the Fe sphere is equal to the one tabulated for elemental

g. I arum, agnetic electronic structure

O«DOS in Fig. 8 exhibits a 8 s-related maximum
9 eV below the Fermi level, a 8 p-related shoulder 5 eV
below z~, and a pronounced double peak at 2.5 and 0.1
eV below z~.

A characteristic feature is the double-peak structure.
This seems to have a similar origin as the double peak
in Fe28 which, in turn, we concluded is not related to
the well-known double peak in the bcc transition metals.
As we shall see, this does not seem to be the case in
amorphous FesoB20 either.

We now study the correlation between the local envi-
ronment of an Fe atom and its calculated PDOS. In Fig.
9 we show for five individual Fe atoms the distribution
of neighbor distances and the PDOS (as usual, per Fe
atom and for both spins). These five atoms were chosen
among the ten central ones, used for performing the av-
erage shown in Fig. 8, in such a way that the extreme
variations in the PDOS are included. The radial dis-
tributions are seen to exhibit considerable fluctuations,
and so do the PDOS. The charge zF, fluctuates around
the average —0.25, from +0.24 to —0.93. In a proper
calculation, which is self-consistent not only on the av-
erage, these charge fluctuations would be screened out
somewhat. The correlation between a strong, low-energy
PDOS tail and the existence of close 8 atoms is easily
seen. Most, but not all, of the PDOS exhibit the Fe
d double hump but we have not been able to see any
correlation between this and the radial distribution func-
tions. Therefore, the simple idea that the double-hump—
rectangular PDOS shape should correlate with the bcc-
fcc(hcp)-like radial distributions (0, 8, 14, . . .)/(0, 12, . . .),
does not seem to hold.

$. Eerromagnetic electronic structure

Experimentally, amorphous Fe B~ ~ is ferromagnetic
for 1(x& 0.4. With z decreasing from 1, the magneti-



3596 NOWAK, ANDERSEN, FUJIWARA, JEPSEN, AND VARGAS

Fe-Fe
12

— Fe-B (
0 A i I

Fe-Fe
12

8 — Fe-B )
O 4-

U Fe-Fe
C) 12

8 — Fe-B g
m 4

0 rr' I

Fe-Fe
a
8 —Fe-B

p r s

Fe-Fe
u
8 — Fe-B j4

0.7 1.0 1.3

R/OFe-Fe

nFe = 7.76

"Fe=

~Fe= 8.48

AF =8.50

nF =8

-0.8 -0.4
z {Ry)

— 40

-20

0
40

O
20

V3
CU

0 D-40
V)

—20 LLI
I—

p I—

-40
o

—20 0-
I—
U)

0 Z
LLj-40 n

— 20

FIG. 9. Radial atomic distributions around five different
Fe atoms and their PDOS. The value 2/I indicated on the
PDOS axis relates to the Stoner criterion for the magnetic
moment as given by Eqs. (71) and (73).

zation first increases (from its value for amorphous pure
Fe) to a maximum of about 2prr/Fe for x 0.8, and there-
after it decreases. This has been originally explained as
the efFect of electron transfer from B to gradually fill the
Fe d states. More recently, ~ spiri polarized empiri-
cal tight-binding calculations, including Coulomb corre-
lation among Fe d electrons in amorphous Fe B~, gave
the correct behavior of the magnetic moment over the
whole range of concentrations.

For FespBzp we find a magnetization of 2.2p&/Fe when
we use the Stoner theory in Sec. IV B, Eqs. (71)—(73)
and the average Fe PDOS, (N), from Fig. 8. [The local
Fe PDOS, N, in Fig. 9 may be used to check that the
second-order term in (71) is small, and to estimate the
size of the moment Huctuations. ] The exchange splitting
of the Fe d PDOS is thus 0.14 Ry= 1.9 eV, and in Fig. 10
we show the average spin-up and spin-down Fe d PDOS
together with the ferromagnetic total DOS.

The ferromagnetic DOS in Fig. 10 exhibits a strong
peak 1 eV below the Fermi level. This is the coinciding
upper half of the double peak for spin-up plus the lower
half of the double peak for spin-down. The shoulder at
—3 eV is the lower half of the spin-up double peak. Fi-
nally, like in the paramagnetic DOS, there is a shoulder
at —5 eV and a peak at —9 eV which are related to bonds
involving, respectively, B p and B s orbitals. This we may
now compare with results of photoemission spectroscopy.
The existing results scatter but nearly all yield energy-
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FIG. 10. Ferromagnetic total DOS for amorphous Fesp B2p
(solid line), the 3d majority (t') and minority (l) PDOS for
the average Fe atom are also shown (dot and dashed lines).
The exchange splitting energy is AE = 143 mRy, the Stoner
parameter I = 65 mRy, and the average magnetization m =
2.2 p rr /Fe.

VI. CONCLUSION

We have given a rather complete review of a method
used recently for density-functional calculations for topo-
logically disordered condensed matter. This method

distribution curves which resemble the occupied part of
our DOS curve. The most recent measurement found
weak maxima superposed on a slowly rising edge at —5.5
and —3 eV below the Fermi level, the onset of a steep
rise at —'2 eV, and a flat double peak with maxima at
—1 and 0 eV. This is in very close agreement with our
DOS, with the possible exception that the experimental
DOS at the Fermi level is higher than ours, i.e. , we do
not have a peak at z~. It was speculated that the origin
of the narrow double peak was magnetic exchange split-
ting. This is indeed what we find and, in addition, we
seem to be able to interpret the —3- and —5-eV peaks.
Only one experiment52 showed a —9-eV peak, but doubts
were raised about its origin. We agree with the interpre-
tation that it is the B s peak, and that the reasons why
this peak was not found in other data are the small cross
section for photoionization and the large lifetime broad-
ening.

We thus believe that the double peak in the param-
agnetic DOS exists, although we still do not understand
its cause in terms of local bonding. This double peak
was not found in a recent calculation performed with
the same structural model but with a difFerent, empir-
ical Hamiltonian.

Our value for the DOS at the Fermi level is about
15 states/(atom Ry). This is somewhat low compared
with the experimental electronic specific heat value
of about 40 states/(atom Ry), even when taking into
account electron-phonon and spin-fluctuation enhance-
ments. (In fcc Ni, these enhancements amount to a factor
of over 2, but in bcc Fe to somewhat less. ')
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combines the recursion and LMTO methods, and uses
the tight-binding representation in a nontrivial way. The
method can be applied at diR'erent levels of approxima-
tion but, so far, the LMTO matrix elements have al-
ways been evaluated in the atomic-sphere approxima-
tion (ASA). Various levels of approximation for this ASA
Hamiltonian, such as the two-center tight-binding one,
have been systematically derived and tested.

As demonstrations, we have applied the method to
crystalline bcc Fe and to amorphous FesoBzo. Charge
self-consistency was only treated for the average Fe and
the average B atoms. For the ferromagnetic electronic
structure we used a Stoner-like theory. The Fe-B bonding
was found to be covalent, rather than ionic. The struc-
tures of our density of states for ferromagnetic FesoB~O
agree in detail with reliable photoemission data.
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cos de Lima, Facultad de Fisica, P.O. Box 454, Lima, Peru.
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