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Eiastic properties of charge-density-wave conductors in combined ac and dc electric fieids
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We calculate the Shapiro-type anomalies in the Young s modulus Y and internal friction 6 of charge-
density-wave conductors that are in combined ac and dc electric fields in the framework of perturbation
theory. We use the classical model of two incommensurate, interacting, many-body systems proposed by
Sneddon. It is found that this model produces the experimental results well at weak pinning. Some ex-
periments are suggested.

The properties of charge-density-wave (CDW) conduc-
tors have been extensively' studied both by experimental-
ists and theorists. The widespread interest has not only
focused on their nonlinear electrical properties, but also
on their elastic properties, which depend sensitively on
the motion of CDW, of the underlying crystal. The first
measurements of the elastic properties of CDW conduc-
tors were carried out by Barmatz, Testardi, and DiSalvo.
They used vibrating-reed techniques ' to measure the
Young's modulus and the internal friction of 2K-TaSe2
and 2H-NbSe2 samples. Anomalies were found at the
transition temperature To of charge-density waves.
These anomalies are due to a structural change of the un-
derlying lattice at the transition temperature.

More recently, by using a modified vibrating-reed ap-
paratus, Brill and Roark and Mozurkewich et aI.
demonstrated that bulk elastic properties of CDW. con-
ductors could be modified by an applied dc electric field
E if it exceeded the threshold field ET for the onset of
nonlinear electronic conduction. In particular, an in-
creasing CDW drift velocity resulted in a decrease in the
Young's modulus Y and a corresponding increase of
internal friction 5 of the crystal. Bourne, Sherwin, and
Zettl also found sharp Shapiro-type anomalies in Y and
5 in the presence of combined ac and dc electric driving
fields.

The classical model of two mutually incommensurate,
interacting, dynamical, many-body systems proposed by
Sneddon predicts the main experimental results of the
elastic properties of CDW conductors in the electric dc
fields. This model suggests that the internal CDW de-
grees of freedom play important roles in determining the
elastic behaviors of CDW conductors. In this paper, we
will examine whether Sneddon's model can predict the
elastic properties of CDW conductors in combined ac
and dc fields. We also explore the connections between
ac-dc nonlinear interferences and Shapiro-type anomalies
in Pand 5.

The classical model proposed by Sneddon consists of
two mutually interacting incommensurate chains, one
representing the CDW and the other representing the

where I is the ionic mass. The inertia of the CDW is
negligible, N and U are the displacements of particle a
in the crystal lattice and particle j in the CDW, respec-
tively, and 2~a and Kj are their respective undisplaced
positions. The coefficients 4& and D are the spring con-
stants of the internal, harmonic restoring forces in the
lattice and of the CDW, respectively. The function W(x )
is a weight function and represents the spatial range of
the dissipative interactions. The force F between particle
a and j depends on their separation X
E=E +DE, si ( nt)cois a combined ac and dc electric field
acting on the CDW and —EI is the force that keeps the
lattice stationary. The incommensurate limit is ap-
proached by considering M particles in the lattice chain,
N in the CDW chain, and M/N=H/2m~a fixed irra-
tional, for example, (&S—l)/2. The parameter p is a
formal expansion parameter and will set to be 1 ultimate-
ly.

A general result of these equations, pointed out by
Sneddon, is that stationary solutions and the relative
motion of the centers of mass of the two interacting
chains could be described by the quasiperiodic forms

@ (t)=Q(y), UI(t)=ot+G(x),
y =2nu —Ut, x =Hj —Ut,

Q(y +H ) = Q (y ), G (x +2n)= G (x ), .
(2)

host crystal lattice. Each one distorts the other. Conser-
vative and viscous interactions between the chains are
used to represent the pinning forces that produce the
CDW threshold and the dissipations that result from the
CDW motion through the crystal, respectively. The di-
mensionless equation of motion can be written as

mt'+ g b, ttN tt+P g W(X J )(@ —
Uj )

P J

= —
iLt g F(Xa J ) EL—

(l)
gD~U/ ~+ g W(X I)(U) —@ )= QF(X~J.)+E,

a a
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where v = ( U ), the CDW center-of-mass velocity.
Furthermore, the linear fluctuations of the dual interact-
ing system, both static and stationary, are likewise
characterized by the quasiperiodic forms similar to those
given by Eq. (2).

In the stifF-lattice limit, i.e., b »F and N = (4& ), the
crystal lattice simply produces a rigid incommensurate
potential through which the CDW moves. Then Eq. (1)
reduces to the equation for a single incommensurate
chain that describes the motion of the CDW; some of its
properties have been studied elsewhere.

For comparison with experimental results, one should
I Q)pt

apply an external force f e on the lattice. In gen-
eral, this force is small compared to h. One can then use
perturbation theory to calculate 5f and obtain the
Young's modulus I' and internal friction 5. Expanding
the equation of motion about the stiff-lattice limit by re-
placing

mcoog +f —g b,P
P

= —p g [F'(X ) —ic00W(X )](P —u )

j
+ W(X )(P —ui),

u —(u, )= g [W'(X )(U, —4 }—F'(X, )

(4)

+ic00W(X~ 1 )](p~—uj ) —W(X~ 1 )uj,

= g F(X J )+Eo+E,sin(cot ),

where F'(x ) and W'(x ) are the derivatives of the force
F(x ) and weight function W(x), respectively, and the
equation of motion for the CDW is

U, —(U)+ y W(X'. , )(U, —i.)

l
@inaptU —+ Uj+uje

N ~4~+/ e

where co0 is the frequency of the linear fluctuations and

X J =X
J
—(Q —uj )e =2~a+@ (Hj +—U )

l COpt

EL ~ —EL+f e—
we obtain the equations for u and P:

is the separation between particle a and j without the
Quctuations. In the rigid-crystal-lattice limit, i.e.,
4 = (4 ) =0, for the case P =e' ~, ' we have

U(x, t) —(U)+ g W(x )U(x, t) —QF(x )=Eo+E,singlet, (8)

u(x, t) —(u )+ g [ W(x )u(x, t) —[W'(x )U(x, t) —F'(x~)+ic00W(x )] (uxt)]

= —g [W'(x )U(x, t) F'(x )+i'—oW(x )]e' (9)

and

5f:maP&+ f h(q )— —

g [[F'(X',. ) —icooW(X', )](I—u, e "
) —W(X )u e

a,j
(10)

U(x, t)= vt—N
M

coscot +g(x, t) .

Equation (8) becomes

[g(x, t) —g(x+Hp, t)]+ g
M.

p

= QF(x )+Eo v. —

where x =Hj and x =2m.a —x —U(x, t ). If the drift ve-
locity v of the CD%' is very large compared to the pin-
ning force F(x ), one could solve Eqs. (8}and (9) perturba-
tively. For the sake of simplicity, we will consider the
case W(x )= I/¹Rewrite U(x, t ) as

It is obvious that g( x+2m, t)=g(x, t); we can express
g(x ) in terms of its Fourier components and have

g(x, t}=gg (t)e™,
m

g (t)=f e F (t')dt',
(12)

where constants %~ =N/M gz(1 e' J' ) a—nd Fourier
components of the pinning forces

imup(t )

m

X xe ' " F2ma —x —gx —u0t, t
0
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with uo(t ) =(N/M )[vt —(E, /to)costot ]. The CDW
drift current Iz, is proportional to ( U(x, t ) ) z.

=(uo(t)+F0(t)) r. Using the identity

I(E( l~)
e ' cosset = g i'JI(E) /co)e

1

we then obtain

(14)

I ~E—
dc 0

N
M

2
mNEi

m, l
Im f f g F'(2qra x)—F(2n. a' —x')e'

+ (mNu /M+ 1 to) o 0 (2m )

(15)

where m and l are integers and J((x ) is the Bessel function of the first kind. Equation (15) is correct to the second order
of perturbation of the pinning forces F(x). The result is similar to the one obtained using the Fukuyama-Lee-Rice
(FLR) model' of random pinning. The second term in Eq. (15) is always negative. This term is minimized, and there-
fore Io, is maximized, when muN/M+ leo =0. The differential resistance is also maximized at this point.

Equation (9) can be solved in a similar way. Let u (x, t ) =e'q"h (x, t ) (Bloch-wave-like solution), Eq. (9) becomes
r

h(x, t)+ igloo—+ gF'(X ) h(x, t)+ g [h(x, t) e'q —~h(x+Kp, t)]= g F'(X ) —igloo
e'N N 0

a P a

(16)

The function h (x, t ) is a periodic function of x with a period of 2qr. We can write h (x, t ) as

h(x, t)= gh (t)e'
m

(17)

Generally speaking, q is the reciprocal vector of the lattice. Because of the incommensurability between the CDW and
the underlying lattice, q will not be equal to the vector m of the Fourier-expansion component of h (x, t ). One could ex-
pand h (x ) perturbatively in the orders of F(x ) as

h (x, t), h'(x, t), h (x, t), . . . .

For large enough t the approximate solution is

h (x,t)=0,

hi ( )
N gt.

—
m+q o

—'+'"—0"Xq™f g y i2naqFt(2~a x)e Ix(q+IN)
M 0"

a

(19)

(20)

Now we can calculate the quantity 5f as defined by Eq. (10). The real and the imaginary parts of 5f are proportional to
Y and 5, respectively. To the second order of perturbation of pinning forces, we obtain the average of 5f

(5f )r= f 5f Ct-
T 0

to be

yxgx, ,
mNE, R i(muN/M+ 1—to)(5f r= —

igloo
— F"(x)F(x')g e' '" "'J)

MK —~ —~ (2qr)2
&

Mto W +(muN/M+lto)
r

(m+q )NE,+F (x )F (x ) g ei(m+q)(x' —x)J2
l, m

1 Mco

+ —i [(m+q)vN/M+lto too]—
~2 + +[(m+q)vN/M+lto (oo]—

(21)

(22)

where T=2n/to and F"(x) is .the second derivative of
F(x). Like the differential resistance, Young's modulus
Y and internal friction 5 have sharp anomalies when
mvN/M+Ito=0. For a fixed to, the drift velocity u of
the CDW changes as one varies the dc bias current Id, .
Anomalies should be observed as u approaches

where l, m are integers. These anomalies are similar to
the Shapiro-type interferences in the electronic response.
The magnitudes of these harmonic and subharmonic
anomalies depend on the strength of the pinning forces
F(x ) and on the amplitude of the ac field. In addition, F
and 5 should also have sharp anomalies when U is equal
to

Mal
NM

(23)
M(col —coo)

N(m+q) (24)
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where l, m are integers. It seems that linear Auctuations
are very important. They shift the positions of some of
the anomalies approximately by Mcoo/N; the magnitudes
of the anomalies are given by the second term of Eq.
(22). The experiments of Bourne, Sherwin, and Zettl did
not show the effects of the linear fiuctuations on elastic
properties of the CDW conductors. We believe this kind
of experiment would be very helpful for understanding
both the electrical and the elastic properties of the CDW
conductors.

A single-domain, classical model of two mutually in-
commensurate, interacting, many-body systems has been
solved. It successfully accounts for the elastic properties
of charge-density-wave conductors in the presence of
combined ac and dc electric fields. Xiang and Brill'
found that the electric-field-dependent anomaly in CDW
conductors decreases with frequency, i.e., b, Y/Y~coo ~,

where p ( 1. If the ac electric field is zero, i.e., E, =0, the
real part of Eq. (22) reduces to two parts. One part is in-
dependent of coo, while the other one, which is a function
of coo, is equal to

i(m+q)(x' —x)
MH —~ —~ (2')~

X (25)
JY +&+[(m+q)uN/M coo]—

We see that the relative shift in the Young's modulus de-
creases as frequency coo increases. This result, however,
is different from the experimental data of Xiang and Brill.
Qne possible reason could be that at low frequency the
major contribution to the relative shift comes from the
frequency-dependent part when the bias field is not much
larger than the depinning threshold. It would be interest-
ing to test experimentally whether b, Y/Y approaches a
limiting minimum value when the frequency becomes
very high and the bias field is large. The shear modulus
of CDW conductors has also been measured. ' Like the
Young's modulus, the shear modulus decreases as the de-
pinning velocity U of the CDW increases. This result sug-
gests that the interchain coupling of the lattice is affected
by the motion of the CDW. We have not yet been able to
construct a Hamiltonian that includes both the lattice in-
terchain coupling of lattice and the lattice-CDW cou-
pling. This is certainly an interesting and important
problem, and is worth being explored.
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