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Exact solutions for a quasi-one-dimensional Coulomb-type potential

P. Gribi and E. Sigmund
Institut fii r Theoretische Physik der Universitat Stuttgart, Pfa+entvaldring 5?,

D-7000 Stuttgart 80, Federal Republic of Germany
(Received 12 December 1990)

We present a quasi-one-dimensional model with a Coulomb-type perturbation defined on a discrete
lattice that can be reduced to an exactly solvable Hamiltonian in the case of a narrow-band system. Due
to the long-range character of the perturbation potential, a series of infinitely many discrete levels ap-
pears in the band gap of the host crystal. Although the physical situation is completely different, a close
mathematical analogy with the so-called Stark-ladder problem is shown to exist. In this context, we give
a canonical transformation that allows a simple and elegant derivation of the Stark-ladder levels.
MS code no. BZ4206 1990 PACS number(s): 73.20.Dx, 03.65.Ge

I. INTRODUCTION

The inhuence of perturbation potentials on the elec-
tronic structure in otherwise perfectly ordered crystals
has been the object of numerous theoretical investigations
in the past. The characteristic properties of the perturba-
tions discussed in the literature are spread as wide as
solid-state physics itself. Namely, charge impurities and
external fields, structural defects, superlattices, quasi-
periodic, and randomly fluctuating potentials (this list is
by far not exhaustive) gave reason to detailed analysis.

Focusing our interest to the first group of perturba-
tions cited above (charge impurities), we mention some
particularly successful theoretical models: the theory of
shallow impurity states in semiconductors based on the
effective-mass approximation, ' the Stark-ladder states in
the presence of an external electric field, ' the so-called
one-band —one-site approximation, and the Fano prob-
lem. Wagner and Vazquez-Marquez recently reviewed
some exactly solvable models related to those of Refs. 4
and 5. Ifantis discussed exact solutions of a one-
dimensional (1D) one-sided Coulomb potential embedded
in a host crystal with a maximally simplified band struc-
ture (one-band approximation with a cosine dispersion).

In this work we discuss a quasi-1D model that is reduc-
ible to an analytically diagonalizable Hamiltonian in the
case of a narrow-energy-band system (one-band approxi-
mation). Its predominant feature is the generalization of
Ifantis's results to a band with arbitrary energy disper-
sion. The perturbation consists of a one-sided (dielectri-
cally screened) Coulomb potential and refers most natu-
rally to the following physical realization: A point
charge is placed at one end of a half-infinite 1D isolating
crystal. Due to the dielectric nature of the host crystal,
the perturbation is of long-range type and completely
alters the unperturbed electronic structure.

The paper is organized as follows. In Sec. II we intro-
duce an artificial potential which is identical to the one-
sided (repulsive) Coulomb potential described above for
lattice sites with positive site index n. For negative n we

prolong the potential antisymmetrically, i.e., in the vicini-

ty of n =0, the potential changes abruptly from an at-
tractive to a repulsive Coulomb potential.

In the case of a crystal with narrow energy bands the
total Hamiltonian corresponding to a particular energy
band and the artificial potential is exactly diagonalized in
Sec. III.

Section IV is entirely devoted to the calculation of the
Green's function associated with the model Hamiltonian.
We completely characterize the discrete spectrum and
demonstrate, by calculating explicitly the density of
states, the existence of extended states.

We draw the reader's attention to the fact that in Secs.
II, III, and IV we formulate the problem in three dimen-
sions with the artificial potential acting only in one
specific direction and leaving the transverse directions
unaffected. This 3D generalization does not touch the
essence of the article and it hardly complicates the
mathematical analysis. However, it will enable us to
compare the solutions of our model with the 3D Stark-
ladder representation (see Sec. VI).

In Sec. V we reduce the main results to the purely 1D
case and treat in detail a particular unperturbed energy
band (cosine band). We rederive the results of Ifantis,
who analyzed this simplified model by means of classical
functional analysis.

Finally, in Sec. VI we show a close mathematical anal-

ogy between our Coulomb-type eigenstates and the
Stark-ladder levels arising when an electric field is ap-
plied to the solid. As a matter of fact, it will be demon-
strated that the Stark-ladder eigenstates can be derived
following step by step the calculations in Secs. II and III.
It is to be emphasized that the two models in discussion
are the only ones allowing an exact and algebraic diago-
nalization of a zero-order energy band with general
dispersion perturbed by "long-range" potentials.

As an alternative way to diagonalize the Stark-ladder
Hamiltonian, we present a simple canonical transforma-
tion that has (to our knowledge) not been reported on be-
fore.
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II. HAMII. TONIAN

The single-particle Hamiltonian of our 3D model reads

x( )
~~ x'( )

r3 r3

H =—0

H =H + V,„,(r),
fi V + VL(r),
2me

(2.1)

x( )» ~A, (r )
P3 r3

(2.7)

Note that this approximation automatically inhibits band
mixing. The dominant part of the kernel reads

V,„,(r) =

with

W~ =5gg5~ k. W'(k3 —k3),
j.

(2.8)

where m, is the electronic mass in the vacuum and VI (r)
is the periodic 3D lattice potential, i.e., VL (r+p) = Vz (r)
with p = Ia+ m b+ n c. a, b, c are the primitive lattice
vectors (we suppose for simplicity that the host crystal
has orthorhombic symmetry) of length a, b, c, respective-
ly, and 1,m, n range through all integral values. The
quasi-1D artificial Coulomb-type perturbation V,„,(r )

acts only in the c direction (r3=r.c/c) and changes
abruptly from an attractive to a repulsive "Coulomb" po-
tential at the plane r3 =r3. a )0 is a constant measuring
the strength of V,„,(r).

The wave functions may be expanded in the Bloch base
associated with H as follows:

l@(E)& =y g"(E)lk~&, (2.2)

(E ex)gx(E) g Wk~A, gA, (E)
gl gl

with

(2.3)

where E is the exact eigenenergy and ikA, & is the Bloch
state with band index A, and wave vector k associated
with the energy band c&. Introducing the expansion of
the wave function into the Schrodinger equation we get

W(k —k' )=—g3 3 pf n

—i (k —k )nc3 3

n —v
(2.9)

and n =p3/c, v=r 3/c. In Appendix A, we show that for
v a noninteger (in the following we suppose 0(v(1),
W(k3 —k3 ) is in essence equal to the step function. It is
this property of the kernel that allows an analytic solu-
tion of the remaining eigenvalue problem. Since any
physically meaningful function of k is periodic in recipro-
cal space, Eq. (2.3) must be supplemented by the bound-
ary conditions

4+G«) =4(E» (2.10)

where Cs is any reciprocal lattice vector. The boundary
conditions imposed on gl",(E) give rise to quantization of
energy: For the c direction (where the crystal is sup-
posed to be infinitely extended) we obtain a nontrivial ei-
genvalue equation with an infinite number of discrete en-
ergy levels, as will be shown in Sec. III. To each level
corresponds a 2D energy band due to the transverse de-
grees of freedom of the system (ki still is a good quantum
number).

W~,
' = (kate V,„,ik'X' & . (2.4) III. SOLUTION OF SCHRODINGER EQUATION

g) (r p) =N g e '"'~(—rikA, &

k
(2.5)

associated with the lattice site p and the band A. (N is
the total number of lattice sites}. We get for the kernel of
the eigenvalue equation

Wz&'=N g e""'~' "~'f d r'y (r'—p)' 0
PP r3 r3

Since V,„,(r) leaves the degrees of freedom perpendicular
to the c direction unaffected, Bloch states with ki+kI are
uncoupled. Here we used the abbreviation k=(kl, k3)
with ki=k a/a+k. b/b and k3=k c/c. For narrow en-
ergy bands the Schrodinger equation (2.3) can be reduced
to an exactly solvable problem that has, to our
knowledge, not been discussed before. To illuminate the
approximation involved we introduce the %'annier func-
tions (WF's)

As stated in Sec. II, the boundary conditions in k space
for the state vector amplitude g(E) give rise to a non-
trivial eigenvalue equation in the c direction which ex-
plicitly reads

gik3+2~~, (E)=Ci~3(E) . (3.1)

In the case of a narrow band A, , the solution of the
Schrodinger equation can be achieved by the following
procedure: First, calculate the quantity W(k3 —k3);
second, solve Eq. (2.3) treating the energy E as a parame-
ter; and third, determine the a11owed energies by condi-
tion (3.1).

The first step consists in calculating the sum in Eq.
(2.9). Throughout the paper we will suppose that N ))1,
therefore we treat k3 as a continuous variable (whereas kj
is treated as a discrete variable for convenience, but this
point is not essential}. We get (see Appendix A)

Xqr" (r —p') . (2.6) W(k —k' )= a~
3 3 pf

In the case of narrow energy bands the VPF's are strongly
localized and the one-site terms with p=p' dominate.
Therefore we set

l V'IT

X 2ie(k —k' )+
sinvm

(3.2)
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where we used the step-function symbol in the following
sense:

1, x)0
6(x)=

0, x&0.

fixed we divide the spectrum in three parts: (i)
E & E;„(ki), (ii) E )E,„(ki), and (iii) E;„(ki)

&E &E,„(ki), where E;„(ki)=min» e&, E,„(ki)
=max» e& (the minimum and the maximum are taken in3"
the interval k3 E [ —m/c, m. /c ] ).

Let us first consider the following function:

Equivalently, we can write

3

(3.3)

dk3k3

f», «ki)= J
k~k 3

as well as its derivative with respect to E

(3.9)

The second step takes advantage of the very special form
of Eq. (3.3). Multiplying Eq. (2.3) by exp(ik3vc) and
deriving with respect to k3 yields

[(E—Ez )e ' gz(E) ]= ic ae—' gk(E), (3.4)

k3

f» (E ki)=-
dE 3 —~ye (E —E, )~

(3.10)

(3.1 1)

Inserting Eq. (3.9) in the eigenvalue equation (3.7) we get

af q, (E,ki)= (p —v) .

g»{E)— N~ k3 dk3
» exp ik3vc —ica f—E —c.k

—~/c E —p~
k~k 3

where we have replaced the summation over k3 by in-
tegration over the first Brillouin zone. Integration of Eq.
(3.4) yields

(i) For E (E;„(ki) and "smooth" dependence of E& on
k3, f z, (E,ki) is an analytic function of E, monotonical-
ly decreasing and behaves asymptotically as (see Ref. 8,
Appendix A therein)

T

0 for E~ —aof / (E ki)~" f E E (k )
(3 ~ 12)

(3.5)

m/c dk3
a —m/c E —p k~k3

2K
(p —v), (3.7)

with p an integer number. Equations (3.5) and (3.7) con-
stitute the main results of this work. For each eigenvalue
Ezz solution of Eq. (3.7) (p and ki being fixed quantump

numbers and A, the band index) the corresponding eigen-
vector is given by Eqs. (3.5) and (2.2) and reads

I @(E,' ) &
= g g„':(E,'„)Ik'&' &,

k', V

l LEpki k'

k,' dK3—ik 3 vc —ica
Epk~ k~x3

(3.8)

X exp

—1/2dK3p m/c

I J 2~ y (E» EA. )2
pk~ k~~3

N& is a normalization constant that will be specified later
[see Eq. (3.8)]. Finally, we determine the allowed energy
values by condition (3.1). We find

dk3
exp 27Tl v+ (3.6)

2m —~/c E —g~
k~k3

or equivalently,

Consequently, for 0 & v & 1 and a & 0 there exists a unique
real solution for any integer p &0 and E;„(E,ki) is an
accumulation point of eigenvalues.

(ii) For E )E,„(ki) similar conclusions hold:
f &, (E,ki) is analytic, monotonically decreasing, and
behaves asymptotically as

0 for E~+~f~yc( (3.13)

f ),(E,ki ) = lim f ),(E+i5—, ki) .
s-o+

We get

(3.14)

There exists a unique real solution for any integer p ~ 1

and E,„(ki) is an accumulation point of eigenvalues.
Note that the existence of bound states arising from
repulsive potentials is a well-known feature in solid-state
physics. These levels are due to the fact that effective
masses are negative at the upper-energy-band edges. This
implies that potentials which act repulsively on quasipar-
ticles with positive masses become attractive when the
effective masses are negative.

(iii) For E;„(ki)&E(E,„(ki) the energy E lies
within the unperturbed band (for ki fixed) and the
integrand's denominator vanishes at some definite points.
Due to this singular behavior there exist no real solutions
to Eq. (3.11). This can be seen as follows: Much as in the
theory of Green's functions, the analytic continuation
f„z,(z, ki) has a branch cut on the real axis in the inter-
val E;„(ki)& E &E,„(ki). Its side limits are defined by

In the following, we will suppress the band index A, . We
now want to prove that for arbitrary p and k~ fixed, there
exists a unique real solution E k . To this end, for k~p

f„),(E,ki)=f, ( ,Ek)i+if ( 2,E—k)i,

with

(3.15)
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f, (E,ki)=P J

fz(E,ki)= '

(3.16)
n I dk35(E —e~),—m/c

E;„(ki)&E &Em,„(ki)
0 otherwise .

In Eq. (3.20) we have used definition (3.9). Since

Nk
[q,(E,„)f&N-'" '

[n —v[,

we can conclude that for v=O (and p&0)

lp(Epq )I»= =0=0 .

(3.21)

(3.22)

Clearly, for E inside the original band, f2(E,ki) is
nonzero, and there do not exist any real solutions to Eq.
(3.11). However, this fact does not exclude eigenvalues
belonging to the continuous spectrum of H. We will
demonstrate in Sec. IV that the Green's function G(z)
corresponding to H has simple poles at the points
z =Ept, Vp, Vki, i.e., Eq. (3.11) determines only theP

discrete eigenvalues of H. Therefore information about
the continuous spectrum of H, if it exists, must be ex-
tracted from the analytic properties of G (z). As a matter
of fact, we will show that G(z) has a branch cut on the
real axis and that the continuous spectra of H and H
coincide.

To conclude this section, we attract the reader's atten-
tion to the fact that the wave functions in Eq. (3.8)
remain well defined in the limit v~O for all p+0 [note
that for p =v=0 Eq. (3.11) yields unphysical solutions
with E =+Do, which have to be excluded]. We will now
demonstrate that for v=0 all the eigenfunctions vanish at
n =0.

Consider the expansion of the state vector in the WF
representation

IV. GREEN'S FUNCTION

G (z) = (z H)— (4.1)

G (z)=(z H) '=—X Z Ek
(4.2)

For reasons of mathematical simplicity we first calculate
the so-called r matrix T(z) defined by

T(z)= V,„,G(z)(z H) . — (4.3)

G, G, and T are related by the following standard formu-
las:

This section is entirely devoted to the study of the
time-independent Green's function (GF} of the system
Harniltonian (2.1) in the case of a narrow band A, with
band dispersion sz (the band index will be suppressed).
All the mathematical tools used in this section can be
found in Economou's treatise on GF's. We define the
GF G(z) and Go(z) corresponding to H =H + V,„, and
H, respectively, as

{r~@(Epg ))=g gp(Epg, )q(r p), —
P

with

G =G +G V,„,G,
t+~ tG

G=G +G TG

(4.4)

(4.5)

(4.6)
rip(Ep~ ) =N g e'" '

gq. (Ep~ ) .

Using Eq. (3.8) we get
/kg'pg

(3.17)
Starting from Eq. (4.5), a calculation similar to the one
that led to the expression for the state vector's amplitude
[Eq. (3.5)] yields the GF in k representation (for details
see Appendix B)

(3.18)

with pi=la+mb Equation .(3.18) refiects just the fact
that the wave function factorizes in a plane wave along
the p~ direction and a nontrivial part along the c direc-
tion. Next, note that g& can be rewritten as

i I {k 3
—k3)~c+ea[f, {z,k&) —fk {~,k&)] I2&l a

Tki, (z)= 5„~e
j.

X[(1—e ' ' '
)

' —e(k —k' )]

(4.7)

N —.k,
gz(Ep& ) = i eca 3

dK3
X exp —ica

j. l 3

(3.19)

where the function fk (E,ki) is defined in Eq. (3.9).
3

Again, we supposed that N »1, i.e., sums over k3 are re-
placed by integrals multiplied by Nc /2m

According to Eq. (4.6) the matrix elements of the cor-
responding GF are given by

Introducing Eq. (3.19) into (3.18) and performing a par-
tial integration, we get Anally

T~.(z)
G~.(z) =6~.(z)+

(z —
e), )(z —eq )

(4.8)

&kjPj elk
i) (E k )= v'N (n —v)

2+a

X J dkiexp[ik3(n —v)c—~/c
—icafk (E z, ki)] . (3.20)

where

G~ (z)= 5& &,5(k3 k3) .p 2m 1

Nc z —ck
(4.9}

Equation (4.9} follows from Eq. (4.2). We remind the
reader of the fact that k3 is treated as a continuous vari-
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able, whereas k~ denotes the discrete transversal corn-
ponents of k. With this in mind we write

b,D (E)=g hpk(E) .
k

(4.16b)

5,5(k, —k', )
Nc (4.10)

instead of ( kI k'
& =5kk, if k3 also were a discrete variable.

The knoweldge of the density of states (DOS) is partic-
ularly important in the analysis of the spectrum of H.
For this purpose we consider the side limits G+(E) and
G (E) of the GF and their difference G (E),

G (E)= —lim G(E+i5),
5~0

(4.11)

pk(E) =i(2n) 'Gkk(E),

p„(E)=i (2~) 'G„„(E),
as well as the total DOS D(E) and D (E),

(4.13a)

(4.13b)

G (E)= G+(E)—G (E)
[with analogous definitions of G +(E), G (E), and
G (E)]. These quantities allow us to calculate the DOS
per state Ik& pk(E) and pk(E) associated with FE and H,
respectively,

Here we used e(0)= 2' [compare with Eq. (A7)].
following, we give a complete characterization of the
solutions associated with the discrete spectrum (eigenval-
ues, degree of degeneracy, eigenvectors, DOS) and we
calculate explicitly the DOS of the continuous spectrum
of H.

g. Discrete spectrum

As is well known, each pole of the GF on the real axis
corresponds to a discrete eigenvalue of H, the residue of
the GF at this pole determining the degree of degeneracy
of the eigenvalue as well as the projector on the associat-
ed eigenspace.

The poles of the GF are given by the equation

D(E)=g pk(E)=i( 2n) 'g Gkk(E),
k k

(4.14a) 2~i v+icaf
& (E,k&)

1 8 (4.17)

D (E)=g pk(E) =i (2m. )
' g Gkk (E) .

k k
(4.14b)

bp„(E)= ——
2niv+icaf +& iE, ki )

(1—e
2

(E +i0+ —ek)

Let us define the two following quantities with obvious
significance:

&pk(E) =pk(E) —pk(E), (4.15a)

bD (E)=D (E)—D (E) . (4.15b)
According to Eqs. (4.8), (4.12), and (4.13) they are given
by

d k =Tr Res[G(z), E~k ] . (4.18)

Recalling the definition of f &, (E,ki) [Eq. (3.9)], we see
that Eqs. (3.11) and (4.17) are identical. Note that the
zeros of the denominator in the second term of the right-
hand side (rhs) of Eq. (4.8) do not give rise to discrete lev-
els, but rather contribute to the branch cut of G(z) (see
below).

The degree of degeneracy d~k of the eigenvalue E~kP
solution of Eq. (4.17) can be calculated as follows (Tr is
the trace):

2m.iv+ f ) (E,&~),
1 —e

2

(E i 0+ —sk—)

(4.16a)

Res[f (z),zo) means taking the residue of f (z) at the
point zo. Let us first calculate the residue of Gkk-(z) at
Z=E k.

Res[Gk, k, .(z),E k ]= lim (z Ek )Gkk (z)—
E

pk~

z=E „P

exp[ic (k3'v+afk„k3v af&, )]——
5 5 fC krak& kt k (z —E„. )(z —sk. ) dz

(4.19)

Introducing Eq. (4.19) into Eq. (4.18) we get

dzk =g Res[Gkk (z), E&k ]=1,
k'

(4.20)

is one dimensional and may be expressed as

Its matrix elements read

(4.21)

i.e., all the eigenvalues are nondegenerate. Consequently,
the projecter P k on the eigenspace associated with E~kP ski Ik" & =4k'(Epk& Ck"(ski�) (4.22)
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where we used definition (2.2). According to the theory
of GF's, we have

bD(E)=+5(E E—
pk ) .

pk~

(4.30)

&k'IP, k, lk" & =«s[Gkk-(z), E,k, ] (4.23)

with

X exp[ ik'3—vc ica—f&, (E~k, k 3 )]k3 p y' (4.24)

dk3~/c

2m' —m/c (E k
—Ek)2

—1/2

(4.25)

As expected, this expression for the amplitude of the
state vector is identical to Eq. (3.8). We recall [see the
discussion of Eq. (3.11)] that for ki fixed, we have

E~k (E;„(ki) for p ~0 and E~k )E,„(ki) for p )0.
Therefore the integrals in Eqs. (4.24) and (4.25) are well
defined and real, i.e., gk. (E~k ) is normalized to unity with

N k playing the role of a normalizing factor.p

To close this first subsection we calculate b pk(E). We
have from Eq. (4.16a)

Comparing Eq. (4.23) with (4.22) and (4.19), we get as a
result

Npk
gk(E k )= 5k kl Epk Ck~

These results are easily interpreted: Eq. (4.28)
represents the contribution of the exact state I@(E~k ))p

to the occupation of state Ik) and Eq. (4.29) sums up the
contributions from all the discrete levels with kj fixed.
Finally, integration of Eq. (4.30} over E yields the total
number of discrete levels produced by the Coulomb-type
potential. It is of course not surprising that this number
diverges since we have supposed in our calculations that
the crystal has infinite extension in the c direction.

B. Continuous spectrum

It is a general result of the theory of GF that the con-
tinuous spectrum of H [denoted by o, (H) as opposed to
cr, (H ), the continuous spectrum of H ] gives rise to a
branch cut of G (z) along the real z axis. We now want to
show that G(z) indeed has a branch cut [and therefore
that cr, (H) exists] by calculating explicitly the total DOS.

We start with summing up expression (4.16a) over k3
with ki fixed. Using definition (3.15) and its derivative
with respect to E [for the sake of brevity we suppress the
arguments E and ki in f &c(E,ki) in our formulas],

hpk(E) = — (E —sk) —[(1—e ~')
(4.31)

2vriv+icaf
1 —e

(4.26)

Both terms on the rhs of Eq. (4.26) have simple poles at
E Epk Vp. A careful evaluation yields for E =Epkp pk~

(i e, IE —E,k I «IE —E,+)k I)

we get

2 i +'caf

k3

2vri v+icaf
dE"

2civ+icaf &(E,k&)—
1 e

+l
dE

(4.32)

dica —f &, (E,ki) Introducing the equality

PPE
+i~fi(E Epk )—

pkl
(4.27)

—2n-i v—icaf —
&

+
e d +
—2m.i v —icaf—

/~ dE f.g,

(PPE is the principal part with respect to integration over
E), where account has been taken of the eigenvalue equa-
tion (4.17). Introducing Eq. (4.27) in (4.26} and using
(4.24) and (4.25) we get in Eq. (4.32) we get

2aiv ica—f—
ca dE

(4.33)

b,pk(E) =
I gk(E) I 6(E Ek ), E=Epk-

Repeating the argument for arbitrary p yields finally

~pk(E)=X lkk(Epk, )l ~(E Eik, ) .

(4.28)

(4.29)
k3

—2' v —icaf n./c

+if,—2m.i v —icaf

(4.34)

The change of the total density of states b,D (E) associat-
ed with only the discrete spectrum is obtained from Eq.
(4.16b), namely

Separating the argument of the logarithm in real part x
and imaginary part y where
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—caI2

cosh(caf z )
—cos(2nv+ caf, )

X [1 co—s(2vrv+ caf, )cosh(cafz )],
—caf2

cosh(caf 2 )
—cos(2m v+ caf, )

X sin(2@v+ caf, )sinh(caf 2 ),

we rewrite Eq. (4.34) using

ln(x+iy)= ,'ln—(x +y )+i [arctan(y/x}+2ms) (4.35)

(s is an arbitrary integer number). As expected, the imag-
inary part in Eq. (4.34) vanishes and we have

1 sin(2m v+caf, )sinh(caf2)
~pk«) = arctan

2m. dE 1 —cos(2m v+ caf, )cosh(caf 2 )
(4.36)

From Eqs. (4.15b) and (4.16b) we get for the total DOS

D(E)=D (E)+ggbpk(E) . (4.37)
k~ k3

It is important to note that due to the transversal ener-

gy dispersion (with quantum numbers k~) there are
infinitely many discrete levels degenerated with "band"
(or extended) states. This gives rise to relaxation or
broadening of the discrete levels in the presence of any
additional perturbation term in the Hamiltonian which
couples the degenerated states. There exist many
theoretical investigations on this topic, one of the most
elegant exact treatments was given by Pano.

V. EXPLICIT RESULTS FOR THK 1D COSINE BAND

As an illustration of the results exposed in this work,
we consider a simple one-dimensional Hamiltonian with
nearest-neighbor interactions as the nonperturbed part:

Ie(E ) &=/ g„(E }Ik &,
k

Np
gk(E )= exp[ ikvc i—cafk(E& )],—E —

Ck

with

(5.4)

where p = 1,2, . . . , ~. For the repulsive potential
(b )0) the corresponding eigenfunctions were explicitly
calculated in local representation.

We will now show that for v=0 (i) the point spectrum
of our Hamiltonian (5.1) is identical to the composed
spectrum (5.3a) and (5.3b) (where b/a has to be replaced
by a/8 and s by E /8) and (ii) the respective wave
functions are identical.

The applications of the formulas in Secs. II-IV to the
1D case are straightforward. According to Eq. (3.8) the
discrete level eigenfunctions are given by

H=H +V,„, ,

~ =y —(In+»&nI+H. c. )=ye„Ik&&kI, (5.1)
B

n k

v,„,=g In &&nI
n

dK~/c

2n nic (E —e—„)2

f„(E)=f'
K

—1/2

(5.5)

(5.6)

where

Ik ) —+—I/2 y eikncIn )

The corresponding eigenvalues E are solutions of Eq.
(3.11},which reduces to

Fk —B coskc
(5 2) af ),(Ep)= (p —v) .=2~

c
(5.7)

In ) is a shorthand notation for the WF at the lattice site
n for the particular band considered. A very similar ver-
sion of this particular problem has been studied by
Ifantis. It consists of a half-infinite chain with lattice
sites x =sa for s =0, 1,2, . . . , ~ (a is the lattice con-
stant), nearest-neighbor interactions (the bandwidth is set
equal to 2) and a point charge of weight b at site x =0. It
was shown that the point spectrum associated with the
homogeneous boundary conditions (vanishing wave func-
tion at x =0 and ao ) is given by

[1+(b/ap) ]'~, b )0 (5.3a)
—[1+(b/ap) ]'~, b (0, (5.3b)

+ (E2—8 )
'~ for E)8

C

(E 8) ' forE( —8—
c

0 for IEI &8
(5.8)

(8 E) ' for IEI &—8
C

0 for IEI» .

The function f*&,(E)=f, +if2 is readily calculated (see
Ref. 8, p. 81) and reads



3544 P. GRIBI AND E. SIGMUND

This yields for the allowed energies

2 1/2

where

E +-(X (5.15)

E ='
forp=1, 2, . . . , ~

2 1/2 (5.9)
Introducing Eqs. (5.10) and (5.14) in (5.12) we get as a re-
sult

forp=0, —1, . . . , —Oo .

Comparing Eqs. (5.3) and (5.9) we see that for v=O the
allowed energies are identical. However, in Eq. (5.9) we
must exclude the eigenvalues E0=+~ for p =0 because
they are due to the pathological divergency of the poten-
tial on site n =0. The upper and lower band edges
E„=Band E1=—B are accumulation points of discrete
eigenvalues. The state vector's amplitude gk(EP) corre-
sponding to the level E is given by Eq. (5.4), where N
and f1, (EP ) explicitly read

—1/2

P . (E2 B2)3/2 (5.10)

and

2
fk P (E2 B2)1/2f (E)=

J7

X arctan
E +B

tan(kc/2) +-
(E2 B2)1/2 2

lkl & —, (5.11)

cX
rl„(E )=v'N nI„(Ep),

27TCX

with

(5.12)

where the upper (lower) sign in Eqs. (5.10) and (5.11)
must be taken for p) v (p &v). In the following, we
demonstrate that our solutions corresponding to positive
eigenvalues E, with p = 1,2, . . . , are identical to
Ifantis's solutions in the repulsive case (b &0). The latter
amplitudes were calculated in local representation, there-
fore we need to calculate the Fourier transform of Eq.
(5.4). Setting v=O and transcribing Eq. (3.20) for the 1D
case, the local amplitude 21„(EP ) reads

ri„(E )=

C(A, )
p —1

m=0

'm
2' 1

Bp p w 1 oz t

n (n +1) . (n +m)
)m+1

n~0

(5.16)
0, n&0,

where C is a normalization constant given by

2' cx

E

1/2

(&P )" (5.17)

Equation (S.16) for n &0 is identical to Ifantis s (non-
normalized) solution, except for the normalization con-
stant Cz. Since we started from normalized amplitudes
gk(E ) in k space, ri„(E ) are also normalized, i.e.,

y lq„(E, )l2=1, p =1,2, . . . , (5.18)

Finally we remark that ri„(EP ) are exponentially local-
ized in the region where the potential is positive (repul-
sive), i.e., n )0, and zero for n &0 [consistent with Eq.
(3.22)]. By similar considerations one can show that for
p = —1, —2, . . . , —~ the particle is exponentially local-
ized in the region where the potential is negative (attrac-
tive), i.e., n &0, and has zero probability of being in the
region n ~ 0. This latter property is quite natural,
whereas the former result is remarkable: It implies that
the quasi-1D Coulomb-type potential wall is perfectly
impenetrable for the particle moving on the lattice.
However, this opaqueness is due to the fact that transfer
integrals other than between nearest neighbors have been
neglected. Since the wave function associated with a
discrete level vanishes at n =0, the particle is forced to
localize at one or the other side of the potential barrier.

Finally, we attract the reader's attention to the fact
that from Eqs. (4.16b), (4.30), and (4.36) we have

I„(E )= J dk exp[iknc icafk(EP)] . —(5.13)—m/c

I„(E ) is calculated in Appendix C. We get, for
p 1 7 2 7 ~ ~ ~ 7

m+1
and

0, IEI&B
~D«&= g|'(E —E, &, IEI&B (5.19)

I„(E )=.
m=0

n~0

2' p
p —m —1 ~t

n(n+1). . . (n+m)
X )m+1

D'«&, lEI&B
D (E)= g g(E E&—(5.20)

This means that for lEl &B the DOS remains unaltered
by the artificial perturbation. Note that Eq. (5.19) ap-
parently violates the sum rule0, n&0,

(5.14)
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dED E= dED E

which states that the total number of available states is
unaffected by the perturbation. This discrepancy is ex-
plained by noting that the crystal has been supposed to be
of infinite extension. Therefore it does not make much
sense to compare the rhs with the left-hand side of Eq.
(5.21) since both quantities are infinite.

VI. MATHEMATICAL ANALOGY
WITH STARK-LADDER PROBLEM

and is solved by

k3
gi, k (E)=%&exp ——f dk', (E —e, )—~/c k~k 3

According to Eq. (3.1) the eigenvalue equation reads

exp 2ni — f dk3(E —si, ) = 1,2~5 —~/c

which yields

(6.5)

(6.6)

Although the physical situations are different, in this
section we point out the rather close mathematical analo-

gy that exists between our model representing the
Coulomb-type perturbation (2.1) and the so-called Stark-
ladder system first described by Wannier, ' '

representing the much simpler situation of an applied
electric field. For this system Wannier predicted theoret-
ically that the symmetry-breaking field creates quantized
electronic states with equidistant energy levels (Stark-
ladder levels) given by

m/c
E&k =eFcp+ dk3gk,

2& —m. /c
(6.1)

—fi VH = +Vt(r),

2&ate

V,„,(r) =eFr3,

(6.2)

where V,„,(r) is the potential energy of the electron in the
external electric field F applied along the c axis (all the
other symbols are the same as in Sec. II), in analogy to
Eq. (2.9) we rewrite the perturbation in Fourier space

I

W'(k3 —k3)= —g ne

2 IT l 5 8 ~(k k, )
Xc c ak,

(6.3)

A=eFc is the potential-energy difference over one lattice
cell. This expression is much simpler than the corre-
sponding expression for the Coulomb-type perturbation
[Eq. (3.2)]. Therefore the solutions can be found straight-
forwardly. The Schrodinger equation (3.4) becomes

(6 4)

where p is an integer, —e the electronic charge, F = ~F~

the electric field (it is supposed that F~~c), ei, the zero-
order energy-band dispersion (interband transitions are
not taken into account and the band index A, is
suppressed), c the lattice spacing in the c direction, and
k~ denotes the transverse components of k vectors in the
first Brillouin zone.

We stress that the analogy between the two completely
different physical situations is of purely mathematical na-
ture. Following step by step the calculations in Secs. II
and III, we rederive the energies and wave functions of
the Stark-ladder levels. Starting from the Hamiltonian

H =H + V,„,(r),

E i, =pb+ f dk3sk . (6.7)

Therefore the eigenstates of the Stark-ladder levels asso-
ciated with E & are given byP

gi, .(E i, ) = 6q „.N~kk~k~

lC k
X exp —— dx3(E~i, —si, )—n. /c I l 3

(6.8)

1
N„k =N= ~—

Note the remarkable mathematical resemblance between
Eqs. (3.8) and (6.8). However, the physical properties of
the levels found in the two models are completely
different.

(i) The Stark-ladder energies are equidistant (with spac-
ing b, ) independently of the dispersion s&, whereas the
Coulomb-type state energies depend on ck in a nontrivial
way.

(ii) In the case of the Stark-ladder system, the quantiza-
tion condition (3.1) gives rise to discrete levels only, signi-

fying that the electric field completely breaks up the con-
tinuous spectrum of H associated with the degree of
freedom in the c direction. In contrast, Eq. (3.1) yields
also continuous eigenvalues in the case of the Coulomb-
type field.

(iii) The Stark-ladder states are regularly localized (i.e.,

the mean positions forming a "lattice" ), their mean-
squared position being determined by —roughly
speaking —the ratio of the unperturbed bandwidth to 4.
The Coulomb-type states are localized essentially in the
well (on the barrier) with diverging extensions as their en-
ergies tend to the lower (upper) band edge.

To conclude this section, we demonstrate how the
Stark-ladder energies can be derived by means of a simple
canonical transformation. For a thorough treatise on
canonical transformations in solid-state physics we refer
the reader to the book by Wagner. ' We rewrite the
Hamiltonian (6.2) in the WF representation correspond-
ing to a particular band with energy dispersion ek (one-
band approximation):
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H=H +V
H'=y t, Ip+p'&&pl,

P~P

V,„,=g n&lp & & pl,
P

where

(6.9)

canonical transformation:

le(Z„„)&
=e'In, k, &

=—y e' ' "e'Ip & .
P

Comparing Eqs. (6.8) with (6.17), we have

g, .(E„, )=—ye' '"«'I"Ip& .
P

(6.17)

(6.18)

k

t =N ge'"~sz.
P

k

Consider the unitary transformation

T H=e He (6.10}

defined by

s= —y ', Ip+p'&&pl,

(n'%0)

with

(6.11)

p=pz+no, ,

p'=pz+n'c .

The relevant commutators are

[v,„„s]=—H'+ y t,, lp+p'&&pl,
P&P(n'=0)

[[V., S] S]=0
[HO, S]=0,

and we obtain

T:H= V,„,+ g r ~ lp+p'&&pl .

(6.12)

(6.13)

lp&= —ge ' ' 'In, k, &,
k~

we find

T:H =+X„„ln, k, &&n, k, l,
nk~

with
I

E„„=n 6+g e ' '5„0tp .
P

(6.14)

(6.15)

(6.16)

By considering the 3D Fourier transform of t ., one can
immediately identify Eqs. (6.7) and (6.16). The associated
Stark-ladder states are obtained by inversion of the

Since the summation over p' must be carried out for
n'=0, the effect of the transformation is to uncouple
crystal planes perpendicular to the direction of the ap-
plied electric field (i.e., with different index n). Diagonal-
ization of H is completed by performing a 2D Fourier
transform with respect to the latteral degrees of freedom.
Introducing

VII. CONCI-USION

In this work we discussed the inAuence of a quasi-1D
artificial Coulomb-type perturbation on the single-
electron spectrum of a perfect crystalline structure. It
was shown that for a system with narrow energy bands
the problem can be reduced to an analytically solvable
model Hamiltonian which consists of a single band of the
perfect crystal in the presence of a nearly antisymmetric
Coulomb-type potential. This idealized model has the
virtue of being applicable to (narrow) bands with arbi-
trary energy dispersion and of explicitly taking into ac-
count the discrete structure of the lattice. Obviously the
physical interest of the presented model lies principally in
the half-sided version: a point charge placed at one end
of a 1D dielectric crystal.

In the case of nearest-neighbor interactions we have
shown that the two-sided, artificial potential gives rise to
discrete states that are identical to Ifantis's solutions of
the corresponding (repulsive or attractive) one-sided
model. Whenever more general band dispersions are
dominated by nearest-neighbor interactions, we expect
that our two-sided solutions are still of sufficient
relevance for the one-sided type of problem.

However, if next-nearest-neighbor interactions become
important, the solutions of the two models differ substan-
tially. Nevertheless, it is still possible to use, by a simple
generalization of the Hamiltonian H in Eq. (2.1), the solu-
tions presented in this publication. Since the GF associ-
ated with H is explicitly known, we can —by inclusion of
an additional term to the Hamiltonian of the form
Ul —1 & &

—1
I

—calculate the new eigenenergies and
eigenfunctions according to the adapted form of Eq. (4.4).
Letting U tend to infinity, we again obtain exact levels
that are completely localized either in the region n )0 or
n & —1. In Sec. VI, we used a nearly identical mathemat-
ical treatment as in Secs. II and III to diagonalize the
well-known Stark-ladder Hamiltonian. The reason for
this close mathematical similarity lies in the special form
of the perturbations: The Fourier transform of the 1/n
potential (n potential) essentially is the primitive (deriva-
tive) of Dirac s 5 distribution. As far as we know, these
are the only two models with "long-range" perturbation
potentials in the presence of a general zero-order band
dispersion that allow an analytic solution.
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APPENDIX A taken into account by defining the step function as

In the following calculation we suppose that the k3
values in the first Brillouin zone form a quasicontinuum,
i.e., X)&1. It is then possible to derive and integrate
with respect to k3. According to Eq. (2.9) we consider

1, k)0
e(k)=. ,', k=o

0, k(0.
(A7)

—iknc
W(k)= —g1V „n —v

For k =0 one obtains
am

W(0) = — cotan(m. v) .
N

Note that

[eikvcW(k)] ica y e
—ik(n —v)c-

dk
'

Integration from n /c t—o k yields

w(k)= '" ' — e(k)+ w
C

(Al)

(A2)

(A3)

(A4)

Tkk (»=&&I I'...Ilt')+ &1~1 I;„,G'(z)T(z)~k') . (Bl)

Inserting Eqs. (2.8) and (4.2) yields

Tkk. = 5k k, W(k3 —k3)
j. i

II 1

(k k")(k'k') '
Z E

3 3

(B2)

For N &)1 we replace the summation in Eq. (B2) by in-
tegration over the first Brillouin zone. Deriving

APPENDIX 8

We calculate the matrix elements Tkk (z) starting from
Eq. (4.5)

We finally need to calculate (see Ref. 13, p. 40)
& (k3 —k 3 )vc

Tkk =e Tkk (B3)

a ( —1)"
W

c 1V „n —v

This yields the result

N sin(n. v)
(A5)

with respect to k3, we get

27TE CX 1
Tkk = —

N 5k k, 5(k3 —k3) ica —
Tkk

Z Ck

(B4)I 1Tv

W(k)= ——me '" ' 2ie(k)+
sin(mv)

where the singular behavior at k =0 [Eq. (A2)] has been

Here again we made use of the very special Fourier trans-
form of the perturbation potential [see Eq. (3.3)]. Solving
Eq. (B4) for Tkk. we obtain

—i [k3v+afk (z, k&)]c 2&1 CX k3 I [a3v+af (z, k~)]c
T~ (z) =e . ' e ' 'T(k ~«)k

—
5k k, I dx3e ' 5(ii'3 3 )

N kskx —~/c
(B5)

The first term on the rhs can be determined by exploiting
the fact that Tkk. (z) must be a periodic function in re-
ciprocal space. By analogy with Eq. (2.10) this prescrip-
tion reads

with

k3 I [~3v+af„(z,k, )]c
Fk (k3)= I dk3e ' 5(k3 —k3) .

k3 —m/c
(B9)

Tk+ Gk' Tkk'+ G' Tkk' (B6)

T(z,vr/c)k' (k —m. /c)k'

This yields

(Bj)

where G and Cx' are reciprocal lattice vectors. In partic-
ular, we have

F «(k3)
2~i v+icaf / (z kg) 3

Fk (k3)—
1 e

(B10)

Introducing Eq. (B9) into Eq. (B5) we obtain

2~i a —I:[k3v+afk (z, k~)]c'3T ="6.,'k~k~

2mia
&(k n./c)k'

—tv —icaf / (zk&)

X , , F (k')
n/c ' i—2,m.iv —icaf (z, k )

(B8)
F„(k,') =e

and therefore

For
~
k 3 ~, ~

k 3 ~
(n. /c we have

i [k3v+af, (z, k~)]c
k3 e(k3 —k3), (B1 1)
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7 I (4 3 k3 )v+a[f, (z, k&) —fk (z, k&)] I c

N

(B12)

in the case of a 1D band dispersion ck =B coskc, for
which

2
fk p c (E2 g2)1/2f (E)=

P

If we wish to show that Tk1, (z) is periodic with respect to
k3 and k3, we have to use Eq. (B10) rather than (B12)
[note that the 5(x) distribution must be considered as be-
ing periodic in x, consistently with, e.g. , Eq. (A3)].

APPENDIX C Defining

E +B
X arctan tan +— . (C2)(E2—g2) ~ 2

P

We calculate the quantity

I„(E«)=f dk exp[iknc —icafk(E )],—m/c

p 1y2y ~ ~ ~

E +B
CO

(E2—g 2)1~2
P

(Cl) and using Eq. (5.9) (setting v=0), we get

(C3)

n. /c kcI„(E )=( —l)P dk exp iknc 2ip—arctan co tanP 2
(C4)

By performing the variable substitution z =exp( ikc) a—nd integrating along the unit circle in mathematically positive
sense, Eq. (C3) becomes

( —1)P dz z —1
I„(E«)= + &

exp —2ip arctan l copz~+ P z+1 (C5)

We make use of the functional identity arctan(ix) = (i /2)ln[(1+x) /(1 —x) ] and find

(C6)

where

z —(1/A, )
h (z)= —

A,
z —A.P

and

cd+ 1

co 1P

(C7)

(C8)

Note that for p = 1,2, . . . we have cop ) 1 and A p ) 1, therefore hp(z) has a simple pole outside the unit circle at z =A, .
Since for n & 0 the integrand in Eq. (C6) is analytic inside the unit circle, we conclude immediately that

I„(E«)=0, n &0, p =1,2, . . . .

For n ~ 0 we choose to close the integration path at infinity. We get

(C9)

( —1)"I„(E )= — 2ni Res
ic

[h (z)]P

Z
ll +1 ' P (C 10)

where Res[f (z),zo] means taking the residue off at z =zo. A straightforward calculation yields

21r ~p «+' p!n(n+1) . (n+m) 1

c n 0 m1(p —m —1)!(m +1)!
P

By some algebraic manipulations Eq. (C8) can be rewritten as

E +-a
P

(C 1 1)

(C12)

and also
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1 2a 1

p8 A,

Joining Eqs. (Cl 1)—(C13) and Eq. (C9) we finally get

(C13)

m=0

0, n(0.

(gp)" " p —1

I„(Ep)= c n

2(x

pB

' m+1
n(n +1) (n+m) n~0

p —m —1 f(g )Itt + 1

(C14)
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