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Order parameters in multisheet superconducting states
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In this paper we study the multisheet superconducting system with intersheet and intrasheet pairing.
In the mean-field approximation we derive and solve the coupled equations for the intersheet-pair and
intrasheet-pair order parameters. We find that the order parameters are sensitive to both the intersheet
and intrasheet coupling constants, however small or large the coupling constants may be. We define a
characteristic parameter c which is a function of both coupling constants and is effectively useful in clas-
sifying the behavior of order parameters. To show a variety of temperature dependence, we present
curves of order parameters versus temperature with different values of c. We see from these results that
the intersheet pairs play a key role in maintaining the superconductivity. This suggests to- us a
significant aspect of lower-dimensional structure summarized by the term "pair multiplicity. " We show
also some exotic behavior of the specific heat. In cases of low-dimensional structure, the reliability of
the mean-field approximation is in question. We analyze this question.

I. INTRODUCTION

An aim of this paper is to study superconducting states
in a system of multiple two-dimensional sheets. There is
considerable evidence that the high-T, superconducting
materials are highly anisotropic compounds. ' This can
be seen from its provskite structure. It is therefore natu-
ral to expect that this structure is, at least partly, respon-
sible for the highly anisotropic behavior of these materi-
als. Therefore, the research of the intrinsic properties of
the layered material has attracted much attention. Study
of the superconducting layered system today represents a
classical problem. Through this development we
learned much about the proximity effect and tunneling
effect between mu1tilayers. The presence of the two-
dimensional layer structure in high-T, materials further
encourages the research in this direction.

The most cha11enging question on high-T, supercon-
ductivity is to ask what interaction makes T, high and
mediates the electron interaction. Many mechanisms
have been proposed for high-T, superconductivity, but,
whatever this interaction is, there is another question as-
sociated with intrinsic properties of two-dimensional
sheets. It is well known that there cannot exist any su-
perconducting state in an isolated two-dimensional sheet
because the low dimensionality enhances the infrared
effort of the quantum and thermal Auctuation of long-
range correlation which quenches the superconducting
orders (see, for example, Ref. 6). With this situation we
have two possibilities. One is to make use of a kind of
phase similar to the Kosterlitz-Thouless phase. There
have been severa1 papers which pursued this possibility.
Another is to assume that the superconducting long-
range correlation is created by electron tunneling or hop-
ping through the multisheets. In this paper we take the
second approach. Then, an interesting question is how
this tunneling effect can overpower the destructive Auc-
tuation effect mentioned above. There are two ap-

proaches to the multilayer system. The common one is to
take advantage of knowledge on the proximity effect in a
stack of thin-film layers. Considering a complex but real-
istic arrangement of layers in high-T, materials, Tachiki
et al. recently presented a detailed theoretical analysis
of multilayer superconductivity controlled by proximity
effect. Another approach is to focus attention directly on
the Cooper-pair tunneling interaction. We take this ap-
proach. To distinguish the two approaches, we conven-
tionally use the word "sheet" for "layer. " In the mul-
tisheet superconducting system, we have the bridge pair
and in-sheet pair; the bridge pair is the Cooper pair with
one electron in a sheet and its partner in the nearest sheet
while the in-sheet pair is the Cooper pair of both elec-
trons residing on the same sheet. Many experiments on
high-T, material have shown results different from those
of the bulk BCS model. For example, it has been report-
ed that the magnetic behavior of high-T, material is
anomalous. ' To explain the anomalous temperature
dependence of London penetration depths and low criti-
cal magnetic field, recently we presented a model of the
multisheet superconducting states with bridge pairing
only. " Our results agreed qualitatively with experi-
ments. In our approach we do not ask what mediates the
pair interaction, although an interesting candidate for
this is the surface phonon associated with the sheets. In-
stead, we try to investigate the general features of mul-
tisheet superconducting systems. In the last paper we
considered only the bridge pair. In this paper we extend
our study to include both bridge and in-sheet pairs. We
will concentrate on the study of the order parameters and
specific heat, leaving the study of magnetic properties
and mixed states to the future. We find that the tempera-
ture behavior of the order parameter for the system
without in-sheet pairs (the system studied in the previous
paper") is diA'erent from that of the weak limit of in-
sheet pair coupling. Furthermore, the weak limit of
bridge pair interaction does not smoothly become the sit-
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uation without the bridge pairs. This situation is more
complicated than the one in Ref. 12. We will see that the
results are quite sensitive to coupling strengths of both
the bridge pairing and in-sheet pairing interactions. We
introduce a particular parameter (denoted by c) consist-
ing of these coupling constants which characterizes this
sensitive behavior.

II. MODEL

We consider infinite sheets parallel to the a-b plane
with spacing a. The sheet can move up and down along

H =Ho+H;„, ,

where

(2.1)

Ho= g f (x, i)e( —iV)Q (x, i)

the c axis in order to absorb the recoil momentum of the
electrons tunneling out. The coordinate system is chosen
so that the a-b plane is the x-y plane and the z axis is
along the c axis. The total Hamiltonian is

H;„,=( —X, ) g P&(x,i)P&(x, i)g&(x, i)Pi(x, i)

+ ( —A2) g ,' [gi—(x,i)gt(x, i + 1)gt(x, i + 1)g)(x,i )+g)(x, i)gt (x, i —1)gt(x, i —1)g)(x,i) ] (2.3)

with

E( i V)e'— 1 (k~+k )
—pF e' '" .

2m
(2.4)

cu ~ ( 6 ) +62cosx )cosx
Az=B dc dh [1—2fF(E)] .

0 0
z
~~c

(2.9)

Here P (x,i) is the electron Heisenberg field with spin 0.

on the ith sheet. The pF is the chemical potential. The
first term in H;„,is the pairing interaction among the
electrons on the same sheet with the coupling A, , and the
second term is the bridge pairing interaction with the
coupling Xz. Note here that the symbol x represents the
two-dimensional vector x=(x,y) and the time t In this.
model the electrons tunnel through sheets in pairs only.
In Sec. IVB, we discuss the electromagnetic effects in-
cluding the Coulomb potential effect.

In general, we have two order parameters:

5,(T) =A, ,

(0(p)~gati(x,

i)gt(x, i)~0(13) ) (2.5)

and

b, (T)=X,(0(13)~q„(x,i)g&(x, ~ + I) l0(p) )

=k (0(P) g)(x, i)Pi(x, i —1)~0(P)),

(2.6)

(2.7)

6&+Azcosx
a, =~ f 'de f dx [1—2f~(E)],

0 0
(2.8)

where the z-reflection symmetry was considered. The
state vector ~0(f3) ) is the thermal vacuum at temperature
T= llkzrl. Although here we used the notion of the
thermal vacuum in the thermofield dynamics (TFD), the
readers are not required to have a knowledge of TFD in
order to understand this paper, they can read the thermal
vacuum expectation value as the thermal average. We
use the TFD notation because we plan to extend our fu-
ture analysis to include the Goldstone boson current
effects when we analyze magnetic properties, as we did in
the previous paper with A, , =0. In this paper we concen-
trate on analysis of the order parameters.

With the mean-field approximation we obtain the fol-
lowing gap equations:

Here, E is the energy of the quasielectron, E = [E
+(g&+&2cosx) ]'~ . Other notations are x =k, a,
2 =(k&m)l(2n ), and B =(Azm) j(2m ). The fF(E) is
the electron distribution function,

fI;(E)=( I+exp')
The cutoff energy co, is an unknown parameter because
we do not specify the mechanism for mediating electron
interactions. We used the same ~, for the bridge and in-
sheets pairs by assuming the same mechanism for
creation of these pair interactions. We omit the argu-
ment T in the functions 6&( T) and b, z( T) when there is no
confusion.

The tunneling interaction controls the anisotropic
properties of the energy gap. The structure of the elec-
tron energy spectrum indicates that the energy gap 6& is
given by

kG=min[I~)+&2cosxf] .

When 4& & Az, this energy gap vanishes at a certain value
of k„implying that the superconductivity is a gapless
one.

Intuitively we see that the third component of the
momentum k, is created by the electron tunneling caused
by the bridge pairing interaction. This can be seen from
the above gap equations in which k, appears only
through the expression b2cos(k, a). This indicates that,
when Az vanishes, the k, freedom disappears. This is im-
portant when we recall that the mean-field approximation
becomes unreliable when hz =0 because then an infrared
quantum fluctuation destroys the two-dimensional super-
conductivity without k, freedom. To see how the elec-
tron tunneling removes the infrared catastrophe and sta-
bilizes the multisheet superconductivity, we need the ap-
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proximation beyond the mean-field approximation. This
will be studied in Sec. IVB, where the electromagnetic
effects including the Coulomb potential effects are con-
sidered.

When A =0 (i.e., k, =0), the present model reduces to
the one studied in a previous paper. " In this case we
have only the second gap equation (2.9) with b i =0. This
gap equation was studied in a previous paper and the gap
at T=O was found to be

1 1
C = +

2
2

~B
(2.15)

III. ZERO TEMPERATURE

mean-field fictitious superconductivity of the isolated
two-dimensional system mentioned above, T, is given by
TBcs '

We are going to see that the following constant c plays
a key role in analysis of the multisheet model:

62(0)=2', I exp
2

mB

with the constant I defined by

(2.10) Let us first consider T=0. In this case we can solve
the gap equations analytically in the range 0&c & 3/2.
We find

4 ~/2 2I =exp —— dx cos x ln cosx
7T 0

(2.1 1) b i(0)=4', i/c exp +1 (3.1)

The critical temperature T, is

T, =(2', exp[ —2/irB])/(kiter exp[ —y']) . (2.12)
b, z(0) =4', exp — + 1

1
(3.2)

When B =0 (i.e., A.z=O), we have only the first gap
equation (2.8) with hz=0. However, in this case the gap
equation does not contain k„meaning that the electron
tunneling disappears and each sheet becomes an isolated
two-dimensional sheet. In this case the mean-field calcu-
lation becomes unreliable because the infrared quantum
fluctuation is ignored. Thus we cannot trust the above
equation when 62=0. We come back to this point in Sec.
IV B. Although the superconductivity given by the
mean-field approximation with X2=0 (i.e., b, z=O) is not
realistic, we denote 6& given by this mean-field approxi-
mation by b.HLs(T) because each isolated sheets acts as
the two-dimensional BCS model. The critical tempera-
ture of this fictitious model is denoted by TBcs. We then
find

for Ai(0) & b2(0), while for b, i(0) )Az(0) we have

6&(0)= exp(D —1)
2

1+D
with

(3.3)

(3.4)

c —1 +
2

c 1
2

+c 1

1/2

(3.5)

Combining (3.3) and (3.4) we can write 62(0) in terms of c
and A.

Simple calculations lead us to

ka Tacs = [2', /ir exp( —y ) ]exp [
—1/ir 3 ]

with y being the Euler constant (y =0.577 21), and

macs(0) =2', exp[ —I/ir 3 ] .

6,(0) & b,2(0) for 0 & c & 1;
b, (0) )hz(0) for 1 & c & —', ,

b, (0)=b,2(0) for c =1 .

(3.6)

(3.7)

(3.8)

Solving the gap equations (2.8) and (2.9) is not a simple
task. The numerical computations are simplified by use
of the reduced parameters, such as b, ;(T)/bacs(0) and

T/TBcs. However, to analyze the numerical results it is
convenient to scale the other parameters and the temper-
ature in terms of b,2(0) and T2. We thus define the re-
duced order parameters and the reduced temperature as

b, ;(T)
&2(0)

' (2.13)

(2.14)

Here T, is the critical temperature. We use b,2(0) for the
unit of the order parameter because the superconductivi-
ty in this paper is maintained by the electron tunneling
which is the origin of the bridge pair order parameter
b,2(T). The critical temperature is given by the tempera-
ture T2 at which b.z( T) vanishes. However, in the case of

Thus, D is defined only in the range 1&c —,'. When
c =—'„we find D =1, which, together with (3.4), gives
b ~(0)=0.

We now turn to the range outside of 0 c ~ —', . Here
the results are obtained by a numerical computation.
When c &0, we find b, i(0)=0. In this case the order pa-
rameter 62 is the same as the one studied in the previous
paper and therefore is given by (2.10). A remarkable fact
is that c &0 is not attained by the limit A —+0. There-
fore, both c & 0 and 3 =0 gives (2.10), although the van-
ishing limit of A gives positive c. In this sense A =0 is a
singular point in the domain of the parameter A. Thus,
the in-sheet pairs disappear under one of two conditions:
c &0 or 3 =0. In the previous paper we studied the
latter condition.

When c )—,
' we find b,2(0)=0, meaning no k, freedom

and therefore no tunneling. As it was pointed out, in this
case the mean-field approximation is not reliable and the
superconductivity is expected to be unstable.
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The above consideration showed that the multisheet
superconductivity with both the bridge and in-sheet pairs
is quite difterent from the one without the in-sheet pair.
When A becomes very small and 8 is fixed, we find that
the bridge pair order parameter b,z(0) rapidly diminishes.
On the other hand, the larger B (i.e. stronger bridge pair
interaction) with fixed A enhances the in-sheet pair order
parameter b, ,(0), and the smaller B reduces the in-sheet
pair order parameter. [An exception is A =0, which
gives vanishing 6,(0) with nonvanishing b,z(0), which is

1.2

given by (2.10).] To keep the superconducting state, the
bridge pair interaction and the in-sheet one should make
a reasonable balance. Considering all the possibilities in-
cluding the exception mentioned above, we see that non-
vanishing Ja is needed to maintain the superconductivity.
This is intuitively reasonable because the tunneling main-
tains the superconductivity.

IV. FINITE TEMPERATURE

In this section we present the results for finite tempera-
ture which are obtained by a numerical computation ap-
plied to the gap equations (2.8) and (2.9). We will also
brieQy study the specific heat and free energy for certain
values of c.

A. Mean-field approximation

1.0 Here we present the results of these gap equations
without any correction. However, when 6,%0 with
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effect which is not included by the mean-field approximation.
This figure shows that the mean-field approximation is quite
good practically everywhere in the temperature range below T„
except at T, where 5& sharply drops to zero.
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52=0, the mean-field approximation is not reliable and
we need to take into account the infrared fluctuation
effect. This will be discussed in the next subsection.

Now we summarize the numerical solutions to the
above two gap equations. The numerical results are
classified by the parameter c. In Figs. 1 —5, we plot 5,(t)
and 52(t) versus reduced temperature t with c =0.25, 0.5,
0.75, 1, and 1.25, respectively. In this paper the tempera-
tures T, and Tz are defined as follows: 6, vanishes at
T = T& and b, 2 vanishes at T = T2 with increasing tem-
perature, respectively. Their reduced values are
t, = T/T, and t2 = T2/T, . Since T2 is T, we have t2 = l.

Figure 1 illustrates the general behavior of order pa-
rameters for c (0.5. There we have 62(T)) b, &(T) for
any T and therefore the electron energy gap is zero, im-

I

plying the gapless superconductivity. The critical tern-
perature is given by T, =T2. Since b, ,(T) is zero at T
around T„the T, is the same as the one for the model
with A, &=0, which was studied in a previous paper. "
Thus, T, is given by (2.12). In Fig. 1, t& is around 0.727.
For the sake of comparison, we plot, in Fig. 6, 5(t),
which is the bridge pair reduced order parameter 5z(t)
for the model without intrasheet interaction (i.e., A, , =O)
and was obtained in a previous paper. Since T2 )T„the
infrared fluctuation is negligible and therefore the mean-
field approximation is reliable. In this case, therefore, we
proceed to compute the specific heat and free energy.

The specific heat is given by

(4.1)

where s is the entropy density

2

s(T)= —2a f f [f~(Ek)ln[f~(Ek)]+[1 f~(EI, )]in[1 f~—(Ek)]] . —
(2m)2 —w 2m

We then obtain

L3 g Bf (Ek)
c,(T)= —2a f f Ek+ — [b, , +b,zcos(k, a)]

(4.2)

(4.3)

The superconducting free energy F'(T) is
r

E2 2F'(T)=, f dE f dx E+ [1——2f~(E)] +—,f dE f dx in[1 f~(E)), —
(2~)3 o —~ 2E P (2~)'

(4.4)

while the normal conducting free energy F"(T) is up to T, in Fig. 7, in which we see that there is a small
jump with a visible kink near t, caused by disappearance
of 5&. The behavior of the free energy in Fig. 8 shows
that this is a second-order phase transition. Thus, in this
case we may observe one jump with kink at t, and oneWe plot the specific heat versus temperature from zero

F"(T)=— f ds f dx in[1 fz(E)] . (4.5)—
P (2~)'
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peak at t2=1 in the specific-heat curve. The calculation
of the change of the specific heat at the critical tempera-
ture with c =0.25 gives

c, (t =1)—c„(t=1)
=0.95 .c„(t=1) (4.6)

In Fig. 2 we have the case for c =0.5. In this case the
two order parameters disappear simultaneously at the
critical temperature: t& =t2 =1. Therefore, the specific
heat exhibits only one peak.

For c &0.5 we find that T2(T&, implying that 6&

remains not vanishing in the temperature range
T, & T & T„where 6z vanishes and therefore the tunnel-

ing disappears. Since there is no tunneling and each
sheet becomes an isolated two-dimensional sheet, the su-
perconductivity is unstable, although the mean-field ap-

1.0—

0.8

0.6

FIG. 7. The reduced specific heat e, (T)/c, (T, ) vs the re-
duced temperature t = T/T, for c =0.25. The disappearance of
51(t) at t l creates a kink with a small jurnp.

FIG. 9. The reduced two-dimensional BCS order parameter
&acs(t) =ABcs(T)/ABcs(0) vs the reduced temperature
t = T/TBcs with the mean-field approximation.

proximation gives the fictitious two-dimensional BCS su-
perconducting system with the reduced order parameter
6Bcs. In this case we should go beyond the mean-field
calculation by considering the infrared e6'ect of the col-
lective mode. This will be discussed in the next subsec-
tion. The reduced order parameter with infrared correc-
tion will be denoted by 6&. We will find that 5', indeed
vanishes at T2. Therefore, T2 becomes T, (i.e., t2=1) as
it should do. The T2/TBcs is obtained from

1+2 d~ (2) E —~ 1

o BE
(4.7)

which follows from the gap equations (2.8) and (2.9) with
the limit A2 —+0. In the above equation (4.7), the nota-
tions are E =(E +hi)'/ and

fF( '(E) = [1+exp( T2E) j .

The order parameters 5,(t) and 6z(i) versus t for
c =0.75, 1, and 1.25 are presented in Figs. 3 —5, respec-
tively. For the sake of comparison we present in Fig. 9
the temperature behavior of hzcs for the fictitious two-
dimensional superconductivity in the mean-field approxi-
mation.

0.4 B. Corrected order parameter

0.2

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 8. The reduced free-energy difference [F"(T)
F'(T ] [)( //81m. ) (H0—)] vs the reduced temperature t =T/T,

for c =0.25. Here use was made of the notation
(I/8~)H, '(0) = [F"(t=0)—F'(b. , =O, r =0) ].

We saw in the last subsection that the mean-field ap-
proximation is not usable when c & 0.5. To calculate the
infrared correlation eA'ect, we recall an argument which
shows why the superconductivity in a two-dimensional
system is unstable (see, for example, p. 308 in Ref. 6). As
is well known, the superconductivity is a state of electric
phase order, meaning that the electric phase symmetry is
spontaneously broken. ' Thus, there appears the Gold-
stone boson field y which has no energy gap and which
controls the electric phase transformation. Denoting the
electron Heisenberg field operators by g (x,i) with o be-
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ing the spin suffix, its phase transformation f ~expi 9$
is generated by the translation of the Goldstone boson,
y~y+c-number, with the c number being proportional
to the phase 0. However, it is due to the presence of the
electromagnetic field that the Goldstone field does not
show up in any observable. To understand these state-
ments, we should recall that the form of action of any
operator in quantum field theory is determined when it is
explicitly expressed in terms of normal products consist-
ing of quasiparticle fields because the coefficients of the
normal products are the matrix elements. In the case of
superconductivity, the quasiparticles are the quasielec-
trons P, the Goldstone boson y, and electromagnetic
fields A. As it was pointed out above, in any observable,
the Goldstone field y becomes the longitudinal part of the
electromagnetic field, meaning that it appears only
through the combination A —By in any gauge-invariant
operators. However, y can appear independently of the
electromagnetic field when it appears in an operator
which is not gauge invariant. This can be seen, for exam-
ple, from the structure of g . The above argument on the
phase transformation and the Goldstone theorem indi-
cates that y acts as the phase of g . Thus, the expression
of the electron Heisenberg field in terms of quasiparticle
field takes the form

However, we cannot ignore the surface term because the
Coulomb potential has long range. To understand a na-
ture of the surface term we may operate both sides of Eq.
(4.9) with V . The result is

B2
z+ MB( iV—)+ ~pz]( /V—') V'X(x, t) =0, (4.12)

Bt2

which shows that y, with nonvanishing momentum, be-
comes a plasmon. This situation has sometimes been
briefly described by the statement that the Coulomb in-
teraction changes the Goldstone boson of almost an en-
tire momentum domain, except infinitesimal momentum,
into the plasmon. This is called the Anderson-Higgs-
Kibble mechanism. The presence of the Goldstone mode
with infinitesimal momentum is significant in many ways.
First, the above-mentioned transformation g~y+ c-
number is only induced by the zero-momentum part of
the Goldstone boson. Second, this infrared part of the
Goldstone mode is the origin of the vortices. A careful
treatment of Eq. (4.9) is to put it in the Fourier form and
to introduce the low-momentum cutoff g in the integra-
tion with the Coulomb potential. This leads to the
plasmon equation (4.11) for ~k~ ) z), while we still have
the Goldstone equation

z 1/2
:exp & X F [4 ~ ~X]:

2U
(4.8)

B2
+cozi( —iV) y(x, t)=0 for k (i) .

Bt2
(4.13)

Here Z is the residue of the Goldstone boson Green's
function" u =(2hz/A, z) and the colons are the normal
product symbol commonly used. As it will be shown in
the Appendix, we have

Z = (32vr/m)[b z( T)/Az]

which gives Z/(2u) =2~/ .m
The field equation of the Goldstone boson is

B2 +co~ ( i V ) y—(x, t )
Bt2

We perform the limit g~O at the end of the entire calcu-
lation. In the case under consideration, we perform this
limit only after we finish calculation of the order parame-
ters. We will then find that the corrected order parame-
ter vanishes as soon as the bridge pair order parameter
disappears. This calculation will be presented in the fol-
lowing.

In the mean-field approximation we regard g as P in
the calculation of order parameters. To improve this, we
put

/=exp[i (Z' /2u)y]P .

+ ', ( —i V ) Jd'y V'y(y, t) =0 .1

4~(x —yf
(4.9)

Then the corrected order parameter 6', for the in-sheet
pair becomes

The last term is the Coulomb potential effect, co
&

is the
plasmon energy in Fourier form, and co& is the Goldstone
boson energy without the Coulomb potential effect.
Thus, cozi(0) =0. It is due to the long-range nature of the
Coulomb potential that we need a particular care in cal-
culating the integration in the last term. If we would per-
form the integration in parts and would ignore the sur-
face effect, the formula

b, ', =b, ,exp —— D (0)
1 Z
2 (2u)

Here D (0) is

D(0)=(0(P)~y(x, , i)y(xzj ) 0(P))

with x, =x2 andi =j. We easily obtain

D(0)= dk dk,
2(2~)z 0 ~za

' co(k, k, )

(4.14)

(4.15)

V = —5(x—y)
1

4~/x —
y/

would lead to the plasmon equation

B2
+co~( iV)+co )—( iV) y(x—, t)=0 .

Bt2

(4.10)

(4.11)

X
exp [Pro( k, k, ) ]—1

(4.16)

where z) is a cutoff momentum and co(k, k, ) is the Gold-
stone energy, which was calculated in a previous paper"
as



Z. YE, H. UMEZA%'A, AND R. TESHIMA

2(k k )
1 v2k2+ ]

( g )2k2 (4.17)

Here uz is the Fermi velocity. To analyze the infrared
eKect we use a small g so that [exp(/3co) —1] is approxi-
mately replaced by j3cv. We then obtain

D(0)= dk dk,
2(2n) I3 0 ~/a

'
[cv(k, k )]

(4.18)

When Az=O, this diverges, leading to the vanishing 6&
according to (4.14). This shows how the superconductivi-
ty becomes unstable when the tunneling disappears.
With (4.14) we can calculate the corrected order parame-
ter. When hz is small, D(0) becomes (1/4vrPvz)in[6~] .
We thus have

b, ')( T)= [h2( T) ]
' b, , ( T) . (4.19)

Note that the correction factor is unity at T=O, as it
should be. Further consistency can be seen in the fact
that 6', =0 when 62=0.

When we take T, = 100 K and vF = 10 m/s, we have
0.08 T/T

5')(t) = (4.20)5,(t)

1.4

1.0—

0.8—

for the corrected reduced order parameter. In Figs. 3 —5
we plot 5, (t), 52(t), and 5', (t) for c =0, 7S, 1, and 1.2S, re-
spectively. In these figures, we see that the mean-field ap-
proximation is quite good unless the temperature is ex-
tremely close to the critical temperature. In all these
cases, 5'i drops sharply around the critical temperature.
This is a possible explanation for the observed anomalous
behavior of specific heat near the critical temperature. '

The computation of specific heat and free energy for
c )0.5 is underway.

It is interesting to study the energy gap

kG=min 5I+b,zcosk, a~

for these cases. We plot 6G in Fig. 10. We see that, in a

certain range of temperature, the energy gap increases
with increasing temperature. The superconductor
remains gapless with increasing temperature, especially
when c =0.75, until a certain temperature is reached.
The energy gap drops to zero rapidly when the tempera-
ture approaches the critical temperature.

We have seen several features of multisheet supercon-
ducting system. The behavior depends on the materials
through the parameter c.

V. A SHQRT SUMMARY

In this paper we have studied the behavior of order pa-
rameters in a multisheet superconducting system with in-
tersheet and intrasheet interactions. The results are con-
sistent with the following physical picture. In a system
with both intersheet and intrasheet interactions, there
can be two kinds of Cooper pairs: one is the bridge pair
and another is the in-sheet pair. The superconducting
system is maintained by the bridge pairs. When the
bridge pair breaks, the tunneling disappears and, as a re-
sult, the in-sheet pair also breaks due to the infrared
effect of the collective mode. The main properties of su-
perconductivity are mostly controlled by the characteris-
tic parameter c which consists of the intersheet and in-
trasheet couplings. With different c, different samples ex-
hibit different behavior. We saw that a too-weak in-sheet
pair interaction with a finite bridge pair interaction will
destroy bridge pairs instead of in-sheet pairs. Likewise,
in order to have an in-sheet pair superconductor, the
bridge pair interaction should not be too small. We find
that, in materials with O & c &0.5, one peak and one jump
appear with a kink in the specific heat. To analyze the
specific heat of materials with 0.5 &c &1.5, we should
improve the approximation beyond the mean-field ap-
proximation by considering the infrared effect discussed
in Sec. IV B. This analysis is in progress. In our next pa-
per we will extend our analysis to also include the mag-
netic properties of mixed states.

We close this summary with an interesting feature par-
ticular to systems of low-dimensional structure. Recall
the bridge pairs studied in this paper. In the bridge pairs
each electron belongs to two pairs, forming a chain of
pairs. We say that the pair multiplicity is two (see Fig.
11). The wave function of chained pairs may exhibit a
strong correlation. It is intuitively expected that a higher
multiplicity may make a tighter correlation. This argu-
ment suggests that to increase the pair multiplicity may
be one way to make a strong correlation. To see how the

0.4—

0.2—
brr

1 1 1 I

~4 ~l
~t

0 02 04 06 08 10 12

FIG. 10. The reduced energy gaps 6o =Aa /Aves(0) vs
t = T/TBcs for c =0.75, I, 1.25 are presented.

FIG. 11. The bridge pairs in a rnultisheet system are i1lustrat-
ed. The pair multiplicity of the bridge pairs is 2 while that of
the in-sheet pairs is 1.
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pair multiplicity is related to the dimension, let us sup-
pose a system of lines with such a structure that each line
is surrounded by n lines. When the electrons in the
nearest lines form Cooper pairs, we can have pairs with
multiplicity n. In this way we see that the lower dimen-
sion can accommodate higher multiplicity of pairs, thus
enhancing correlations. This aspect of the low dimen-
sionality may compete with the destructive aspect due to
the fluctuation e6'ect enhanced by the low dimensionality.
This competition may open an intricate behavior of
long-range correlations in a system of low dimension.
The study of pair multiplicity in organic superconductors
poses a particularly interesting research problem. We
plan to make a systematic study of pair multiplicity
effects.
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APPENDIX

In Sec. IV 8 we calculated the correction in the order
parameter 6&. The correction was due to the infrared
eAect of the Goldstone boson. In this calculation there
appeared the constant Z, which is the residue of the
Green's function of the Goldstone boson. Here we
present the calculation of factor Z. According to a previ-
ous paper, "we have, for small k,
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I

Z= 2

A~Ro p

where Ro &=R
~~

&/2A with R
~~ & being given by

(A 1)

Rii &=(A2m) f ' ' f —, tcos'x(E'+e') —e'+ —,'buncos'x Il —f~(E)]]

+
3 bzcos x(cos x —

—,')/3fF(E)[1 fF(E)]— (A2)

Since R
~~ & depends mildly on temperature, we approxi-

mately calculate it at zero temperature. Then a simple
calculation leads to

A, 2m
Ro

1662vr
(A4)

X2m
R

8~

which gives

(A3)

Thus, we have
2

z(0)= 32I
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