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chemical properties, so that results obtained for MgFz
can be used to model other members of the family as well.
Further particular attention is to be paid to the charac-
terization of electron properties and chemical bonding,
because some features of the rutile structure (distortions
and linkages of the cation coordination octahedra) would
suggest some deviations from pure ionicity. In previous
studies, the electron band structure of MgFz was ex-
plored by a combined tight-binding and pseudopotential
method, with the aim of interpreting the optical behav-
ior; the equilibrium properties (structural variables and
binding energy) were calculated both by the electron-gas
approximation and by empirical classical simulations.

II. METHOD OF CALCULATION

The all-electron ab initio self-consistent-field (SCF)
Hartree-Fock linear combination of atomic orbitals (HF
LCAO) computational scheme, as implemented in CRYS-
TAL (Ref. 22) was described in previous papers. CRYS-
TAL is a general program for the treatment of crystalline
compounds of any space group, which was applied to the
study of semiconductors and molecular crystals, slabs,
and polymers. As regards ionic crystals, LiH, LizO,
Li~N, and MgO (Ref. 30) were studied. Recent im-
provements in the accuracy and speed of the program al-
low one now to evaluate elastic constants by computing
the numerical second derivatives of the energy.

The basis set adopted for the present calculations is re-
ported in Table I. Thirteen "atomic orbitals" have been
used for magnesi. um and fluorine. Each atomic orbital is
a linear combination ("contraction") of Gaussian-type

functions (GTF), which are the product of a radial
Gaussian times a real solid harmonic function. In the no-
tation of Ref. 31, the two basis sets are indicated as 8-
511G and 7-311G, respectively, where the numbers refer
to the level of contraction. The exponents and
coef5cients of the inner shells were fully optimized in
parallel studies devoted to MgO and LiF; the exponents
of valence shells were optimized in the present study.
The e6'ect of d functions on the investigated properties
has been shown to be negligible. On the whole, the
present basis set appears adequate to provide a high qual-
ity description of the ground-state properties of MgFz.

A possible source of error in the present study is due to
the intrinsic limits on the Hartree-Fock approximation
("correlation error"). It is well known ' from molecular
experience that the Hartree-Fock approach underesti-
mates (in covalent systems) the binding energies by about
30%, whereas the bond lengths are overestimated by
0.5—1%. Similar results were obtained in a systematic
study devoted to IV-IV and III-V semiconductors. As
regards ionics, the few previous studies seem to confirm
this trend, although more experience is required both in
terms of explored properties and type of ions considered.
As will be shown in the following, the HF binding energy
can easily be corrected in order to take into account the
correlation contribution.

III. EQUILIBRIUM STRUCTURE
AND BINDING ENERGY

The unit-cell edges a and c and the Auorine fractional
coordinate x(F) determined at 52 K by neutron

TABLE I. Exponents (bohr } and coefficients of the Gaussian functions adopted for the present
study. The contraction coefficients multiply individually normalized Cxaussian. y[ z] stands for
y X10—'.

Shell
type Exponents

1.377[+4]
1.590[+3]
3.265 [+2]
9.166[+1]
3.046[+ 1]
1.150[+1]
4.76

Fluorine
Coe%cients

8.770[—4]
9.150[—3]
4.860[—2]
1.691 [—1]
3.708[—1]
4.165[—1]
1.306[—1]

Exponents

6.837[+4]
9.699[+3]
2.041[+3]
5.299[+2]
1.592[+2]
5.469[+ 1]
2.124[+1]
8.746

Magnesium
Coefficients

2.226[—4]
1.898[—3]
1.105[—2]
5.006[—2]
1.691[—1]
3.670[—1]
4.004[—1]
1.499[—1]

1.9[+ 1]
4.53
1.37

—1.094[—1]—1.289 [—1]
1.0

1.244[—1]
5.323[—1]
1.0

1.568[+2]
3.103[+1]
9.64'
3.711
1.612

—6.24[—3]—7.882[—2]—7.992[—2]
2.906[—1]
5.716[—1]

7.22[—3]
6.427[—2]
2.104[—1]
3.431[—1]
3.735[—1]

3sp 4.5[—1] 1.0 6.8[—1] 1.0 1.0

2.05 [—1] 1.0 1.0 2.8[—1] 1.0 1.0



QUANTUM-MECHANICAL HARTREE-FOCK SELF-CONSISTENT-. . . 3511

a
C

V
x(F)

Calculated

4.637
3.087

66.4
0.3032

Experimental (Ref. 23)

4.615
3.043

64.8
0.3030

+0.5
+ 1.4
+2.5
+0.1

diffraction are considered to be a good approximation
to the 0 K experimental crystal structure of MgF2, and
are reported in Table II. The calculated equilibrium
structural configuration has been obtained by minimizing
the total crystal energy with respect to a, c, and x(F).
Steps of 0.06 A, 0.05 A, and 0.005 were considered for
the three variables, respectively. At first the cell edges
only were changed, keeping x(F) fixed at its experimental
value; then x(F) was varied separately. Polynomial inter-
polations yielded the minimum-energy results (Table II).
These show quite good agreement with measured data,
within the well-known tendency of HF calculations to
overestimate unit-cell volumes; for instance, in the case
of CaFz, the relative error for volume was +5.2%. A
larger deviation for c than for a is observed, indicating
that the minimum-energy cell is slightly more elongated
along the fourfold axis than the experimental one
(c/a=0. 6657 against 0.6594). On the other hand, the
change of fluorine coordinate is hardly significant.

By applying a conventional Born-Haber thermochemi-

TABLE III. HF total energy at equilibrium (per MgF2 unit
formula), atomic energies, and binding energy (BE) (hartree).
5E& is the correlation contributions to BE evaluated from the
correlation energy difference between the isolated atoms and
ions; 5E& is the contribution to BE calculated by using the
charge-density functional of Ref. 36. b (%) is the percentage er-
ror with respect to BE (expt. ). DF stands for density functional.

MgF2 F

E (HF)
BE (HF)
~ (%)

—398.775 533 —199.597 427 —99.374 016
—0.430

+20.5

Correlation contributions
—0.106 0.042
—0.536
+2.1

M& (ion. corr. )

BE (HF ion. corr. )

4 (%)

—0.074

Correlation energy
5E2 (DF corr. )

BE (HF+DF corr. )
~ (%)

—1.202
—0.088
—0.518
+5.4

—0.466 —0.324

BE (expt. ) —0.548'

'Born-Haber cycle from therrnochernical data (Ref. 33).

TABLE II. Minimum-energy and experimental values of
unit-cell edges (A) and volume (A') of MgF2, x(F) is the frac-
tional coordinate of Auorine. 6 (%) is the percentage error.

cal cycle to the formation process of MgF2 from solid Mg
and gaseous F2 at 298 K, the experimental value of the
binding energy has been obtained (Table III). Appropri-
ate values of formation enthalpy hH& of MgF2, cooling
energies of Mg and F2 down to 0 K, and energies of sub-
limation of Mg and dissociation of F2 molecules have
been used. The zero-point vibrational energy, evalu-
ated by the Debye model (OD =597 K, from Ref. 34),
was subtracted.

The total crystal energy has been computed for the
minimum-energy structural parameters (Table II) and the
optimized basis set (Table I). The total energy of isolated
atoms was evaluated starting from the crystalline basis.
In the case of Auorine. the exponents of the two most
diffuse Gaussians were reoptimized (a=0.44 and 0.15
bohr ). For magnesium the basis set of Table I, essen-
tially designed to describe an ionic situation, was supple-
mented by two diffuse sp shells, in order to provide addi-
tional variational freedom accounting for the tails of the
atomic wave function. By optimizing the exponents of
the two shells, the values 0.073 and 0.023 bohr were
obtained. The difference between crystal and atomic HF
energies is BE (HF), the Hartree-Fock approximation to
the binding energy, which is about 20% smaller than the
experimental value (Table III).

The electron correlation contribution to BE was es-
timated in two ways, the resulting values being indicated
as 5E, and 5Ez in Table II. 5E, is the difference of
correlation energy between the pairs Mg-Mg + and F-
F, the data for isolated atoms and ions being taken from
Ref. 35. In this model all the correlation contribution to
BE is ascribed to charge transfer, whereas the contribu-
tion from relaxation of the atomic and ionic wave func-
tions due to the crystalline field is disregarded. Table II
shows that this correction accounts for about 90%%uo of the
difference between the experimental and the HF BE,
confirming that polarization effects and other mecha-
nisms play a minor role in the present case. 5E2 is the
difFerence between the correlation energy of the crystal
and of the atoms, evaluated with the density-functional
formula proposed in Ref. 36 and applied to the HF
charge density. In this case the correction accounts for
about 75%%uo of the difference between the HF and the ex-
perimental BE.

IV. ELASTIC PROPERTIES

Data calculated by the present method ignore all vibra-
tional contributions to the energy, and thus should be
compared to experimental values at 0 K corrected for the
effect of zero-point vibrations. By plotting elastic con-
stants against temperature a linear increase is generally
observed as T decreases down to about 200 K: at lower
temperatures the increase is less than linear, so that ex-
trapolation to 0 K is required to omit the zero-point con-
tribution. ' ' The elastic constants of MgF2 were
measured in the 4.2—300 K (Ref. 34) and 300—500 K (Ref.
39) ranges by ultrasonic techniques. Linear extrapola-
tions to absolute zero give very similar results in both
cases for all elastic components but C&3 and C66, which
do not show a range of linearity in the low-temperature
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TABLE IV. Calculated and experimental elastic constants (GPa) of MgF2. External elastic con-
stants are evaluated without reoptirnizing the fractional coordinate of fluorine x(F); inner values are
corrections for atomic relaxation. 4 (go) is the percentage error with respect to the experimental value.

C&2 and C» are derived from the reported linear combinations. The error due to numerical evaluation
of the energy second derivative is within 1 GPa.

Cl]
Ci2
Ci3
C33

C44

External

156.3
91.8
56.6

228. 1

78.0
108.1

Calculated
Inner

—1.0
—1.1
—1.0
—8.8
—9.8
—4.0

Total

155.3
90.7
55.6

219.3
68.2

104.1

Experimental'

145.6
95.2
67.0

214.2
58.3

103~ 8

+6.7
—4.7

—17.0
+2.4

+ 17.0
+0.3

C»+Cia 247.9 —1.9 246.0 240.8

Cii+C, ~+
2C,3+C33/2 474.5 —9.3 465.2 481.9 —3.5

105.0 —1.7 103~ 3 106.2 —2.7

'Extrapolated at 0 K using data from Ref. 39.

data; then the results of Ref. 39 have been preferred and
are reported in Table IV. The bulk modulus 8 has been
derived from C, values by the appropriate formulas.

Elastic constants have been evalUated as second deriva-
tives of the total crystal energy with respect to strain
components g;, according to a second-order expansion of
the elastic energy of type

6
E =

—,
' g C,iri, q (1)

i j =1

the Voigt contraction of subscripts for tensorial com-
ponents is understood. Suitable lattice deformations
q=[ri, rizg3 $47]5 g6] with equal nonzero components
were considered, in order to express E as a parabolic
function of a single g parameter, whose coefficient
represents a linear combination of elastic constants C; .
Each diagonal constant C;; was computed straightfor-
wardly with only g, as nonzero strain component (qj =0
for jWi), while for the off'-diagonal terms C, 2 and C» the

[ri q 0000] and [ri g 71 000] deformations were applied.
These do not break the tetragonal symmetry of the unit
cell, unlike those used for computing the C», C44, and
C«constants, and when substituted into (1) they lead to
the C»+C, ~ and C»+C&2+2C, 3+C33/2 linear corn-
binations, respectively. A larger numerical error afI'ects

C&2 and CI3, with respect to the other constants, because
they are derived indirectly from linear combinations. Six
to eight values of g were used in each case, corresponding
to changes of cell edges and angles in the ranges +0.10 A
and +5.5', respectively. The computed energies E were
least-squares Atted to polynomial functions of g up to the
fourth order, yielding the searched d E/dr) derivatives.

An important point to take into account is the possible
positional relaxation of fluorine atoms in the unit cell
(inner deformation) caused by lattice strain. If that eff'ect

is neglected by keeping the atomic fractional coordinates

constant, then an upper limit (external component) is ob-
tained for the value of each elastic constant; the results
of our calculation for this case are reported in the first
column of Table IV. Now let the F atom be displaced by
a vector u from the position corresponding to a pure lat-
tice deformation: then the energy Eo(g) of the unrelaxed
configuration decreases according to E ( u, g ) =Eo ( ri )

+E„(u,vy), where the latter term is the negative relaxa-
tion energy. By requiring E to be a minimum with
respect to u the equation (VE„)„=0is obtained, which
can be solved for the inner strain u(7I); by substitution
the energies E„(g) and E (g) turn out to be functions of g
only. The quantities 8 Eo/Bg, Bg~. and 8 E„/Br), Bgj are
the external and internal components, respectively, of the
elastic constant C;~ =8 E/Bg;Bgi. This procedure is nor-
maHy applied in two-body classical models in an analyti-
cal form, by assuming a bilinear dependence of E on g
and u components. '

In quantum calculations only a numerica1 approach is
presently feasible; this was used, on the basis of polyno-
mial interpolations, for evaluating the C44 elastic con-
stant of fluorite. The case of MgF2 is more complex,
however, because of the tetragonal rather than cubic
symmetry: then for each lattice strain g considered the
symmetry constraints on the displacement vector u of F
have to be determined. For the C33 C$2, and C&3 elastic
constants the g deformations used do not break the
tetragonal symmetry, so as to keep the two conditions
u =u and u, =0. On the other hand, the first con-
straint is removed in the less symmetrical lattice strains
appropriate for the C» and C66 constants, and the
second one as well in the lowest symmetry case of C~.
For simplicity, however, in all calculations the condition
u =u„was kept, so that a single u„component remained
except for the C44 case where a second component u, was
added. To reduce the computing time, the relaxation en-
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ergy E„(u,u„g) was minimized with respect to u (or to
u and u, ) for the two end values of the g range only,
and then a parabolic interpolation yielded the E„(g)
curve for all g values. By similar interpolations also the
functions u„(g) and u, (g) were obtained. In the case of
C44, the two-dimensional minimization was performed
with respect to the u and u, variables separately; the re-
laxation energy turns out to be E„(g)=—0.060146'
hartrees. The geometrical effects of the inner deforma-
tion on the coordination octahedron of Mg can be appre-
ciated by defining a distortion index as root-mean-square
relative deviation of the six individual Mg-F distances
from their average value (0.5%%uo in the equilibrium struc-
ture). Pure lattice strains usually change that index
significantly, while relaxing the Auorine positions tends to
bring back the octahedron distortion close to its equilibri-
um value. For instance, a change of 5.5' of the a angle
turns the distortion index into 2.6%, which is reduced to
1.8% if F is allowed to relax.

In the second column of Table IV the inner contribu-
tions to elastic constants are reported, together with the
total calculated values. The relaxation effect appears to
be small for the C», C,2, and C&3 components, but it
gives a substantial contribution to C33 and C66 (4%) and
particularly to C~z (13%). In the last case most of the
effect (10%%uo) is due to the u, displacement of ffuorine. An
outstandingly good agreement between calculated and ex-
perimental elastic constants is observed for C», C,2, C33,
and C66, while the deviation is larger for C&3 and C44.
This confirms the results obtained for CaF2, where 6
was —0.5%, —4.7%, and +17.3% for C», C,2, and
C~, respectively: the shear constant C44 seems to be par-
ticularly critical to be reproduced, either because its large
inner component needs a more accurate numerical evalu-

ation, or because of more fundamental weaknesses of the
Hartree-Fock approximation. In this respect it should be
remembered that larger values of elastic constants are to
be expected on the basis of HF model features, which
overestimate bond lengths and stiffnesses. ' On the other
hand, the deviation of the C&3 component is due in part
to the sum of errors in the linear combination from which
it is derived. The sign of the Cauchy deviation is repro-
duced correctly for C,z-C66 but is wrong for C,3-C44, be-
cause these two constants are affected by significant op-
posite errors. A similar failure occurred in the case of
C&2-C44 of Auorite.

For purpose of comparison, a semiempirical classical
computation of the elastic constants and equilibrium
structure of MgF2 was also carried out. The two-
body Born-Mayer potential used, E, =e z;z I. r;
+b, .exp( r;J Ip—) d; I—r;, includes electrostatic, repul-
sive, and dispersive terms. The dispersive coefficients
were calculated by London's formula using polarizabili-
ty values of 0.094 and 0.853 A for Mg + and F, re-
spectively; the former is Pauling s free ion polarizability,
while the latter was obtained from the refraction index of
MgF2 (Ref. 33) and the Clausius-Mossotti relation. The
repulsive coefficients are written as b, =exp[(r,..+rj )Ip],
while the electroneutrality condition gives 2zz+zM =0.
Thus four independent energy parameters rz, rM, p, and
zz are required for the computation. These were fitted so
as to reproduce the six experimental elastic constants and
three structural variables by a least-squares procedure
and a set of computer programs based on the analytical
calculation of second derivatives of the crystal energy
with respect to lattice constants and atomic coordi-
nates. 4'4'

The optimized parameters and the computed values of

TABLE V. Optimized parameters of the Born-type potential used in classical two-body modeling of
MgF2, and calculated values of structural and elastic properties (cf. Tables II and IV for explanations of
symbols and units).

F-F
F-Mg

Mg-Mg

z = —O. g3lel

b;, (eV)

17039.097
4 166.274

905.517

z, =+ . 1/66/e

d,, (eVA')

15.168
2.901
0.5557

p=0. 215 A

a
C

V
x(F)

Calculated

4.587
3.060

64.4
0.3027

Experimental

4.615
3.043

64.8
0.3032

(%)
—0.6
+0.6
—0.6
—0.2

Clz
Cl3

External

149.5
100.4
66.9

223.6
66.9

100.4

109.3

Inner

—2.9
—0.2
—3.8
—93
—92
—0.5
—3.1

Total

146.6
100.2
63.1

214.3
57.7

100.0

106.2

Experimental

145.6
95.2
67.0

214.2
58.3

103.8

106.2

+0.7
+5.3
—5.8
+0.1

—1.1
—3.7

0.0
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elastic constants and structural variables are reported in
Table V. It should be remarked that an attempt to fix the
charges z, to ideal ionic values gave a definitely worse fit;
the best values obtained show a significant discrepancy
from a pure ionic model. An average deviation of 2.8%
from experimental values is observed for the elastic data,
to be compared with 8.0%o of the quantum HF-SCF re-
sults. These are then confirmed to be satisfactory, as ob-
tained by first-principles calculations free from empirical
parametrization. Also the inner contributions to elastic
constants of the classical model (Table V) are in a semi-
quantitative agreement with those of Table IV, indicating
a consistent physical basis for the partition of the elastic
response into lattice and inner effects. As for the Cauchy
deviations, the sign is reproduced correctly for C, 3 C44
but not for C,2-C66, contrary to Hartree-Pock results.

S
I & I-1

V. ENERGY BANDS AND CHARGE DENSITY

The energy bands were computed along the lines I -Z
and I -X in the first Brillouin zone. In Fig. 2 an overview
of the two upper sets of filled bands and of the lowest
empty conduction bands is shown. The typical features
of ionic crystals, small dispersion and large gaps, appear
clearly: the gap width between valence and conduction
bands at the I point is about 20 eV, against an experi-
mental value of 12.4 eV from reAectance measurements.
The Hartree-Fock approximation is well known to
overestimate energy gaps, and this effect is increased here

z

FIG. 3. Details of the set of valence bands showing degen-
erate branches along the fourfold symmetry direction I -Z.

l i I
20

S
~ A
C

s (Mg)

s (F)

p (V~)

p (F)

total

I

—40 —20 20

E (ev)

FIG. 2. Electron energy bands of MgF2 along two symmetry
lines in the first Brillouin zone.

FIG. 4. Projected and total densities of states (DOS) of
MgF2. A Mulliken partition scheme was used to obtain atomic
orbital contributions.
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because the basis set, though adequate for representing
the ground state, lacks diffuse valence orbitals on Mg and
is then unsatisfactory for excited states. A previous cal-
culation of the band structure of MgF2 used a tight-
binding method for the valence bands and a pseudopoten-
tial model for the conduction states, considering an extra
electron added to the lattice and seeing the potential of
closed-shell ions. Though this method was claimed to be
suitable for reproducing optical properties, it gave a
theoretical gap of 20.5 eV, which had then to be correct-
ed by polarization energy terms in order to obtain a cal-
culated optical gap of 12.8 eV. The set of valence bands
is shown in detail in Fig. 3, displaying clearly the degen-
eracy of several branches along the high symmetry direc-
tion I -Z, which is removed along I -X.

A better insight into chemical bonding is obtained by
inspection of the total and projected densities of electron-
ic states (Fig. 4). The two upper filled bands correspond
to nearly pure s and p states of fluorine, respectively; it is
interesting to remark that occupied bands related to Mg
closed shells are deeper in energy, while in the CaF2
case a p(Ca) band lies between the s(F) and p(F) states.
The main contribution to the conduction band is given by
p-type outer orbitals on both F and Mg, and by s-type to
a minor extent.

The degree of ionicity of chemical bonding in MgF2
can be estimated by results of a Mulliken population
analysis. Net charges of + 1.803 ie on Mg and —0.901

I ei
on F are obtained, which deviate significantly from ideal
ionic values. The Mg charge can be compared with that

i

)
8 I

/ /
/

(
I

)
I

I('I
)

i)f f

l
/

/ /

i

( 0 /

i

FIG. 6. Difference (crystal minus ionic superposition) elec-
tron density map on the (110) plane. Continuous, dot-dashed,
and dashed lines indicate positive, zero, and negative values, re-
spectively. Isodensity curves are separated by 0.001e/(bohr) .

FIG. 5. Total electron density map on the (110) plane
through Mg and F atoms (1-2-4 in Fig. 1). Isodensity curves are
separated by 0.01e/(bohr) ~

FIG. 7. Total electron density map on the (110) plane
through Mg and F atoms (1-3-5 in Fig. 1). Isodensity curves are
separated by 0.01e/(bohr) .
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on Ca in Auorite, + 1.868 ~e~, and shows a consistent in-
creasing trend with the mass of the alkaline-earth cation.
Also the comparison with charge values obtained from
the two-body semiempirical model (Table V) is not un-
reasonable, considering that the inclusion of a dispersion
term (which is not taken into account in the Hartree-
Fock calculation) lowers the electrostatic part of the at-
tractive energy and then decreases the atomic charges.
The bond population analysis gives an average positive
value of 0.018e/bohr for the two independent Mg-F
bonds, indicating a slight covalent component which is
consistent with the values of atomic charges. These re-
sults contrast somehow with the Mulliken charge of
1.950~e~ on Mg obtained in a previous study of MgO,
which indicated a fully ionic behavior. Taking into ac-
count that in all cases the same computing method and
program were used, the different behavior observed for
Mg and Ca Auorides and for Mg oxide seems to be
significant. This might be related to the rocksalt struc-
ture of MgO being more suitable for full ionic bonding
than the rutile or Auorite structures, partly because in the
latter cases the anions show much lower coordination
numbers (three and four, respectively, against six in
MgO).

The electron charge density has been computed on
planes (110) and (110) in the structure of MgF2 (cf. Fig.
1), emphasizing the coordination environments of Mg +

and F ions, respectively. Total and difference maps are
shown in Figs. S and 6 and in Figs. 7 and 8 for the two
planes; the difference is meant between total crystal and
ionic superposition densities. In both cases the electron
clouds of anions and cations appear to contract substan-
tially in the crystal with respect to the free ion state.
This effect should be ascribed mainly to electron ex-
change repulsion, according to Pauli s exclusion princi-
ple, but also to compression produced by the crystal elec-
trostatic field on the electron cloud. However, the densi-
ty contraction appears much larger for Mg + than forF, in contrast with the behavior of fluorite where this
effect was quite comparable for anion and cations. It
should be remarked that the contraction of both the
anion and cation as a result of crystal formation agrees
with results of the breathing shell model, ' ' but
disagrees with the potential-induced-breathing model,
according to which the cation should expand instead of
contract by effect of the crystal Coulomb field.
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FIG. 8. Di6'erence electron density map on the (110) plane.
Isodensity curves are separated by 0.00jLe/(bohr)'.

structure for this approach. A satisfactory overall agree-
ment with experimental data is observed. Positive and
negative errors are obtained for shear diagonal and for
extra-diagonal components of the elastic tensor, respec-
tively, confirming the results of a similar study on cubic
CaFz. Opposite sources of error are neglecting the elec-
tron correlation energy in the HF model, ' which makes
the crystal stiffer and increases the elastic constants, and
using the larger calculated unit-cell volume, which lowers
the crystal rigidity. On the other hand, it is not fully
clear why just the extra-diagonal components are sys-
tematically underestimated: possible deficiencies of the
atomic basis set might play a role in this respect. The
inner-strain effect has been investigated deeply, proving
to give important contributions to crystal elasticity, con-
sistent with the results of classical Born-type simulations.
Evidence for a significant deviation from ideal ionic
bonding in MgF2 is obtained by a Mulliken population
analysis, again in substantial agreement with two-body
semiempirical models.

VI. CQNCLUSIQNS

The quantum-mechanical evaluation of elastic con-
stants by ab initio Hartree-Pock methods has been ex-
tended to a noncubic crystal, MgF2, with a fairly complex
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