PHYSICAL REVIEW B VOLUME 44, NUMBER 7 15 AUGUST 1991-I

Real-space imaging of single-layer $MoS₂$ by scanning tunneling microscopy

X. R. Qin, D. Yang, R. F. Frindt, and J. C. Irwin

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A lS6

(Received 3 April 1991)

Single layers of MoS2 have been studied with a scanning tunneling microscope operating in air. The images obtained from films that were prepared by depositing an aqueous suspension of single-layer $MoS₂$ on a graphite surface show that the unit cell of the single layers corresponds to an approximate $2a_0 \times a_0$ superlattice of the hexagonal $2H$ -MoS₂ structure. The unit-cell parameters, in conjunction with previous measurements, imply that the single layers of $MoS₂$ adopt a distorted octahedral structure. The image of dry restacked $MoS₂$ transforms back to the hexagonal $MoS₂$ pattern.

Molybdenum disulfide is a compound semiconductor, consisting of S-Mo-S sandwich layers.¹ In crystalline $2H$ -MoS₂, each Mo atom is coordinated by six S atoms in a trigonal prismatic arrangement. The nearest layers are weakly connected with van der Waals bonds so that it is very easy to break these bonds by simply "pulling" off layers to obtain an atomically flat surface, or to intercalate guest atoms between the $MoS₂$ sandwiches. Recently, it has been shown^{2,3} that single molecular layers of $MoS₂$ can be obtained by exfoliation of lithium-intercalated $MoS₂$ powder in water. The exfoliated single layers are then "washed" and suspended in water. As an aqueous suspension of single-layer $MoS₂$ ages, it forms into restacked $MoS₂$ with two monolayers of water present between parallel but rotationally disordered $MoS₂$ layers. Such a water bilayer phase may exist for several days at room temperature in air.³ Detailed studies of the resulting $MoS₂$ have been performed to examine whether the structure of such alternate forms of $MoS₂$ are the same as bulk $2H-MoS₂$. Extended x-ray-absorption fine-structure (EXAFS) spectroscopy investigations' found two distinct Mo-Mo distances of 2.8 and 3.8 Å for single-layer $MoS₂$ in suspension, and that the $2H-MoS₂$ lattice constant of 3.16 Å reappeared in the water bilayer $MoS₂$. The same experiments found that the Mo-S distance in both singlelayer aqueous suspensions and water bilayer form is essentially unchanged from that of $2H-MoS₂$. Since EXAFS basically reveals local structural information around individual atoms, the overall structure of the material could not be inferred from the results. X-ray diffraction and Raman-scattering results⁴ show that both single-layer $MoS₂$ in suspension and water bilayer $MoS₂$ have a structure in which the Mo atoms are octahedrally coordinated in contrast to the trigonal prismatic coordination that pertains in $2H-MoS₂$. In addition, evidence was obtained⁴ for the existence of a $2a_0$ superlattice. The question of whether it is 2×2 or 2×1 superlattice is still left uncertain, because both structures would yield a similar x-raydiffraction pattern and Raman spectra. In dry restacked $MoS₂$, the structure transforms back to the trigonal prismatic coordination of Mo atoms with the bulk $2H$ -MoS₂ lattice constant, and the layers can exhibit partial rotational disorder.^{3,4}

In this work, we present atomic resolution images of restacked $MoS₂$ surfaces that were obtained with a scanning tunneling microscope⁵ (STM) operating in air. The real-space image of a water bilayer $MoS₂$ surface shows a 2×1 superstructure directly and unambiguously. The image of a dry restacked $MoS₂$ film shows the same structure as that for crystalline $2H-MoS₂$, in good agreement with other experiments previously reported.^{3,4}

The preparation of single-layer $MoS₂$ in suspension has been described previously.² In order to form a thin, flat restacked film suitable for imaging the $MoS₂$ basal plane, a graphite substrate has been used to provide good electrical contact to the $MoS₂$ layers. The sample electrode is then placed on the graphite, and a tiny drop of the singlelayer $MoS₂$ suspension is spread out on the freshly cleaved surface of the graphite. After a few minutes the drop has adopted a quasiequilibrium configuration with the $MoS₂$ layers restacked in the water bilayer phase. The thickness of the film is of the order of 10 monolayers of $MoS₂$ as estimated from the concentration of the single-layer suspension. The sample was imaged within a few hours after preparation. The reason we have selected graphite as the substrate is because it is very inert and it is easy to obtain large regions that are atomically flat. This results in an almost ideal substrate for operating the STM in air, and for obtaining a rather flat restacked $MoS₂$ film. Since the sample has a bilayer of water between the $MoS₂$ layers, an ultrahigh-vacuum environment would not be appropriate for such observations. In order to make dry restacked $MoS₂$, the drying process is accelerated by heating the sample, including the graphite substrate, at 100° C in a vacuum of $\sim 10^{-3}$ Torr for 5 h.

The STM head used in our experiments was built by Jericho et al. at Dalhousie University. 6 The tip holder is fixed on a rigid tripod configuration and its movements are controlled with three piezoelectric bimorphs. The sensitivities of the x and y bimorphs were calibrated using graphite images and were about 8.8 $\rm \AA/V$ and 10.3 $\rm \AA/V$, respectively. The sample is glued onto a thin glass plate to insulate it from the sample holder, and then mounted on the horizontal face of the holder with 5-minute epoxy. The feedback circuit is basically the same as that shown in Ref. 6, and a commercial tip scanning circuit and computer software for data acquisition and presentation were used.⁷ The commercial 0.25-mm $Pt_{0.8}Ir_{0.2}$ tips⁸ were used either directly or after a mechanical resharpening treatment. Every tip was gently washed with 2-propanal before use.

Before imaging the restacked $MoS₂$ film, we first op-

REAL-SPACE IMAGING OF SINGLE-LAYER $MoS₂ BY$... 3491

erated our STM system on a single crystal of $2H-MoS₂$ which was mined in Norway. Figure $1(a)$ shows the raw data of a gray scale current image of the $2H-MoS₂$ surface, which is taken in the constant-height mode with a positive tip bias of 302 mV (sample virtually grounded), an average tunneling current of 1.2 nA and a scan rate of 1774 A/sec. The brightness in the image reflects the variation of the tunneling current. The image consists of an array of bright spots with the expected sixfold symmetry. The measured lattice constant is $a_0 = 3.1 \pm 0.1$ Å, which is in good agreement with the crystallographic value of 3.16 $A⁹$. The deviation from the ideal hexagonal pattern that is apparent in the figure results from the different x and y scales of the screen from which the photograph was taken. To obtain the lattice constants given in this paper the patterns were calibrated using graphite images.

There are differing opinions that have been pubterns were canorated using graphite images.
There are differing opinions that have been pub-
lished^{10,11} on whether the $2H$ -MoS₂ image reflects the surface sulfur layer, or the metal layer underneath. This controversy arises because both the S atoms in the top surface layer and the Mo atoms in the middle of the first sandwich appear in equal numbers, and the atomic structures for both layers have the same symmetry. Consequently, an image of either Mo or S atoms would have the same pattern with the same lattice constant. The structure of water bilayer form of restacked $MoS₂$, however, as indicated by the results of previous experiments, $3,4$ is very different from single-crystal $2H-MoS₂$.

Figure 1(b) is a current image of a water bilayer $MoS₂$

FIG. 1. (a) A constant-height image $(-18 \text{ Å}$ horizontal by 20 Å vertical) of single-crystal $2H-MoS₂$. (b) A constantheight image (\sim 40×33 Å) of a water bilayer MoS₂ surface. A stripelike 2×1 superlattice structure is apparent.

surface, taken with a positive tip bias of 42 mV, an average tunneling current 2 nA and a scan rate of 1830 A/sec. The image clearly shows an approximate 2×1 structural pattern with a basal plane unit cell containing two bright spots. Previous studies on this material, including x-ray diffraction and Raman scattering, have indicated that there is a $2a_0$ superstructure, but the exact pattern of the structure could not be obtained by either method. The STM image allows us to see the real-space 2×1 form of the lattice directly and unambiguously. The sample has been scanned in perpendicular directions to ensure that the 2×1 pattern is not due to a tip effect. Also, the structure was found to be independent of tip bias polarities. The sample surface was not parallel to the tip scanning plane as indicated by the decrease in image intensity as one moves to the right in the image.

Figure 2(a) is an image of another sample with the same experimental conditions as for Fig. 1(b). It appears that the surface was not tilted with respect to the tip scanning plane in the central part, but was bent down slightly at both right- and left-hand sides of the image. By superimposing a grid on the image as shown in Fig. 2(b), the 2×1 superlattice is more obvious. The image pattern including the unit cell is presented in Fig. $2(c)$. After calibrating a number of images obtained from this sample at different surface locations, we measure the lattice parameters as $|a| = 3.2 \pm 0.1$ Å, $|b| = 6.1 \pm 0.2$ Å, and $\theta = 53$ \pm 1°. Comparing the lattice constant a_0 =3.1 \pm 0.1 Å obtained from imaging the $2H-MoS₂$ crystal surface as shown in Fig. 1(a), we find that $|\mathbf{a}| \approx a_0$ and $|\mathbf{b}| \approx 2a_0$, hence further confirming the $2a_0 \times a_0$ superlattice structure of the freshly restacked $MoS₂$ surface. However, notice that the measured θ is about 53°, and thus the $2a_0 \times a_0$ pattern cannot be simply considered as a superlattice of the hexagonal basal plane structure of $2H-MoS₂$ where θ should be 60°.

Figure 2(d) shows a current image of completely dry restacked $MoS₂$, taken at a positive tip bias of 1 V, an average tunneling current of 2 nA and a scan rate of 3627 A/sec. The image clearly shows the appearance of the hexagonal structure without any trace of the 2×1 superlattice. The lattice constant is measured to be 3.1 ± 0.1 Å which is in good agreement with the crystallographic value of 3.16 A, confirming that the trigonal prism layers have been recovered. This result agrees very well with that of previous experiments. $3,4$

We believe that the STM images shown in Fig. 1(b) and Fig. 2(a) reflect the atomic structure of a single layer of $MoS₂$ at the top surface of the water bilayer phase $MoS₂$ film. The second $MoS₂$ layer from the top surface has very little effect on the tunneling image, since there are two monolayers of water between each of the $MoS₂$ layers which are parallel to each other but rotationally disordered, 3 and our STM observations on different samples and different surface locations of a sample all show the same 2×1 superlattice. Therefore, it is most likely that the structure of the single-layer $MoS₂$ in suspension has basically the same pattern as that shown in Fig. 1(b) and Fig. $2(a)$. As Raman-scattering experiments⁴ have shown one obtains identical superlattice modes for both single-layer $MoS₂$ in suspension and a water bilayer $MoS₂$

FIG. 2. (a) A constant-height image $(-38 \times 30 \text{ Å}^2)$ of another water bilayer $MoS₂$ sample. (b) The same image with a grid superimposed. (c) Schematic representation of the image pattern shown in (a). The open circles represent the bright spots in the current images. The $2a_0 \times a_0$ unit cell is outlined with solid lines. The dashed lines show an alternative definition of a unit cell. (d) A constant-height image $(-46\times41 \text{ Å}^2)$ of a dry restacked MoS₂ surface.

film. EXAFS results for the Mo-Mo distances, 3.8 and 2.8 Å, are also obtained from both forms.³ However, the structure may not be exactly the same for the two cases due to slightly different water environments. As was shown in the EXAFS experiments, the bulk lattice constant 3.16 A, which is not observed in the single-layer suspension, reappears in the water bilayer form.

Comparing EXAFS results with our STM measurements for freshly restacked $MoS₂$, one obvious aspect is that the single-crystal $2H-MoS₂$ lattice constant has been found by both methods. It is more difficult to find a direct correspondence between two nearest Mo-Mo distances 3.8 and 2.8 A obtained by EXAFS and the lattice constants determined from the STM images. Since the STM probes the local electron density of states around the Fermi level of the surface,¹² the bright spots in the current image do not necessarily correspond to the positions of individual atoms of the surface. On the other hand, the STM image must reflect the projection of the real lattice. As one can tell from Fig. 1(b), the image can be viewed as an array of two rows of spots not quite identical in size and brightness. One possible reason is that the surface is periodically buckled. Combining the $2a_0 \times a_0$ pattern with $\theta = 53^\circ$ measured by STM with the three nearest Mo-Mo distances $(3.16, 3.8, \text{ and } 2.8 \text{ Å})$ given by EXAFS, we can construct a model for the unit cell which is shown in Fig. 3. For $\theta = 53^{\circ}$, $\overline{OA} = |\mathbf{a}|$, and $\overline{OB} = |\mathbf{b}|$ measured by the STM to be consistent with the Mo-Mo distances measured by EXAFS, one row of Mo atoms has to be displaced vertically by $h = 0.9$ Å. The D' point on the projection plane is then slightly displaced (-0.05 Å) from the \overline{OB} line according to the model. Such a small difference is hard to detect in the STM images shown in Fig. 1(b) and Fig. 2(a). Also, the projected lines $\overline{AD'}$ = 3.04 Å and $\overline{D'C}$ =2.65 Å (shown in Fig. 3) calculated with $h = 0.9$ Å are in agreement with the lengths \overline{AD} = 3.0 \pm 0.1 Å and \overline{DC} = 2.6 ± 0.1 Å [shown in Fig. 2(c)] measured with the STM.

It is known that WTe_2 possesses a distorted octahedral ayer structure, 13.14 whose basal plane projection is similar to the structure shown in Fig. 2(c). In the WTe₂ structure the adjacent rows of W atoms are displaced by 0.21 A.

FIG. 3. Schematic 3D model for consistency between results obtained from STM and EXAFS. The solid lines represent the unit cell of Mo atoms based on the bond distances obtained by EXAFS. The dashed lines represent the projections of the corresponding solid lines in the projection plane, where $\theta = 53^{\circ}$, \overline{OA} = |a| = a₀, and \overline{OB} = |b| = 2a₀, as given by STM.

With the unconstrained single-layer $MoS₂$ a larger distortion than that found in crystalline $WTe₂$ is not unreasonable. If it is assumed that the STM images refiect the relative positions of the Mo atoms, an h value of 0.9 Å must be considered to be very large. For example, one might expect a 0.9-A layer corrugation to result in a current varying by about ¹ order of magnitude for a clean tip and surface. 15 However, the possibility of a 0.9-Å corrugation cannot be ruled out. Since we operate the STM in air, contamination on the tip and the sample surface can reduce the effective tunnel barrier height, ¹⁵ hence a 0.9-Å corrugation may result in a current variation much less than ¹ order of magnitude. Such effects thus make it very difficult to draw any conclusions from the images [Fig. $1(b)$ and Fig. $2(a)$] about the relative heights of adjacent atomic rows and any variation in relative heights that might be suggested by a comparison of different images. On the other hand, it is perhaps possible that the S atom planes are less rippled than the Mo atom planes. The STM images could then be interpreted as support for the

- ¹ J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969).
- ²P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).
- ³P. Joensen, E. D. Crozier, N. Alberding, and R. F. Frindt, J. Phys. C 20, 4043 (1987).
- D. Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin, and R. F. Frindt, Phys. Rev. B 43, 12053 (1991).
- 5See for reviews G. Binnig and H. Rohrer, IBM J. Res. Dev. 30, 355 (1986); P. K. Hansma and J. Tersoff, J. Appl. Phys. 61, Rl (1987).
- ⁶B. L. Blackford, D. C. Dahn, and M. H. Jericho, Rev. Sci. Instrum. 5\$, 1343 (1987).
- 7Quantum Vision Corporation, West Vancouver, British Columbia, Canada V7W 1P3.
- Longreach Scientific Resources, RFD1, P.O. Box 549, Orr's Is-

view that tunneling is occurring between the tip and the surface sulfur atoms. Additional experimental evidence will be required to resolve this question.

In conclusion, STM observations in air have been carried out on single $MoS₂$ layers separated by a bilayer of water molecules. The atomic resolution images clearly show an approximate 2×1 superlattice structure for the single layer of $MoS₂$ at the top of the film surface. One of the basal plane lattice constants is found to have the same value as the bulk $2H-MoS₂$ case, and the other one is about twice that of the bulk value. After drying by heating or aging, the atomic arrangement of restacked $MoS₂$ layers transforms back to the bulk hexagonal trigonal prism structure.

The authors would like to thank Per Joensen for his advice and assistance, and we have benefited from helpful discussions with G. Kirczenow and R. Divigalpitiya. The financial support of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

land, ME 04066.

- ⁹R. W. G. Wyckoff, Crystal Structures, 2nd ed. (Wiley, New York, 1963), Vol. 1, p. 280.
- ⁰G. W. Stupian and M. S. Leung, Appl. Phys. Lett. 51, 1560 (1987).
- ¹¹M. Weimer, J. Kramar, C. Bai, and J. D. Baldeschwieler, Phys. Rev. B 37, 4292 (1988).
- $2J.$ Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983);Phys. Rev. B 31, 805 (1985).
- ¹³B. E. Brown, Acta Crystallogr. **20**, 268 (1966).
- ¹⁴S. L. Tang, R. V. Kasowski, and B. A. Parkinson, Phys. Rev. B 39, 9987 (1989); S. L. Tang, R. V. Kasowski, A. Suna, and B. A. Parkinson, Surf. Sci. 23\$, 280 (1990).
- ¹⁵G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982); Phys. Rev. Lett. 49, 57 (1982).

FIG. 1. (a) A constant-height image (\sim 18 Å horizontal by
20 Å vertical) of single-crystal 2H-MoS₂. (b) A constant-
height image (\sim 40×33 Å) of a water bilayer MoS₂ surface. A
stripelike 2×1 superlattice structure

FIG. 2. (a) A constant-height image $(-38 \times 30 \text{ Å}^2)$ of another water bilayer MoS₂ sample. (b) The same image with a grid superimposed. (c) Schematic representation of the image pattern shown in (a). The open circles represent the bright spots in the current images. The $2a_0 \times a_0$ unit cell is outlined with solid lines. The dashed lines show an alternative definition of a unit cell. (d) A constant-height image $(-46 \times 41 \text{ Å}^2)$ of a dry restacked MoS₂ surface.