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We calculate theoretically the lifetime, the effective mass, the renormalization factor, and the
exchange-correlation-induced band-gap renormalization for quasiparticles in two-dimensional electron
systems. In our theory we go beyond the usual random-phase approximation by including many-body
vertex corrections of the Hubbard type in the self-energy and the dielectric function of the electron
gas. We find that in narrow quantum wells vertex corrections may be quantitatively significant, bring-
ing calculated results close to the experimental data, especially for the case of the band-gap renormal-
ization. In general, vertex correction is found to be more important for narrower quantum wells and
for lower electron densities.

Many-body eff'ects in two-dimensional (2D) electron
systems have been studied extensively during the past
years both theoretically and experimentally. There have
been many' ' theoretical investigations of 2D quasipar-
ticle properties including early calculations of renormal-
ized effective mass (and g factor) in Si inversion lay-
ers' 'o and more recent calculations of quasiparticle
lifetimes and band-gap renormalization in GaAs quantum
wells. Most of these calculations are done within the
framework of random-phase approximation (RPA), leav-
ing out higher-order vertex corrections. For example,
quasiparticle scattering rates have recently been calculat-
ed taking into account electron-electron and electron-
phonon interactions. In these calculations the electron
self-energy is obtained in the so-called GW approxima-
tion" in which the noninteracting single-particle Green's
function (G) is used, whereas the effective dynamically
screened Coulomb interaction (W) is calculated within
the RPA model and, consequently, vertex corrections are
neglected. Even though some of the earlier calculations
for the eff'ective mass and the band-gap renormalization
included in some approximate way the effects of vertex
corrections (i.e., going beyond the GW approximation), it
is fair to say that there has not been much systematic
work going beyond the RPA. For example, in Ref. 12 a
strictly 2D calculation of the band-gap renormalization in
a 2D electron-hole plasma was reported, taking into ac-
count vertex correction of the Hubbard type only in the
dielectric function (i.e., leaving it out of the self-energy).
A similar approximation was made earlier in the calcula-
tion of electron effective mass in Si inversion layers. We
know of no theoretical calculation of quasiparticle life-
times including vertex corrections.

The purpose of this paper is to report a systematic in-
vestigation of many-body vertex corrections on 2D quasi-
particle properties. In particular, explicitly obeying Ward
identities we include vertex corrections both in the self-
energy and in the dynamical dielectric function. The 2D
system chosen for our calculation is the extensively experi-
mentally studied modulation-doped GaAs quantum-well
structure. We include the finite width of the quantum
well within the infinite square-well approximation. When
expressed in dimensionless units (i.e., density in units of

and

e(q, to) =1 —
Virgo(q, co) y(q, co) (2)

y(q, co) = 1 (3)
1+G(q) Vqg'(q, to)

'

where g (q, to) is the noninteracting 2D polarizability for
electrons, and G(q) is a local-field correction given in the
Hubbard approximation in the two-dimensional limit by

G(q) = (4)
2 q'+kF' '"

We take V~ -2tte /qe as the two-dimensional Fourier
transform of the Coulomb potential with e as the high-
frequency dielectric constant of the semiconductor (here

eff'ective r, and energy in units of effective Rydberg) our
theoretical results should be valid for other 2D electron
systems as well. We assume the validity of eff'ective-mass
approximation and take the bands to be isotropic and par-
abolic. All these are excellent approximations for the sys-
tems under consideration. In presenting our results (Figs.
1-3) we provide a comparison with the RPA results
(where vertex corrections are neglected by putting the
vertex function y 1).

In this Rapid Communication we present zero-tern-
perature calculations for the scattering rate, the eff'ective
mass, and the renormalization factor of quasiparticles in
2D and quasi-2D electron systems and for the exchange-
correlation-induced band-gap renormalization in 2D and
quasi-2D photoexcited electron-hole plasmas in GaAs
quantum wells. For the band-gap renormalization calcu-
lation, the quantum well is taken to be undoped. In our
calculations we include local-field corrections (vertex
corrections) of the Hubbard type in the self-energy and in
the dielectric function as well within the GWI approxima-
tion. '"3 In this approximation the self-energy Z(k, E) is
given by

Z(k, E)=i, y(q, co)
d'q ' dco Vq

4 2tt 2 4 2tr e q, to

x G'(ik —qI, E —co),
with
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GaAs). The corresponding expressions for the quasi-2D
system are obtained by the replacement of V~ by Vvf(q)
where f(q) is the subband form factor. ' Our incorpora-
tion of vertex corrections in the self-energy accounts for
the correlation between the position of the electron and
the positions of the other local electrons in the screening
cloud, whereas the local-field factor G(q) in the dielectric
function accounts for similar correlations between the
electrons responsible for screening. Note that by substi-
tuting G(q) =0, or equivalently y(q) =I, we recover the
RPA theory which neglects vertex corrections.

Our main goal in this work is to determine over which
density, wave vector, and well width range the exchange-
correlation effects are quantitatively important so that
vertex corrections should be included in the calculation.
We find that over density regions of experimental interest
(around 10" cm ) calculations of the band-gap renor-
malization and of the scattering rates that include vertex
corrections deviate from those in RPA by about 10%, and
even more for lower densities (and/or larger wave vectors
for the scattering rate). When the finite well width effect
is included we find that a decrease of the well width
enhances the effect of local fields.

First, we show in Fig. I the scattering rate I (k)
= ~lmZ[k, g(k) j~ of the quasiparticles in a 2D and in a
quasi-2D electron gas as a function of the wave vector k
for low and high densities. Here ((k) =h k /2m is the
electronic energy. The quasiparticle lifetime r = 6/2I (k)
along with the inelastic mean free path lk =k/2mI (k)
are of direct experimental interest. From Fig. 1, we see
that the inclusion of vertex corrections gives the same
qualitative features as the RPA and that both approxima-
tions give the expected undamped quasiparticles at the
Fermi surface. For wave vectors k close to the Fermi
wave vector our results are almost identical with those in
RPA. For wave vectors away from the Fermi wave vector
kF (in and out of the Fermi disk), but not larger than
some threshold wave vector k„damping rates including
the vertex correction are higher from those in RPA by
about 10%. This, in eff'ect, slightly decreases the quasi-
particle mean free path. When the wave vector crosses
the threshold wave vector k, =q, +kF (q, being the wave
vector at which the plasmon dispersion enters the
electron-hole continuum), quasiparticles start to scatter
through the plasmon excitation mechanism, an effect
which manifests itself as a sharp increase of I (k) in Fig.
l. In this large wave-vector regime, the contribution of
vertex corrections is more drastic, giving a lower scatter-
ing rate than that obtained within the RPA. We also see
that the inclusion of vertex corrections lowers the thresh-
old wave vector k, for the onset of plasmon excitation. As
the 2D electron density is decreased, RPA is expected to
become less reliable. This is clearly seen in Fig. 1 where
vertex corrections, in general, become quantitatively more
important at lower densities (and, higher wave vectors).
RPA seems to overestimate the scattering rate by 10-30%
in the experimental density range. We note that the in-
clusion of finite width eff'ect reduces the quantitative im-
portance of vertex corrections. When the finite width of
the well is included we have a steady decrease of the
scattering rate as the well width increases, whereas the
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FIG. 1. Quasiparticle scattering rates (measured in units of

4EF) as a function of wave vector (measured in units of kF) at
densities (a) 2X10" cm ~ and (h) 1&10' cm for quantum
wells of 0, 41, 128, and 241 A. Thick lines correspond to calcu-
lations with vertex corrections, whereas thin ones to RPA.

contribution of local fields becomes less pronounced.
In Fig. 2 we report results on the exchange-correlation-

induced band-gap renormalization in 2D and quasi-2D
photoexcited electron-hole plasmas. Again we show, for
the sake of comparison, corresponding results obtained
within the RPA. We calculate the self-energy corrections,
with the use of Eqs. (1)-(4), to the highest valence and
the lowest conduction subband edges for quantum wells of
various thicknesses. We consider a relatively low-density
electron-hole plasma with equal electron (N, ) and hole
(Nq) densities (N, =Nq), so that we can consider only
the lowest conduction and the highest valence subbands as
populated with band masses m, =0.067m 0 and mI,
=0.45mo for the electrons and holes, respectively. Since
our system is a two-component system the polarizability
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bring our results in better quantitative agreement with ex-
perimental data. ' For wider wells (—41 A) the dif-
ference with RPA becomes smaller and for widths larger
than 128 A. we practically get the same results as the
RPA. In the low-density region the difference with RPA
is about 17% when the well width is around 21 A, and
drops (for the same density) to about 11% when the well
width increases to 340 A. This is expected since it is well
known that as the system approaches the three-
dimensional limit the contribution of the vertex correc-
tions becomes less important. We point out that our cal-
culation predicts a well width dependence of the band-gap
renormalization in agreement with the experimental re-
sults of Ref. 15.

In Fig. 3 we give results for the calculated quasiparticle
effective mass m* as a function of electron density for
wells of various thicknesses. We see that vertex correc-
tions give a value for m lower by about 2% from that in
the RPA. These lower values of the effective mass agree
rather well with the experimental results in silicon inver-
sion layers. ' We mention that a recent attempt' was
made in calculating the eff'ective mass of a 2D system by
including vertex corrections only in the dielectric function
(and not in the self-energy also as we do here) within the
plasmon-pole approximation. Finally, in the inset of Fig.
3, we plot the renormalization factor Z of the quasiparti-
cles as a function of density in the strictly 2D limit. We

see that at high densities, Z approaches unity, meaning
the single-particle character of the quasiparticles is more
pronounced. Here RPA and vertex corrections give prac-
tically the same quantitative results implying that an im-
proved account of the many-body eff'ects does not affect
much the single-particle aspects of the quasiparticles ob-
tained in RPA.

In summary, we have presented many-body calculations
of 2D quasiparticle properties by going beyond the GW
approximation of RPA and by calculating vertex correc-
tions in the Hubbard approximation. We find that the in-
clusion of local-field corrections within the GWI approxi-
mation introduces 5%-30% corrections to various quasi-
particle renormalizations compared with the RPA results,
in general improving agreement between theory and ex-
periment, particularly at lower densities (and/or narrower
wells). We point out that the Hubbard approximation it-
self is a rather crude way of calculating the GR'T self-
energy because it solves the ladder-vertex integral equa-
tion in an approximate way within the Thomas-Fermi
screened potential approximation. We do not, however,
expect corrections beyond the Hubbard approximation to
be quantitatively significant in the regime of our interest.
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