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Two-dimensional electron systems on GaAs heterostructures subjected to a two-dimensional super-
lattice potential reveal novel features in the magnetoresistance. Strong density modulation causing the

formation of antidots is accompanied by a pronounced magnetoresistance maximum.

On weakly

modulated systems, oscillations are observed that reflect the commensurability of the cyclotron diame-
ter and the superlattice period. A classical model of ballistic motion resulting in magnetic-field-
dependent diffusion is found to explain our and other recent magnetotransport observations.

Advances in micropatterning of two-dimensional elec-
tron systems at semiconductor interfaces have rendered it
possible to fabricate lateral two-dimensional (2D) super-
lattices with periodicities down to about 200 nm. Initial
experiments performed on such systems have concentrated
on the study of isolated electron dots.' 7 Recently, the
scope has been extended to lateral superlattice phenomena
in periodically modulated two-dimensional electron
gases.” '® A special feature of these systems is the fact
that the electric forces of the confining potential can be
comparable to the magnetic forces acting upon the elec-
trons even at moderate magnetic fields. Already at weak
superlattice modulation, this yields novel structures in the
static magnetoconductivity.® ~!'* A complementary struc-
ture to a dot array, i.e., a so-called “antidot” array can be
obtained by inducing an array of voids in a formerly two-
dimensional electron gas.'>~!® Such a structure can be
considered the solid-state realization of a Sinai billiard.
Chaotic conductance fluctuations, anomalous diffusion,
and 1/f noise have been predicted for these systems. %20

Here we present magnetotransport studies of 2D lateral
superlattices that can be gate-voltage tuned from mod-
erate density modulation to the formation of antidots. On
antidot arrays we observe a strong magnetoresistance
maximum when the cyclotron diameter approximately
equals the superlattice period. On moderately modulated
superlattices we observe oscillations reflecting the com-
mensurability between the cyclotron diameter and the su-
perlattice period. Both phenomena and their observed
dependence on applied gate bias are explained by intro-
ducing a semiclassical diffusion model based on ballistic
transport in a 2D superlattice potential under the influ-
ence of the Lorentz force. Comparison with other experi-
mental results leads us to conclude that such a simple
model is able to explain many essential features of magne-
totransport so far observed in 2D lateral superlattices.

The preparation of our 2D superlattices starts from
high-mobility GaAs-Ga; - Al As heterostructures grown
by molecular-beam epitaxy. A Hall bar of 1.5 mm length
and 100 ym width is defined through a wet etching pro-
cess. Small pads of InAg alloy are diffused into the
current and voltage leads to provide Ohmic contacts. The
samples are then covered with photoresist that is double

44

exposed by an interference grating using standard holo-
graphic techniques.” Developing removes the photoresist
in the areas of strongest exposure so that an array (grat-
ing constant @ =460 nm) of voids (= 170 nm radius) is
formed in the photoresist. The resist is then covered by a
thin Ni-Cr layer to serve as a modulated gate. A voltage
applied to the gate electrode provides the tunable 2D su-
perlattice potential. An antidot lattice is formed under
sufficiently high negative bias such that the areas beneath
the voids in the photoresist become fully depleted. '®

Characteristic magnetoresistance traces of antidot su-
perlattices are displayed in Fig. 1 for two different sam-
ples. For sample 4 with a low electron density NN, (trace
a) the resistance peak appears at a magnetic field of
B=0.23 T. Sample B with a relatively high density ex-
hibits a maximum at a somewhat higher magnetic field of
0.33 T (trace b). After increasing N; in sample B through
infrared illumination the maximum shifts to an even
higher magnetic field of 0.54 T (trace ¢). Apart from its
clear dependence on the electron density, the position of
the magnetoresistance peak is quite insensitive to many
experimental parameters such as temperature (in the
range between 1.8 and 4.2 K), measuring current, and
measuring geometry (two or four terminal, along or
across the Hall bar). However, it only appears at suffi-
ciently negative gate voltages close to or below the thresh-
old at which the antidot lattice is formed. The formation
of the antidot lattice is monitored by a dramatic decrease
in the gate capacitance with decreasing gate voltage. Be-
fore this takes place all commensurability oscillations (see
below) have vanished and the resistance maximum devel-
ops out of a basically featureless low-field magnetoresis-
tance (dotted line in Fig. 1).

In a naive picture we have checked whether the prom-
inent magnetoresistance maximum can be understood as
magnetic-field-induced crystallization of the electrons
onto the antidot lattice. Calculating the classical cyclo-
tron diameter 2R, for electrons at the Fermi energy from
the measured electron density N, via

2R =21 22N) 12, (1
eB
we derive 490, 570, and 470 nm at maximum resistance
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FIG. 1. Magnetoresistance of different electrostatically de-
fined antidot arrays of period @ =460 nm. Below the onset of
Shubnikov-de Haas oscillations a prominent maximum in the
resistance appears, shifting to higher magnetic fields with in-
creasing electron density N,. The gate voltages are sufficiently
negative to induce an antidot superlattice (—0.27 V, —0.42 V,
and —0.90 V for traces a, b, and c, respectively). The dotted
line gives the magnetoresistance ¢ before antidot formation
(Ve =—0.8 V). The electron densities N, given are determined
from the Shubnikov-de Haas oscillations. Bars correspond to
10% of the zero-field resistance.

for the traces a, b, and c, respectively, of Fig. 1. This is in
close agreement with the grating constant of the antidot
array a =460 nm. In a picture of magnetic crystallization
the magnetic field directs the electrons at the Fermi ener-
gy on rather stable orbits around the antidots whenever
2R.=a. This way the electrons become localized which
reduces charge transport and causes the magnetoresis-
tance maximum.

For a more quantitative model of magnetotransport in a
2D superlattice we numerically calculate the classical tra-
jectories of electrons at constant Fermi energy Er above
the minima of the subband edge in a 2D periodic potential
under the influence of a magnetic field. Following the bil-
liard model approach by Beenakker and van Houten,2"??
we compute the mean-squared distance r? that a set of
electrons (typically 3000) with initial spatial and momen-
tum coordinates chosen at random covers in an average
time 7. Here v =24 ps represents the momentum scatter-
ing time corresponding to the mobility of the unmodulated
two-dimensional electron gas of typically 600000 cm?/Vs.
We then calculate the two-dimensional diffusion constant

—

-t
e 2

and derive the resistivity p using the Einstein relation,
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p=1/DNe?, with N=m/nh? being the density of states
of a two-dimensional electron gas. Figure 2(a) shows the
calculated mean-squared distance 72 as a function of mag-
netic field. For simplicity we approximated the periodic
potential by

V(x,p) =Vlcos(kx)+cos(ky) +21, k=%”. 3)

In Fig. 2, a Fermi energy of Er =9 meV accounts for an
electron density of 2.6x10'' cm ~2. The Fourier coef-
ficient ¥p=4 meV was chosen such that we have well-
defined narrow constrictions between the antidots with a
sufficiently high transmission probability for electrons at
the Fermi energy. At B=0.3 T a minimum in rZ becomes
apparent reflecting that at this field the diffusion is
suppressed by the localization of the electrons to the anti-
dot lattice. This becomes even more obvious in Fig. 2(b)
where p is plotted versus B. The peak magnetic field of
0.3 T and the Fermi energy of 9 meV correspond to a clas-
sical cyclotron diameter of 560 nm which is, as for the ex-
perimental data, slightly larger than the periodicity
a =460 nm of the antidot lattice. The resistance peak can
also be related to the magnetotransport anomalies ob-
served in mesoscopic multiprobe conductors.?>2* Then
the effect of the antidot array may be understood as that
of a lattice of microscopic Hall bars as depicted in the in-
set of Fig. 2. The resistances of the individual Hall bars
exhibiting a maximum at low magnetic fields add up to
the macroscopic sheet resistance measured in our samples.

Figure 3 shows the measured four-point magnetoresis-
tance R, of sample B with positive gate bias. Below the
onset of Shubnikov-de Haas oscillations strong additional
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FIG. 2. Simulated transport through an antidot lattice of
period a =460 nm. (a) Mean-squared distance covered by elec-
trons in an average time 7 =24 ps. (b) Resistivity calculated
from (a). At 0.3 T a maximum is observed due to reduced
diffusion.
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FIG. 3. Measured magnetoresistance of sample B under posi-
tive bias. Commensurability oscillations (arrows) are observed.
Shubnikov-de Haas oscillations appear above 0.5 T. The elec-
tron density is Ns=5.7%10'"' cm ~2 The resistance at B =0 is
Ryx =350 Q.

magnetoresistance oscillations are observed (arrows).
These oscillations that are periodic in 1/B are well known
from 1D modulated lateral superlattices® and can either
be explained in a quantum-mechanical picture of Landau
band formation®!? or in a classical picture of a magnetic-
field-dependent guiding center drift.?! For the resistance
across the 1D superlattice grating (R,,) they are now un-
derstood to be of predominantly classical origin and to
reflect oscillations of the net drift velocity. Weak anti-
phase oscillations observed in R,,, however, are explained
as quantum oscillations of the scattering rate.?* In the
case of 1D modulation, maxima in the resistance R,, are
expected whenever the relation

2R, =(m+¢)a, m=1,2,..., ¢=0.25 @)
is satisfied. For the 2D case it has not yet been clarified
whether the oscillations observed by various groups on
different sample configurations'' ~'# are of predominantly
classical or quantum-mechanical origin. Also, varying
phase factors ¢ have been observed in the different experi-
ments.!' ~'* The only model proposed so far explains the
oscillations as being of quantum-mechanical origin.?> In
the following we want to show that our simple classical
model seems to be able to account for all essential obser-
vations reported so far for lateral 2D superlattices.

In order to extend our model to the case of weak modu-
lation we can no longer neglect the off-diagonal com-
ponents of the diffusion tensor D and the conductivity ten-
sor & as it was safely done for the antidot lattice above.2¢
Generally, a weak laterally periodic potential mainly
affects the diagonal components of & and D.2! When the
cyclotron frequency w.>> 1/7 the large off-diagonal terms
cause maxima in Ry, to correspond to maxima in o,,.
The relative change in resistance caused by the superlat-
tice potential can then be obtained from

R« - D =r—2-1+((0¢-1')2

— (5)
RxxO DO 2(UFT)2

Here D is the diffusion constant obtained from the quasi-
classical simulations and Do= + vz/l1+ (w.7)?%] the
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diffusion constant in the unperturbed case with vg being
the Fermi velocity.

Figure 4(a) gives the calculated ratio D/Dy as a func-
tion of the magnetic field. Oscillations appear (arrows)
with maxima that are linear in 1/B as in Eq. (4) with
¢=—0.25. This is consistent with data obtained experi-
mentally for persistent photo-effect-induced electron-
density modulation.'* Our data shown in Fig. 3, however,
yield a value ¢ =0. This phase difference can be attribut-
ed to that the potential of Eq. (3), leading to the result

= —0.25, does not adequately describe the potential of
our antidot sample under positive bias. To achieve a more
realistic potential we have added a cross term in the
Fourier expansion of the potential

V(x,y) =Volcos(kx)+cos(ky)
—cos(kx)cos(ky)+3]. 6)

This potential, depicted in the inset of Fig. 4(b), also
yields oscillations but with a phase ¢ =0, in agreement
with the experimental data of Fig. 3.

The above calculations show beyond doubt that also for
a 2D potential modulation the commensurability oscilla-
tions can be explained within a classical model of diffusive
transport through the lateral superlattice. Unlike in the
one-dimensional case the exact shape of the potential is of
considerable importance for the exact value of the phase
9.

In conclusion, we have studied the magnetoresistance of
antidot arrays and lateral 2D superlattices. On antidot
lattices we observe a pronounced magnetoresistance max-
imum shifting to higher magnetic fields with increasing
electron density. Within a classical billiard model it is ex-
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FIG. 4. Calculated commensurability oscillations for dif-
ferent shapes of the potential as sketched in the insets. A shift
in the phase ¢ from (a) —0.25 to (b) 0 is evident.
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plained as reduced diffusion caused by electron crystalli-
zation onto the antidot lattice due to the interplay of mag-
netic and electric forces when the cyclotron diameter ap-
proximately equals the lattice constant. Under positive
bias we observe commensurability oscillations linear in
1/B. By simulating the transport through weakly modu-
lated 2D periodic potentials we are able to explain these
oscillations within a classical picture of diffusive trans-
port. The simulations demonstrate that a cross term in
the expansion of the potential can change the phase shift ¢

of the commensurability oscillations which renders it
difficult to unambiguously identify ¢ experimentally.
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