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Lateral tunneling in point contacts
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The Shubnikov-de Haas oscillations of the resistance of a point contact formed in the two-
dimensional electron gas of Al,Ga;-xAs/GaAs heterostructures via the lateral field effect are investi-
gated for a series of values of the confining gate voltage V. Giant magnetoresistance oscillations are
observed for values of V, close to the threshold voltage. An analysis of the differential channel resis-
tance dV/dI as a function of the voltage drop ¥ over the point contact shows that these oscillations are

due to lateral tunneling through the point contact.

Quasi-one-dimensional (1D) quantum point contacts
have attracted considerable interest since the discovery of
quantized conductance in multiples of 2e?/h."2 These
systems were induced via split gates on top of Al,-
Ga| -,As/GaAs heterostructures containing a high-
mobility two-dimensional electron gas (2DEG). More re-
cently, in-plane-gated (IPG) quantum wires have been fa-
bricated by means of focused ion-beam (FIB) insulation
writing, which also show the conductance quantization.?3
These devices have turned out to be rugged enough to
study higher voltage effects such as point contact spectros-
copy.* In this paper we present data from transport ex-
periments on a FIB written point contact. We show that
the width of the quasi-1D channel can be tuned down to
zero via the gate voltage V,. In this limit transport be-
tween the 2DEG’s adjacent to the channel occurs by la-
teral tunneling through a potential barrier in the channel.
Previously reported experiments on lateral tunneling were
done on electric-field induced depletion barriers via
50-60-nm thin metal stripes evaporated on top of Al,-
Gaj—,As/GaAs heterostructures with a lateral width
(perpendicular to the current direction) of more than 0.5
um.”>~7 In our device the electrons tunnel through a tun-
able potential barrier induced by the in-plane electric field
and they are, therefore, laterally restricted to the dimen-
sions of the point contact. There have been a number of
experiments® ~!! and theoretical considerations'? concern-
ing the quantum Hall effect in quasi-1D systems. Here
we report giant magnetoresistance oscillations in the tun-
neling regime.

All samples discussed in the following are prepared
from GaAs/Alp3Gag7As heterostructures grown by mo-
lecular-beam epitaxy with carrier densities n =2.1x10"'!,
2.9%x10'!", and 4.6x10!!' cm ~2 and zero-field mobilities
of #=3.0%10% 6.5%10° and 6.0 10° cm?/Vs at T=4 K
for samples A, B, and C, respectively. The as-grown sam-
ples are mesa etched with standard optical lithography to
define a 150-um wide Hall bar with 150 um spaced 50-
pm wide potential probes. By means of focused 100-keV
Ga*-ion-beam insulation writing with a spot diameter of
100 nm and a dose of 1%10'3 cm ~2 we create an IPG.3
In combination with an insulating line written from the
sample edge close to the gate, this gives a tunable con-
striction (see inset of Fig. 1). We denote the shortest dis-
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tance across the constriction between the center points of
the FIB-exposed spots as the geometrical width, wge,
(Wgeo=2, 2, and 1.5 um for samples A4, B, and C, respec-
tively). By applying a positive (negative) gate voltage to
terminal 6 (see inset Fig. 1) with respect to the source,
both the effective width and the carrier concentration of
the constriction can be increased (decreased). The leak-
age current between gate and source (drain) is well below
100 pA for all samples in the gate voltage range used in
the presented experiments. All measurements are per-
formed in a bath cryostat at 1.6 K. The magnetoresis-
tance is measured in a four contact configuration using
the standard lock-in technique with a 10 nA ac current of
frequency 86 Hz in magnetic fields up to 8 T. The dc
drain-source bias V is obtained by superimposing on the
ac current a constant dc current 7 through the device.

In Fig. 1 we show the typical dependence of the channel
resistance R at zero bias on the applied gate voltage V.
Subtracting an offset resistance Rg of typically 2-3 kQ
which results from the large aspect ratio of the channel
leads in the 2DEG, the channel conductance G =1/
(R —Ro) shows an almost linear dependence on the gate
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FIG. 1. Measured channel resistance R and conductance G
[G=(R—Ro) ™!, Ro=2.7 k] as a function of the applied gate
voltage. The inset shows a sketch of the sample with the focused
ion-beam written path indicated by the bold lines.
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voltage. Steplike structures can be seen for values of G
equal to multiples of 2e¢ /A resulting from the well-known
conductance quantization. Both effective width w and
carrier concentration n of the channel are tuned down to
zero as the gate voltage is decreased. We denote the gate
voltage at which G extrapolates to zero the threshold volt-
age Vi

Figure 2(a) shows the differential channel resistance
dVv/dI as a function of the source-drain voltage for dif-
ferent values of V;. When Vj is close to ¥y, [uppermost
curve in Fig. 2(a)] the differential resistance dV/dI has a
maximum around zero bias and decreases drastically as
the bias V is increased to 4 mV. This non-Ohmic behavior
can be explained by the following model. Assuming
ballistic transport, the net current 7 in a single 1D sub-
band (at zero temperature) is given by

Ep+eV/2
I=e [, ", v EINEIT(E)IE, M

Ep—eV/2

where v is the drift velocity, /V the 1D electronic density of
states, 7" the transmission probability, and Er the Fermi
energy of the system. Since in the 1D case the product
v(E)N(E) is energy independent, Eq. (1) reduces to

Eg+eV/2
Ep—evsy T(E)AE . ()

I=2e/h

If electrons are fully transmitted through the constriction
[T(E)=1] and as long as 1D subbands are below Er one
gets the well-known conductance quantization from Eq.
(2). This is the case as long as R — Ro =< h/2e?2. In Fig.
2(a) (uppermost curve), however, R>>h/2e?. In this lim-
it the confining gate voltage causes a potential barrier in
the channel and to get a current, electrons have to tunnel
laterally through the barrier from one side to the other
[see Fig. 2(b)]. We assume a barrier ¢ of parabolic shape
#(x) =¢o(1 —x?%/a?) where x denotes the distance from
the center of the constriction in the direction of the
current. It should be pointed out that the electrons, when
tunneling through the barrier, still feel the confining gate
potential with an electric-field perpendicular to the
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FIG. 2. (a) Measured differential channel resistance dV/dI
of sample A as a function of the bias voltage V for gate voltages
V¢=0.43, 0.22, —0.08, —0.28, —0.35, and —0.40 V for the
lowest to the uppermost curve, respectively. The dotted curve is
obtained from a fit as described in the text. (b) Potential barrier
[conduction-band edge (CB)] as assumed for the model de-
scribed in the text. The x coordinate denotes the direction of the
current flow.

current flow in the plane of the 2DEG. The transmission
probability is given by the well-known approximate ex-
pression

T(E) =exp —ﬁ—};z-m—ﬂjzx/w(x)—deJ 3)

with m =0.07m, (m, free-electron mass) and for simpli-
city y(x)=¢(x) —eVx/2x0 for —xo=<x=<x0, w(x)
=¢(x)+eV/2 for x < —x, and y(x) =¢(x) —eV/2 for
x > x¢ [xo as defined in Fig. 2(b)]. The integration limits
x1 and x, are the intersection points of the potential bar-
rier ¥ with Er. The data from the uppermost curve in
Fig. 2(a) can be fitted assuming a barrier height
¢0o— Er=3.3 meV and a barrier length 2x¢=20 nm [dot-
ted line in Fig. 2(a)l. Even though the model is
simplified, the values obtained from this fit are of the
correct order of magnitude because the zero-bias resis-
tance drops to half of its value at roughly 4 mV which
should reflect the barrier height. Note that beyond V' = 4
mV the differential resistance is determined by other pro-
cesses.* It should be pointed out that both barrier height
and length can be tuned continuously by changing the
gate voltage. The internal field in the tunnel junction is
typically 2 mV/20 nm=10% V/cm. It is much smaller
than the electric field responsible for the 2D confinement
(=10* V/cm). The in-plane electric-field induced by V,
is typically 1 V/1 um=10* V/cm due to a n-p-n junction
with depletion lengths of less than 1 um at the interfaces
of the FIB paths.'* Thus, the applied source-drain bias of
a few mV represents only a weak perturbation of the elec-
trostatically defined 1D channel.

In Fig. 3 both the source-drain voltage dependence and
the Shubnikov-de Haas (SdH) oscillation of the dif-
ferential channel resistance of sample B for different
values of ¥, are presented in the same plot. The bottom
magnetoresistance curve (¥, =+7.0 V) has a broad zero
resistance minimum at filling factor i =2 (6 T) and is per-
fectly periodic in 1/B with a carrier density which is the
same as in the 2DEG (n=2.9%x10'"" cm ~2). Applying
gate voltages ¥V, <7.0 V the position of the minima shift
to lower fields and are no longer periodic in 1/B. Increas-
ing the confining gate potential (i.e., decreasing V), both
the 1D subbands and the Landau quantization determine
the magnetotransport behavior of the device. The SdH-
oscillation amplitude decreases and the channel resistance
is nonzero at filling factor 2. This behavior changes drast-
ically in the gate voltage regime where lateral tunneling
takes place. Strong magnetoresistance oscillations appear
with an amplitude much larger than the SdH-amplitude
of the 2DEG adjacent to the channel. As indicated by the
arrows in Fig. 3 the position of the minima of these oscil-
lations is the same as for the SdH minima of the 2DEG.
This is observed in all samples investigated. Figure 4
shows the magnetoresistance of sample C in the tunneling
regime. The position of the minima in this curve corre-
spond to the SdH minima of the 2DEG adjacent to the
channel in sample C. As can be seen from the inset in Fig.
4 the background resistance increases roughly proportion-
al to B? in the tunneling regime for B> 2 T. This has
also been observed in the case of vertical tunneling struc-
tures.'> A simple explanation has been given by an in-
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FIG. 3. Measured differential channel resistance of sample B
for B =0 in the left-hand-side diagram for ¥y =—0.72, —0.88,
—0.96, and —1.07 V for the lowest to the uppermost curves, re-
spectively, and magnetoresistance of the same channel for ¥ =0
in the right-hand-side diagram for ¥, =7.0, 0.0, —0.73, —0.88,
—0.96, —1.03, —1.06, and —1.08 V for the lowest to the upper-
most curve, respectively. The arrows mark the position of the
filling factors (i =3-10) of the 2DEG.

crease Ax of the effective tunneling path due to the side-
ways deflection of the ballistic electron by the magnetic
field. Following Ref. 15, Ax==aB? where the constant a is
a function of barrier height ¢¢ and barrier length 2x¢. Us-
ing typical values for ¢o and 2x¢ as given above and ex-
panding the exponential function in Eq. (3), our data are
nicely explained by this simple model for B <5 T. Fertig
and Halperin have given a detailed quantum-mechanical
analysis of electrons in a magnetic field subjected to a
quadratic saddle-point potential'® which is related to the
potential discussed here. For increasing high magnetic
field they obtain a decrease of the transmission probability
T which is consistent with our data.

In order to explain the giant magnetoresistance oscilla-
tions we refer to a picture used in the literature!” which
describes the screening behavior of electrons in the pres-
ence of an applied magnetic field. In the case of a half-
filled Landau level (LL), screening should be optimum
since the electrons are free to redistribute into many avail-
able states. The electrons are repelled by the field do¢/dx
arising from the tunnel barrier in the constriction [see Fig.
2(b)]. For the point contact in the tunneling regime, this
means that for a half-filled LL the barrier length 2x, is
enhanced. However, in the case of a filled LL the number
of states at Er is a minimum and the electrons cannot
redistribute into more favorable states. For a filled LL the
2DEG is stiff and electrons are pushed closer towards the
barrier. As a consequence the effective barrier length is
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FIG. 4. Zero-bias magnetoresistance of the constriction in
sample C for Vg =17.0, 1.1, 0.75, 0.70, 0.68, and 0.60 V for the
lowest to the uppermost curves, respectively. The arrows mark
the position of the filling factors (i =3-10) of the 2DEG. In the
inset the curves for ¥, =2.0, 1.1, 0.75, 0.70, 0.68, and 0.60 V are
plotted vs B2 The labeling of the vertical axis of the inset refers
to the lettering of the main figure.

decreased leading to higher tunneling probability and
lower channel resistance. This explanation is consistent
with our observation that minima in the tunneling resis-
tance occur at integer filling factors. Note that other
models based on the variation of Er (and via Ef the
effective barrier height ¢o— Er) or the variation of the
electronic density of states at the Fermi energy with mag-
netic field would lead to maxima instead of minima of the
channel resistance at integer filling factors.

Finally, we would like to mention additional interesting
features observed in our samples. All samples show a neg-
ative magnetoresistance in the tunneling regime which is
most pronounced for sample C (uppermost curve in Fig.
4) resulting in a decrease of the channel resistance to half
of its zero-field value at B=1.2 T. This effect can be ex-
plained as magnetic suppression of geometrical back-
scattering caused by the finite width of the point contact
or backscattering caused by impurities in the channel.'®
The amount of backscattering caused by the potential
barrier in the point contact remains essentially unaffected
by the low magnetic field. Sample B exhibits some struc-
tures in the magnetic-field range below 1 T. These struc-
tures appear when the zero-field resistance exceeds 50 kQ
and increase in strength as the gate voltage approaches
Vin. Up to now we cannot give an explanation for this
phenomenon.

In all samples the curves for those values of V, at which
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the zero-field resistance is approximately 50 kQ give a
rough border line beyond which lateral tunneling phenom-
ena occur. This can be seen in Fig. 4. Maxima in the
magnetoresistance curves for ¥, =0.75 V correspond to
minima in the curve for ¥, =0.68 V whereas there is no
more shift in the position of the minima for values of V,
even closer to V.

In conclusion we present in this paper data on lateral
tunneling phenomena of quasi-1D channels in an applied
magnetic field. Giant magnetoresistance oscillations are
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observed, which we interpret as a consequence of the
movement of the electrons in the 2DEG back and forth to-
wards the point contact thereby changing the effective
barrier length.
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