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We report the results of a calculation of the spectral weight function of a single hole (or electron)
placed in an otherwise half-filled band described by the one-orbital Hubbard model. The calculation is
made by exact diagonalization. An eight-site cubic cluster is considered. The density of states is studied
as the interaction strength is varied between weak and strong couplings. We observe the spreading of
the spectral weight associated with some single-particle eigenstates over a large range of energies, and
the appearance of satellite structure at higher excitation energies. Only modest band narrowing is found.

L. INTRODUCTION

This paper reports results of our calculation of the
spectral weight function of a single hole or electron
placed in an otherwise half-filled band described by a
one-orbital Hubbard model Hamiltonian on a cubic lat-
tice. The calculation is made by exact diagonalization for
an eight-site system. Our objective is to study the devel-
opment of the spectral weight function as the electron in-
teraction parameter U varies between weak- and strong-
interaction limits.

The discovery of high-temperature superconductivity
in copper oxide systems has focused attention on the
propagation of holes in an antiferromagnet. La,CuQ, is
an insulating antiferromagnet, but becomes supercon-
ducting when electrons are removed through the replace-
ment of a small percentage of trivalent La by divalent Ba
or Sr. The Hubbard Hamiltonian, either in the simplest
one orbital form, or with the inclusion of additional
terms which recognize the differences between copper
and oxygen sites, is often employed to describe this sys-
tem. Apart from superconductors there are many other
transition metal antiferromagnets (NiO, CoO, MnO, etc.)
for which a description in terms of some form of Hub-
bard model may be appropriate.

The antiferromagnetic insulators just mentioned are
systems for which the results of conventional local-spin-
density band theory are often incorrect. For example,
La,CuQ, is predicted to be a paramagnetic metal.! It is
useful to adopt a somewhat different point of view in
which electronic structure is investigated with the use of
a model Hamiltonian and methods which permit a more
complete description of the effects of electron interac-
tions than is provided by band theory.

The more comprehensive procedure for studying the
motion of a hole or electron requires calculation of the
single-particle Green’s function. Since the real and imag-
inary parts of this function are related by a Hilbert trans-
form, it is sufficient to work with the imaginary part, to
which the spectral weight function is proportional. The
real part can then be obtained by integration if desired.
The spectral weight function is also of interest in itself be-
cause a density of states can be obtained from it which in-
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cludes the effects of interactions.

The fundamental difficulty is that, in common with al-
most all interesting problems in many-body theory, exact
results can be obtained only in limiting circumstances.
Our procedure here will be to employ exact diagonaliza-
tion, which limits us to a system with only a small num-
ber of electrons. In other respects, the results are free of
approximation beyond the choice of a model Hamiltoni-
an. One must always be concerned, however, as to how
the results obtained from calculations on small clusters
may be applied to the bulk systems of greater interest.

In this paper we study the one-orbital Hubbard Hamil-
tonian,

H=t 3 clc;,+ U nyn;, . (1)

L]0 1

The operators cit, (¢;,) create (destroy) electrons of spin o
on site i; n;p)) is the number operator for electrons of
spin up (down) on site i, ¢ is the transfer integral, and U is
the electron interaction parameter. The summation in
the first term of (1) runs over all nearest neighbors, i and
j. It will be convenient in the following to specify all en-
ergy quantities as ratios with respect to t; i.e., we may set
t=1 in (1). We note that for the cubic geometry con-
sidered here, the energy spectrum is independent of the
sign of ¢.

The use of small clusters to study the spectral weight
function goes back to the work of Harris and Lange.?
Our calculation involves an eight-site system (a simple
cube, with sites at each corner). Although there are no
monatomic simple cubic crystals in nature, the simple cu-
bic lattice is frequently studied theoretically because it is
the simplest three-dimensional geometry. In the present
case, it is convenient to make use of results obtained in
previous exact diagonalization calculations for this sys-
tem in which ground-state energies, thermodynamic
properties, and spin correlation functions (but not the
spectral weight function) were studied for a wide range of
interaction strengths and band fillings. *>

In the strong-interaction limit (U >>1), the #-J model is
frequently considered instead of the full Hubbard model,

H_ =t (1—n_)ele;(1=n;_)+J 38,8, . ()

Lj,o iLJj
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The summations include nearest-neighbor sites. This
Hamiltonian approximates a canonically transformed
Hubbard Hamiltonian® if the exchange parameter
J =2t%/U (some three-site hopping terms are neglected).
The additional simplicity of the #-J model results from
the exclusion of doubly occupied sites. This greatly
reduces the size of the Hilbert space which has to be con-
sidered in the diagonalization, and so makes calculations
possible for larger clusters than is feasible with the Hub-
bard model. A high price is paid for the additional sim-
plicity. The #-J model does not connect in any simple
way with the noninteracting limit of the Hubbard model:
J=0 describes the ultra-strong-interaction limit (U — o)
of the Hubbard model, while in the large-J limit, heavy
holes in a background of spins coupled by a Heisenberg
interaction are described. It is, however, very informa-
tive, and a major aid in interpretation to connect the
large-U results continuously to those for small U. We be-
lieve this advantage greatly outweighs the restriction to
smaller systems.

Beginning with the classic work of Brinkman and
Rice,” there have been many calculations of spectral
weight functions, on the basis of the #-J model. Most
have considered a square lattice. We will not attempt to
cite all of these papers here (a substantial list is contained
in Ref. 8). One important paper also presents results for
the Hubbard model on eight- and ten-site square lattices
obtained by exact diagonalization.® We are not aware of
previous calculations for a cubic lattice by this method
although results obtained by other methods have been re-
ported.’ There is a significant difficulty in interpreting
results for an eight-site square lattice (for which we have
made some preliminary calculations): the spectrum of
single-particle states contains only three levels; two of
which are nondegenerate and one which is sixfold degen-
erate. The high degeneracy is accidental: the maximum
degeneracy of single-particle states resulting from the
symmetry of a two-dimensional square lattice is two.
This leads to an unrealistically large peak in the density
of states in the interacting system near the Fermi energy.
In contrast, for a cubic cluster, the maximum degeneracy
of the single-particle levels (Fig. 1) is three, as is allowed
by symmetry, which permits a very natural correspon-
dence with a bulk system.

Freericks and Falicov!® have pointed out that results
obtained for an eight-site cubic cluster may be directly in-
terpreted in terms of a cluster with periodic boundary
conditions more appropriate for the discussion of bulk
properties by simply multiplying the transfer parameter ¢
by 2. Then the width of the spectrum shown (without
this 2) in Fig. 1 becomes 12¢, which agrees with the width
obtained from Eq. (1) for single-particle states in an
infinite system. We will not insert this factor of 2 explic-
itly into our results: the reader may wish to remember
that when we discuss results obtained for U=16, say,
that the corresponding value for an infinite system, ex-
pressed in units of the appropriate ¢ for the large system,
is 32.

Our consideration of cubic rather than square
geometry means that we will not try to draw conclusions
directly pertaining to high-7, superconductivity. There
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FIG. 1. Ilustration of the single-particle levels in the cube.
The energies are indicated on the left and the spatial degenera-
cies in parentheses on the right. Levels are numbered in order
of increasing energy.

are, however, generic physical questions which we would
like to address. These concern the utility of single-
particle eigenstates for the description of the propagation
of electrons or holes as the strength of short-range in-
teractions increases. This problem is just as significant in
regard to the cubic transition-metal oxides as it is to high
temperature superconductivity. Our conclusions, for
which evidence is presented below, is that essential as-
pects of the band structure are surprisingly robust. The
opening of a Hubbard gap probably occurs without major
disruption of single-particle states away from the Fermi
energy. In addition, we find rather modest band narrow-
ing, even for unphysically large U. The two essential
changes produced by interactions are the spreading of
some single-particle eigenstates over a large region of en-
ergies (broadening, in bulk terminology), and the forma-
tion of a satellite band at higher excitation energies which
includes eigenstates in which propagation is not possible
in the noninteracting limit. We remain somewhat uncer-
tain concerning: the utility of a quasiparticle description
in the ultra-strong-interaction limit. We find that two of
the eigenstates considered give rise to a single strong
quasiparticle peak when U is large, while others are
spread over a wide range of energies. We are not sure if
there is a generalization of this result which applies to an
infinite system.

The remainder of this paper is organized as follows.
Our calculational procedures are discussed in Sec. II.
The results are presented in detail in Sec. III. Our con-
clusions are summarized in Sec. IV, which also contains
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some speculations concerning implications of this work
for bulk systems.

II. METHOD

Let us suppose our system contains (exactly) n parti-
cles. We denote the eigenstates of the Hamiltonian for n
particles by |a,n ), in which a implicitly specifies all in-
dices, including conserved quantum numbers, involved in
the designation of a state. We will put a=g to denote the
ground state (for a specified n). The states are orthonor-
mal

(a,n|B,n)=5,4. (3)

We consider the retarded single-particle Green’s func-
tion.!! Let c;r,(cy) be the creation (annihilation) opera-
tors referring to the single-particle eigenstates |y,1). It
is assumed that |y,1) is an eigenstate of a suitable one-
particle Hamiltonian. In the present case of the Hubbard
model, these states result from a diagonalization of the
Hamiltonian in the absence of interactions (U=0). We
use the notation y, rather than the more conventional k
because, for a finite cluster, it is convenient and natural
to use real eigenvectors for the single-particle states (and
other states as well). The correspondence between ¥ and
k in the present case is described below at the beginning
of Sec. III. The function describing the propagation of a
particle or hole in state y is

G;/ret)(t —t")y=—iO(t ——t')([cy(t)(,’;(t')
+c¥,(t')cy(t)]> ) @)

in which © is a unit step function and {- - - .) indicates
a ground-state average at zero temperature or an average
over a thermal ensemble at finite temperature. The spec-
tral weight function 4,(w) is defined in terms of the
imaginary part of the Fourier transform of (4):

Ay(w)=—21mG7(w) N (5a)
where
G (@)= [ =G (t —1")d (1 —1') . (5b)

A straightforward calculation leads to
Ka,nle,lb,n +1)]?
sy o+E,—E,+u+in
[<a,nlc]|d,n —1)|?
7 0o—E,+E,+u—in

1 ~pE,
G lo)=— e

(6)

This expression gives the Green’s function at finite tem-
peratures in the canonical ensemble; i.e., with the restric-
tion that the states involved have fixed numbers of parti-
cles. The quantities involved in Eq. (6) are defined as fol-
lows.

The states of the n-particle system are denoted by an
index a, those of n —1 particles are denoted by d, and
those of n+1 are denoted by b. The quantity u is the
chemical potential, which in a general case has to be

determined separately as a function of temperature.
(However, for the situations considered in detail in this
paper, u is independent of temperature and can be deter-
mined in advance.) In addition B=(kzT)~ 1 and Z is the
partition function

zZ=Se " (7)

Finally, 7 is a small positive quantity. For a bulk sys-
tem, one would pass to the limit in which % vanishes.
The spectral weight is then a sum of & functions, but one
obtains a finite result by summing over a continuous dis-
tribution of states of the (n=*1)-particle systems. For a
finite system, it is convenient to keep 7 finite but reason-
ably small in order to show structure clearly. Alternately
n could be made comparable to the spacing between
single-particle levels, in order to simulate (roughly) what
is to be expected in bulk systems.

In a bulk system, there is no essential difference be-
tween the states of the (n —1)-, n-, and (n+ 1)-particle
systems and n may be dropped as a label. One obtains,
after a relabeling of indices,

___E —
Ay(w)=2—”2|(a|cylb>12(e ﬁ“-f—e BEb)
Z a,b

X8(w+E,—E,+u) . (8

This is a standard result. However the argument leading
from (6) to (8) is not applicable to a finite system in that
the states of the n- and (n=*1)-particle systems have
different quantum numbers, and moreover, these systems
have different numbers of states. Hence we use Eq. (6).

Further, we have the “sum rule,” valid at all tempera-
tures:

1 ©
5o A @de=1. (9a)

Equation (9a) is a useful check on numerical computa-
tions, however we note that its applicability requires in-
clusion of contributions from both (r+1)- and (n —1)-
particle systems. In the present problem it is often con-
venient to consider only the (n —1)- [or (n+ 1)]-particle
system by themselves. In the case of a single, half-filled
band in which the number of single-particle eigenstates
equals the number of sites IV (times a factor of 2 for spin),
we integrate over only one of the terms in (4), and then
sum over states of a single spin only to obtain

=3 [ 4P(@do=4N . (9b)
14

The superscript A (holes) implies that only the second
term of Eq. (6) has been considered. For use in the
remainder of this paper we will refer to the quantity

1
n(w) Ty % 4,(0), (10)

as the density of states.
Equation (6) simplifies substantially if 7=0. We sup-
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pose that the ground state of the n-particle system, now
denoted |g,n ), is not degenerate. Then we have

[<(g,nlc,|b,n +1)|?
G, (0)=73 ;
sy OtE,—E,+u+in
[{g,nlc]ld,n —1)|?
g o~ E,+E;+tu—in

(11)

Our calculations are based on Eq. (11), and refer to an
eight-particle system on a simple cube. The Hubbard
Hamiltonian on a cube possesses particle-hole symmetry,
so that it is necessary to compute only one of the terms in
eq. (11); the other may be determined immediately from
it. The chemical potential, u, is well known to have the
value U/2. The system of levels for eight electrons con-
tains 1 state with S=4, 63 with S=3, 720 with S=2,
2352 of S=1, and 1764 of S=0 (singlets). The ground
state is a singlet for all U. In the case there are seven or
nine electrons, there are 8 states with S =%, 216 with
S=2, 1334 with §=3, and 2352 with §=1. The
(2S+1) degeneracy is not included in these numbers.
When the interaction U is large, the states are grouped in
manifolds separated by (roughly) U; there are three mani-
folds for 7 or 9 electrons and four for 8 electrons.

Our calculations are made for positive U only. A
somewhat surprising consequence of the symmetry prop-
erties of the Hubbard Hamiltonian on a bipartite struc-
ture!? is that the spectral weight function is actually the
same for positive and negative values of U.

III. RESULTS AND DISCUSSION

We will report the variation of the spectral weight
function for a cube as a function of U. In order to under-
stand its behavior, it is essential to refer to the energy lev-
els of a single particle in a cubic cluster: the energies are
—3, —1, 1, and 3 in units of . The levels with energies
of *1 are triply degenerate, those with energies of +3 are
not degenerate (neglecting spin). These facts are illustrat-
ed in Fig. 1. We number the levels in order of increasing
energy from the bottom. According to our convention in
which the quantity ¢ in the Hamiltonian is positive, in a
periodic model, level (1) corresponds to the point R in the
Brillouin zone, k=(w/a,w/a,m/a); (2) to the point
M, k=(mw/a,7/a,0); (3) to X,k=(7/a,0,0); and (4) to
the origin, I'. (Note that in a periodic model, the cluster
“¢” is to be replaced by ““2¢,” as mentioned above.)

In the limit in which U=0, the half-filled “band” situa-
tion places two particles into level (1) and six in level (2).
The spectral weight function has § function peaks at en-
ergies of —3t and —1 for holes, and ¢ and 3¢ for electrons.

Figure 2 shows the density of states for U=1. Both
holes and electrons are included. The following features
should be noted.

1. The diagram is symmetric between electron and
hole portions, as expected. For electrons, the energy, E,
of a peak in the spectral weight function is the energy
above the Fermi energy at which an extra electron can
propagate. For holes, —E, is the energy which has to be
added to remove an electron or propagate a hole. We
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FIG. 2. Density of states for U=1. Both holes and electron
contributions are shown. The numbers in parentheses indicates
the single-particle level associated with the peak. The curves
are computed using a width parameter 7=0.05. All energies
are ratios with respect to t.

will refer to |E| as the excitation energy.

2. The large peaks associated with the triply degen-
erate states are located almost exactly at the energies
where they would be found in a noninteracting system.
In particular, the separation between the peaks on the
electron and hole sides have not increased, so there is no
indication at this point of the formation of a Hubbard
gap.

3. The peaks associated with the upper and lower
single-particle states have split, but the center of gravity
of each split pair is located at the position of the relevant
state in the noninteracting system.

4. The area under the peaks shown, satisfies the sum
rule, Eq. (9a). Thus, apart from the splitting mentioned
above, many-body effects are not significant. The
changes produced in the system by the addition or remo-
val of a single particle are well described in terms of oc-
cupation of single-particle states. Apart from the split-
ting, Fig. 2 reproduces Fig. 1.

5. The splitting is a many-body effect, which arises as
follows. If one attempts to describe states of the many-
body system in terms of occupation of single-particle
states; a state in which one hole is present in level (1) is
degenerate, in the limit U=0, with one in which two
holes are present in state (2) and there is an excited elec-
tron in state (3). The deep hole can deexcite, creating an
electron hole pair. The state with an excited electron-
hole pair does not contribute to the spectral weight func-
tion when U=0. However, for U0, the degenerate
states are mixed by the interaction. Two states which
share single deep hole and shallow hole-electron hole pair
characteristics result. Because a degeneracy has been
split, the mixing of the states occurs with approximately
equal amplitudes, and the coefficients are independent of
U for small U, while the amount of the splitting is pro-
portional to U.
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It is easy to see that the positions of the quasiparticle
peaks are independent of U for small U. More precisely
put, if the energy of a quasiparticle peak is expanded in
powers of U, the term of first order in U vanishes. To
verify this, note that in a system in which all sites are
equivalent, we may suppose that in the limit of very small
U, and there is one electron per site, all sites are occupied
with equal probability, irrespective of spin except for the
restrictions imposed by the Pauli principle. Hence the
average value of {n;;n;, ) is +. When one electron is add-
ed or removed, the average is + (+41/N). Hence the en-
ergies of the ground states are, for the N-particle system

E,(N)=EyN)+NU/4, (12a)
and for the (N =*1)-particle systems
_ N 1

E,(Nt1)=Ey(Nxt1)+ Tiz U, (12b)

plus corrections of order U? and higher. Here, E, is the
energy of the completely noninteracting system. From
Eq. (11) we see that peaks on the hole side occur when

E=E,(N)—E;N—1)—pu, (13)

where d is some eigenstate of the (N — 1)-particle system.
Since the chemical potential, u= U/2 for a half-filled sys-
tem with electron-hole symmetry, we see that

E=E,N)—E{(N—-1)+0(U?), (14)

where E” is the energy of the noninteracting particle
state d with N —1 electrons. The energy of E\® is just
the sum of the energies of the occupied single-particle
states. The desired result follows, and a similar formula
applies on the electron side. This argument can break
down if the ground state of either the N or N+1 particle
system is degenerate at U=0 but not degenerate for
U=0. Then, the degeneracy can be split in first order in
U, and there can be terms in the ground-state energy of
first order in U beyond those given in Eq. (12).

Figure 3 shows the density of states for U=4. Com-
parison of Figs. 2 and 3 shows that while the major peaks
remain, the magnitude of the peaks (2) and (3) referring
to the highest hole and lowest electron level have been re-
duced, as also is the case for (1U) and (4L). In contrast,
the amplitudes of (1L) and (4U) have increased. Addi-
tional structures appear: the most prominent features are
associated with configurations forbidden in the nonin-
teracting system (holes in level 3 or electrons propagating
in level 2). The separation between the peaks labeled (2)
and (3) has increased from 2t to 2.5¢. This suggests the
beginnings of the formation of a gap associated with anti-
ferromagnetism (as in the work of Kampf and
Schieffer’3). Because the single-particle levels in this
small system are separated by a rather large amount (2¢),
we need a substantial broadening if we are to obtain a
density of states which resembles more closely what is ob-
tained in a bulk system. Figure 4 shows the density of
states for U=4 computed with a width parameter 7=0.5
which resembles qualitatively those obtained in Ref. 13,
illustrating the formation of a pseudogap in a SDW sys-
tem.

8
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FIG. 3. Density of states for U=4, computed with a width
parameter =0.05.

When the interaction strength is increased, electron-
correlation effects become more obvious and lead to new
phenomena. Figure 5 shows the density of states for
U=38. The electron and hole portions (upper and lower
Hubbard bands) are clearly separate, with the separation
between the peaks labeled (2) and (3) at the top of the
lower band and the bottom of the top band having in-
creased to 5.1¢. At this point we have a distinct Hubbard
gap. We also see in Fig. 5 the emergence of additional
structure. The lower and upper Hubbard bands are
broadening, each developing structure at higher excita-
tion energies. This structure is induced by interactions.
For example, in the hole band, we see the emergence of
peaks associated with single-particle levels 3 and 4 which
are not occupied in the noninteracting limit. Corre-
spondingly, there are high energy peaks on the electron
side associated with levels 1 and 2 which are fully occu-
pied in the noninteracting limit.

This structure can arise in the following way. We will
consider the extra peaks on the hole side. Electron in-

1.0 -
0.8
0.6

N(E)

0.4

0.2

0.0
-10 -5 0 5 10

FIG. 4. Density of states for U=4, computed with a width
parameter =0.05.
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-10 -5 0 5 10

FIG. 5. Density of states for U=8, computed with =0.05.

teractions induce components in the ground-state wave
function of the N-electron system in which two (or more)
electrons are excited into unoccupied states. The c,
operator for one of the excited states destroys one of the
excited particle states, producing a state of the (N —1)-
particle system which contains a hole plus an electron
hole pair. The peak in the spectral weight function will
occur at excitation energies which are larger by the
amount required to create the electron-hole pair.

The integrated density of state associated with these
eigenstates is, for this U, only about + of that associated
with the states 1 and 2 for holes and 3 and 4 for electrons.
However as U continues to increase, the integrated densi-
ty of states associated with these forbidden or satellite
levels (forbidden in the sense that propagation in them is
not possible at U=0) increases to become equal to that
associated with the allowed levels in the large-U limit.

As the interaction strength is increased still further,
the size of the Hubbard gap increases, and we show only
the hole portion of the density of states. The electron
portion remains identical in appearance. In addition, we
drop the chemical potential [put £ =0 in Eq. (10)], so that
poles in the denominator occur exactly at the energy
difference between the ground state of the N-electron sys-
tem and the various states of the (N — 1)-electron system.
Figure 6 shows the hole density of states for U=16, on
this modified excitation energy scale. The peaks at posi-
tive energies on this scale result from levels near the bot-
tom of the lowest manifold of states of the (N —1)-
particle system. When the interaction parameter U is
sufficiently large, all the states of the N-particle system
are higher in energy than some of the states of the
(N —1)-particle system (the N-particle system could
lower its energy by emission of an electron). The density
of states now shows two distinct regions. The upper por-
tion (E > —0.5) has large peaks associated with levels 1
and 2. The upper peak, associated with the highest nor-
mally occupied level (2) is still quite strong, although the
area under this peak is only about § as large as in the

S

25 ()

20k ()

15

n(e) (2,3) (2,3)
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0.0 ! .
-6 -4 -2
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FIG. 6. Density of states for U=16, computed with 7=0.05.
Only the energy region corresponding to hole states is shown,
and the chemical potential has been set to zero.

case of U=1. In addition, there is a well-defined peak as-
sociated with level (1). The spectral weight functions for
these levels are shown separately in Figs. 7 and 8, respec-
tively. It will be observed that there are additional peaks
associated with level (2). Although the original quasipar-
ticle peak still persists, much weight has been taken out
of it and distributed over additional peaks which occur
for a wide range of energies. This would correspond to
substantial broadening in the case of a bulk system. In
contrast there is a strong peak associated with level 1:
the side peaks are much weaker. This is a very well-
defined quasiparticle peak with about three times the

0.6 -

A(E)
041

0.2

0.0
6 0
E

FIG. 7. Spectral weight function for level 2 at U=16, com-
puted with n=0.05. Since this level is threefold degenerate, the
vertical scale must be multiplied by 3 to obtain the contribution
to the density of states. The factor of (27)~! in Eq. (9a) has
been absorbed into 4.
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FIG. 8. Spectral weight function for level 1 at U=16, com-
puted with 7=0.05.

weight of that associated with a single one of the degen-
erate members of level 2.

There is a significant portion of the hole density of
states in Fig. 6 at negative energies (higher and positive
excitation energies, however) in which there are large
contributions from the “forbidden” levels 3 and 4. (How-
ever, peaks associated with levels 2 and 3 appear in both
upper and lower energy regions.) A gap has developed
between upper and lower (satellite) regions. We will see
that as U continues to increase the upper and satellite
portions of the density of states become symmetric, and
are symmetrically placed above and below E=0.

We believe that many physical transition metal antifer-
romagnets, probably including those such as (pure)
La,CuO, which are closely related to high temperature
superconductors, are likely to have properties similar to
those shown in our Hubbard model calculations in the in-
termediate range of U/t values. We have sampled this
range for U/t=8 and U/t=16. In this range, essential
features of the level structure calculated for small U per-
sist, but there will be significant broadening. The density
of states is actually broader than found for small U, in
that satellite contributions from forbidden levels appear
at higher excitation energies.

Next, we consider the strong-interaction limit. Figures
9, 10, and 11 show the hole portion of the density of
states for U/t=32, 100, and 1000, respectively. As U
continues to increase, the satellite region strengthens and
the band shifts slightly higher in energy, so that it is very
nearly symmetric, as mentioned above, at U=1000. The
energy scale is nearly rigid in this range of U. The
ground-state energy of the N-electron system differs from
0 by an amount proportional to ( —)t2/U, and hence ap-
proaches zero slowly as U increases, while the ground
manifold of the (N —1)-electron system stretches from
(roughly) — 3t to 3z.

The two symmetric portions of the density of states are
separated by a gap around zero excitation energy. This is

FIG. 9. Density of states for U= 32, computed with n=0.05.
Hole portion only.

apparently a pseudogap. There are a few small peaks, not
discernible on the graphs, present for levels 2 and 3—so
that it is a region of much reduced density of states, rath-
er than being actually zero. Examination of the energy
spectrum shows that there are some states of the seven-
electron systems with energies appropriate to produce a
peak in the gap: evidently, the matrix element connect-
ing these states to the ground state of the eight-electron
system is small.

There is an additional complication: the ground state
of the N — 1 manifold is fully spin aligned for U > 39.5 (in
accord with Nagaoka’s theorem'*). At U=1000 in the
specific case of the cube with 7 electrons, not only is the
ground state “ferromagnetic,” but the lowest 13 eigenval-
ues belong to states which have S >%, so that the first

15— (1L)
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(2,3,2) (3,2)
10
(2)
N(E) (3,2)
05+
0.0 1 J 1 1 ]
6 -4 2 0 2 4 6

FIG. 10. Density of states for U=100, computed with
7=0.05. Hole portion only.
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FIG. 11. Density of states for U=1000, computed with

7n=0.05. Hole portion only.

state of S =1 is above the ground state by 0.36¢, and the
highest state of S =1 is below the top of the lowest mani-
fold by 0.39z. The energy range covered by states which
can be reached from the ground state of the eight-
electron system by deleting a single electron is therefore
5.25t, smaller than the total width of the lowest manifold
(6¢) by 12.5%.

Thus, there is a modest amount of “band narrowing”
in this case, which is the result of the presence of states
which are not accessible from the singlet ground state of
the eight-particle system by removal of a single electron
at the top and bottom of the lowest manifold of the
seven-electron system. The total width of this lowest
manifold remains exactly the width of the single-particle
band in the noninteracting system.

The preceding paragraphs should not be interpreted as
implying that there is no band narrowing until U in-
creases to the value at which the ground state of the
seven-electron system is ferromagnetic. In the case
U=32, the ground state of the seven-electron system has
antiferromagnetic correlations, and both the seven-and
eight-electron systems have nearly the maximum average
local moments. The total band width here, measured
from the lowest energy to the highest energy peak in the
density of states is 5.4¢, a reduction of 10% compared to
the noninteracting system. For this U, the peak at the
top of the hole distribution is still associated with the
single-particle level 2; and is at exactly the energy
difference between the ground states of the seven-and
eight-electron systems. The area under this peak is | of
the value in the noninteracting system. This is a
significant remnant of the quasiparticle picture of the
noninteracting system but now the subsidiary peaks in
the hole region have almost three times the integrated
area. We interpret this, in the context of a bulk system,
as indicating large broadening. The area under this peak
continues to decrease as U increases.

Essential features of the preceding discussion are sum-
marized in Figs. 12 and 13. Figure 12 shows the position
of the principal peaks in the hole portion of the density of

S

1 10 100 1000

FIG. 12. Energies of principal peaks in the hole density of
states as functions of U.

states on energy scale used above for large U (i.e., with
pu=0). The peaks which occur in the small-U limit are
plotted for all values of U; positions of some others which
are not readily apparent in our data for small U are plot-
ted only for larger values. First one notices that the ener-
gies increase monotonically with U as expected. There
are some changes in the order. For example the topmost
peak in the noninteracting system is associated with level
2, while for U=1000 the upper peak is the remnant of
that labeled 1U in Fig. 2. This could be interpreted as a
reordering of hole levels (change in shape of the hole
band), but the small amplitude of these peaks for large U
makes us question the utility of this description.

Figure 12 may also be interpreted as indicating that in
the large-U limit, there is a small region at the top of the
hole portion of the spectrum (actually, the bottom of the
hole “band”) where the density of states is high. This
narrow region, corresponding to the upper peak in Fig.
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FIG. 13. Areas (dimensionless) under some of the principal
peaks in the hole portion of the band (integrated density of
states) as functions of U.
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11, and whose width in the case U /¢t =1000 is about 10%
of the occupied noninteracting band, contains the rem-
nants of the low-excitation-energy peaks from small U.
Possibly, discussions of effective mass enhancements per-
tain to this region.

Figure 12 should be considered in conjunction with
Fig. 13, in which the areas under some of the major peaks
relating to hole levels are shown. These areas have been
normalized in accord with Eq. (9a) so that in the nonin-
teracting system, the integrated density of states for that
level is 1. (Each level contains one electron of each spin.
The spatial degeneracy of 3 associated with level 2 is not
included.) In the small-U limit we have contributions
only from levels 2 and 1, the latter being split as de-
scribed earlier. At large U one might expect in the case
of a well-defined quasiparticle that the integrated density
would be about 1. (Roughly, all noninteracting levels
could be occupied with equal probability, 1 electron or
hole of a given spin in each level.) This is the case for
two of the levels associated with the top and bottom lev-
els in Fig. 1, but for the other peaks, including all those
not plotted in Fig. 13, the integrated area under these
peaks is much smaller. It will be observed from Fig. 12
that these well-defined peaks are not related to states at
the bottom of the seven-electron manifold. We have a
surprisingly complex situation in which, although some
rather sharply defined quasiparticles continue to exist at
large U, others are distributed over a wide range of ener-
gies. The well-defined levels are those nearest to zero ex-
citation energy, rather than being at the bottom or the
top of the available range. However, the interpretation
which seems most plausible to us is that the persistance
of a single peak containing essentially all of the area for
two of the single-particle states is a result of the small
size and high symmetry of the system for which our cal-
culations have been performed. If this view is correct,
one should expect that quasiparticle structure would
disappear in the large-U limit for a bulk system.

Finally, we should like to compare our results with
those of Dagotto et al.,® who studied the Hubbard model
on 8- and 10-site clusters with periodic boundary condi-
tions representing a square lattice. They considered
values of the interaction strength up to U=40. The
differences in the geometry of the systems under con-
sideration implies that the energies and degeneracies of
the simple particle states are different as mentioned previ-
ously. However the same general picture of the develop-
ment of the density of states as U varies emerges from
their work as from ours. For small U the peaks are
sharp, and are located close to the energies of the single-
particle eigenstates. As U increases, a gap forms; the
spectral weight for at least some of the eigenstates devel-
ops additional peaks, indicating broadening in the bulk
limit, and a satellite ‘““band” appears for larger excitation
energies. There is also some indication in their work of a
gap between the main and the satellite portions of the
density of states. We believe the features of the results on
which our calculations agree are characteristic of the
Hubbard model in general, independent of the specific
geometry (except for the consequences of hole-electron
symmetry, which is found only in bipartite structures).

IV. CONCLUSIONS

We have calculated the spectral weight functions and
the density of states for the one-orbital Hubbard Hamil-
tonian defined on a simple cube. Values of the interac-
tion parameter ranging from U /t=1 to U/t=1000 were
considered. The results present a picture of the spectral
weight function going from weak-interaction limit to ul-
trastrong interactions.

This is the picture. When the interaction is weak, the
peaks in the spectral weight function remain close to the
energies of the eigenstates of the noninteracting system.
Quasiparticles associated with states close to the Fermi
energy are sharp, but if the excitation energy is large
enough so that an excited electron or hole is in a state
whose energy is enough to permit a hole-electron pair to
be created, a splitting of the quasiparticle peak occurs,
which, in an infinite system, would correspond to spread-
ing the quasiparticle peak over a range of energies.

As the interaction becomes stronger, additional peaks
develop in the spectral weight for states near the Fermi
energy (in the noninteracting system). The ‘“original”
peak can be identified for all U, but other peaks become
of equal or greater importance. The spectral weight asso-
ciated with eigenstates at the top of the band (in the case
of an extra electron) or at the bottom of the band (for a
hole) remain concentrated in a small energy range. Satel-
lite peaks emerge at higher excitation energies. These are
associated in part, but not exclusively, with propagation
in levels not accessible in the noninteracting system; for
example, holes in the highest level of the system, which is
not occupied when U=0. There is an excitation-energy
pseudogap between main and satellite regions.

As U continues to increase into the strong-interaction
limit, the intensity of the satellite peaks grows, ultimately
to become equal to that associated with the main band.
In this limit, the hole and electron bands are (separately)
symmetric, each consisting of two parts separated by a
pseudogap region of low density of states.

Overall, there is some band narrowing in going from
weak to strong interactions, but this is not large, amount-
ing to a reduction of the overall width by only a factor of
4. (The band at U=1000 has  of the width of the free
electron manifold.) For extremely large U, the band nar-
rowing can be attributed to the operation of Nagaoka’s
theorem: the low-lying states of the seven-electron sys-
tem have S > % However, band narrowing becomes evi-
dent for U’s too small for Nagaoka’s theorem to apply.

The results suggest to us that in physical, as opposed to
model, systems, for realistic values of the strengths of
electron interactions in transition-metal oxides and high-
temperature superconductors, the basic picture derived
from band-structure calculations is robust and will be
qualitatively satisfactory and useful for the interpretation
of many experiments, such as those involving photoemis-
sion. The most important exception is that there will be
a Hubbard gap if the interaction is strong enough (we
cannot estimate this from a small cluster calculation) but
the band structure will not be greatly disrupted except
near the Fermi energy. We think this is consistent with
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experiments on transition-metal oxides.!> Second, satel-
lite structure in the density of states should be found at
higher excitation energy if the interactions are strong
enough, even in those cases where a one-orbital model
may be adequate.
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