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Quasiparticle properties of the two-dimensional Hubbard model
in a propagator-renormalized Auctuation-exchange approximation
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We calculate the self-energy and thermodynamic potential of the two-dimenisonal Hubbard model
in a propagator-renormalized conserving approximation, for lattices as large as 128 x 128 and tem-
peratures as low as 0.002 times the bandwidth. For densities near quarter filling we see no evidence
of deviations from the predictions of Fermi-liquid. theory, such as those expected in a Luttinger liquid
or a marginal Fermi liquid.

In spite of intense theoretical effort sparked by the
normal-state properties of the high-T, superconductors,
controversy continues over the ground-state and low-
lying excitations of the two-dimensional Hubbard model,
with Hamiltonian

0 = t ) —(c, c~ +c c, )~U) n~Tn~t. (1)
gi, jp, o

Anderson has recently argued that the two-dimensional
(2D) Hubbard model describes a Luttinger liquid (LL),
in which the renormalization factor a(s) of a quasiparti-
cle with energy s approaches zero as s (0 & n « 1) for
all U ) 0 and all densities. Similarly, in the marginal-
Fermi-liquid (MFL) theory abstracted from the exper-
imental phenomenology of the high-T, materials, the
quasiparticle weight vanishes as an inverse logarithm at
low energy. A microscopic basis for these models is still
lacking, and the weak nature of the proposed anomalies
means that they would not be apparent in numerical cal-
culations on small lattices or at relatively high temper-
atures. An alternative is to carry out approximate cal-
culations for large enough lattices and low enough tem-
peratures that, the proposed anomalies might be seen. In
this paper we report numerical calculations using self-
consistent Green s-function approximations, which indi-
cate that if a LL or MFL really occurs for all U & 0 and
all densities, then within this framework the anomalous
behavior must have a more subtle origin than anything
studied in the past.

The quasiparticle excitations of a Fermi liquid are de-
scribed by the retarded self energy, 2 (k, s). The quasi-
particle energy (k and the crystal momentum are related
by
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acting Green's function, which is, in turn, related to the
self-energy by Dyson's equation,

1 64[G]
( ) G(„, )

G(k, s„) = [Go '(k, s„)—E(k, s„)]
The thermodynamic potential density Q(T, p) can also
be expressed in terms of the Green's function, self-energy,
and the functional C&[G],

B(T,p, ) = —2 Tr [ZG + ln( —GD
' + E)] + C [G], (6)

where Tr[A] = (T/1V) Pk Q„A(k, s„) and N is the num-
ber of lattice sites. Viewed as a functional of E and G,
this expression is stationary whenever Eqs. (4) and (5)
are satisfied. Although originally derived by resumma-
tion of perturbation theory, this framework is formally
exact, and should be capable of describing a LL or MFL
as well as a Fermi liquid. The complexities are, of course,
hidden in the functional C [G], which is usually approx-
imated by some infinite subset of the one-particle irre-
ducible closed Feynman diagrams.

Following Bickers, Scalapino, and Whites we take for
4[G] the sum of all particle-hole and particle-particle
bubble chains,

(k —(k —ReZ (k, (k) = 0, (2)
where the particle-hole and particle-particle susceptibil-
ity bubbles are

where both (k and the noninteracting single-particle en-
ergy (& are measured from the chemical potential. The
renormalization factor for a quasiparticle with energy c
and crystal momentum k can be expressed as

xpp(q, ~ )

= U(T/N) ) ) G(k+ q, „s+u) )G(—k, —s„)

ORe En(k, s) )
Bs )

We have studied the quasiparticle properties of the Hub-

bard model within a propagator-renormalized theory for
the temperature Green's function G(k, s„), in which the
self-energy is given as a nonlinear functional of the inter-

Xph(q, ~ .)
U(T/N) ) ) G—(k+ q, +a~ )G(ks).
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The corresponding approximation for the self-energy con-
sists of the single second-order diagram plus exchanged
density fluctuations, spin-density fluctuations, and (sin-
glet) pair fluctuations. Although this approximation is
not expected to give an accurate description of the Hub-
bard model in the large-V limit, it does have two notable
virtues: (1) the infinite-order resummation of pertur-
bation theory can be carried out analytically, in terms
of the susceptibility bubbles; (2) in the absence of an
external magnetic field, every instability or anomaly of
which we are aware manifests itself at this level of ap-
proximation, The repeated particle-particle scattering
described by 4»» has recently been discussed as a possi-
ble mechanism for the breakdown of Fermi-liquid theory
in two dimensions. ' We have not explicitly included the
Hartree self-energy, which for the Hubbard model has the
simple form nV/2 and hence can always be eliminated by
a redefinition of the chemical potential.

For this 4[G] we have generated self-consistent solu-
tions of Eqs. (4) and (5) on a 128 x 128 lattice with
periodic boundary conditions, for temperatures between
T/t = 0.015 and T/t = 0.12. Since the noninteracting
bandwidth is W = Ht, at our lowest temperature we have
T/W = 0.0019. The large lattice used in these calcula-
tions is required in order to avoid finite-size effects at
low temperature; with a 64x64 lattice, deviations from
the correct T dependence of the noninteracting thermo-
dynamic potential are significant at T/t = 0.015. We
have been able to obtain the temperature dependence of
thermodynamic properties and of the self-energy over a
range of temperature where differences between a Fermi
liquid and a, LL or MFL should be apparent.

We have looked for evidence of deviations from Fermi-
liquid behavior in the temperature dependence of the
thermodynamic potential and of a quantity closely re-
la.ted to the quasiparticle renormalization factor. The
calculations reported here were carried out for an ap-
proximately quarter-filled band (n 0.53) with U/t = 8.
Consequently these calculations are not relevant to mod-
els such as that of Virosztek and Ruvalds in which
marginal-Fermi-liquid behavior is predicated on Fermi-
surface nesting. (We have verified that our approach
does generate a MFL-like self-energy near half filling and
hence that we can identify such an anomaly; details will
be reported elsewhere. )

Numerical solution of Eqs. (4) and (5) requires the
introduction of a high-energy cutoff in the discrete fre-
quency sums. AVhile implementing this cutoff is rela-
tively straightforward in simple sums such as those in
the thermodynamic potential, it is less clear how to han-
dle the frequency convolutions that appear in the sus-
ceptibilities and self-energies. We have evaluated these
frequency convolutions by imposing periodic boundary
conditions on the frequency dependence of the Green's
function, susceptibilities, and self-energy. Although this
procedure may at first appear unnatural, it is exactly the
form of cutoff in frequency implied by a discretization of
the corresponding (and in some respects more fundamen-
tal) equations in imaginary time, where all functions are
periodic with period 2P. An important practical advan-
tage to this cutofF scheme is that it allows both frequency

Ck ™'"(k,s)
(14)

EVe use this representation to evaluate the self-energy
Z(k, s„) = E"(k, is„) at the smallest Matsubara fre-
quency, and define an imaginary-frequency approxima-
t, ion to the quasiparticle renormalization factor,

Im Z(k, sp)
aM kT =1—

Gp
(15)

For a I'"ermi liquid, aM(k, T) i is well behaved for T ~
0 and approaches a(k, 0), while for the LL or MFL
a~~(k, T) diverges in this limit. For example, the MFL
theory of Varma et al. has

and momentum convolutions to be evaluated very efIi-
ciently using fast Fourier transforms (FFT's). At the
cost of doubling the number of Matsubara frequencies,
one can also impose a sharp frequency cutoff on the for-
mally periodic Green's function by padding the Green's
function with zeros between the cutoff and twice the cut-
off. We have found no significant difference between the
quasiparticle properties obtained with these two ento%
schemes, and hence we have generally used the former
on account of its computational economy.

The resulting FFT-based algorithm is well suited to
highly parallel computer architectures; our calculations
were carried out on the Naval Research Laboratory
(NRL) Connection Machine. A minor disadvantage of
doing convolutions with FFT's is that the lattice size and
the number of frequency points are restricted to powers
of two. This is particularly significant for the frequency
dimension, because in order to avoid spurious tempera-
ture dependences the calculations must be carried out at
a constant cutoff energy. The cutoff energy is propor-
tional to the product of the temperature and the number
of Matsubara frequencies, and hence we can only extract
meaningful temperature dependences from calculations
at temperatures that differ by powers of two.

AVe have minimized the effect of the high-frequency
cutoff by calculat, ing differences between expressions eval-
uated with the interacting and noninteracting Green's
functions in cases when the latter frequency sums can also
be evaluated analytically without cutoffs. In particular,
we have used this trick for the number density, the ther-
modynamic potential, and the susceptibilities. In order
to ensure that our results for the quasiparticle properties
and thermodynamic potential are cutoff independent, we
have used cutoffs up to 12 times the bandwidth.

Numerical calculations of temperature Green's func-
tions all suffer from a well-known problem of interpre-
tation, because they yield the self-energy at the discrete
Matsubara frequencies c„=(2n+ 1)+T along the imag-
inary frequency axis, while the quasiparticle properties
are defined most directly in terms of the self-energy for
rea, l frequencies. To circumvent this problem we recall
that the frequency-dependent part of the retarded self-
energy has the following spectral representation:
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im 2 (k s'): —Q.' max( ~s'~, T) e(cd —js ~), (17)
with ~, a high-energy cutoff of order the bandwidth and
n a dimensionless coupling constant of order unity. The
integral in Eq. (16) yields

ImZMFL(k& sp)
o

2 arctan(l/7r) (u2 + (xT)2
q (~'+ l)T'

In Fig. 1 we show Z(k, ps)/ upwith k on the Fermi sur-
face in the (10) direction, from calculations with a cutoff
of six times the bandwidth, together with the MFL result
for three different values of the cutoff ( cu, = 8t, 4t, 2t),
with the coupling strength o. adjusted to agree with the
fluctuation exchange approximation at one temperature
(n = 0.42, 0.49, 0.60). The temperature dependence in
the (11) direction is similar. s It is apparent that over
this temperature range the results from the fluctuation
exchange approximation are inconsistent with the MFL
theory (and presumably also with a LL theory) for any
reasonable choice of parameters.

As a further check on the Fermi-liquid character of the
fluctuation-exchange approximation, we have examined
the temperature dependence of the thermodynamic po-
tential obtained from Eq. (6). Figure 2 shows Q(T, p)
from the three lowest-temperature runs in Fig. 1, plot-
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FIG. 2. The thermodynamic potential A(T) plotted vs T
for the fluctuation-exchange approximation with V/t = 8 and
a. cutoff energy of 481. The solid line is a fit to the lowest
temperature points.
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Although these points do show some small curvature,
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FIG. 1. Im Z(e )/c vs T for the fluctuation-exchange ap-
proximation (~ ) with U/t = 8, n —0.53, and a cutoff. en-

ergy of 48t. The points shown are for a. (10) point on the
Fermi surface. The MFL prediction [Eq. (18)] for cutofF en-
ergies ~, = 8t (short dashed), 4t (dashed), and 2t (solid) is
shown for comparison. At each cutoff the coupling strength
was adjusted to fIt the fluctuation-exchange approximation at
T/t = 0.03.

1.5 I
i

I
l

I
l

~
l

~
l

s
l

I

16 32 48 64 80 96 112

Energy Cutoff (units of t)
FIG, 3. The coe%cient of the T term in the thermody-

namic potential as calculated from the Fermi-surface integral
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n(k) = 2T ) G(k, s„)+ 1. (21)

In I"ig. 4 we show our result, for n(k) at T/t = 0.015
with k along the (10) direction. In a Fermi liquid n(k)
is the sum of a continuous incoherent background and a
quasiparticle part described by a Fermi distribution with
Iveight a(k, 0),

n(k) = n;„,(k) + a(k, 0)f((I,). (22)

deviations from a pure T dependence of this mag-
nitude are not unexpected for a Fermi liquid; He
has a comparable mass enhancement and exhibits sig-
nificant finite-temperature corrections at corresponding
temperatures.

For a Fermi liquid, the coefficient y(p) is given by
the same expression as for a noninteracting Fermi gas,
but with the noninteracting single-particle energy g& re-
placed by the (T = 0) quasiparticle energy (k defined in
Eq. (2).ii In terms of the self-energy, this is equivalent
to the followin0; Fermi-surface integral:

a(k, 0)
v(s) —( / ) I~I(, +R, ~ (k 0))I

( o)

We have evaluated this expression using a discrete-
lattice approximation to the Fermi-surface integral and
approximating a(k, 0) by aM(k, T) and Re ZR(k, 0) by
ReZ(k, so). In I"ig. 3 we show this approximation to
y(p), evaluated at T/t = 0.03, as a function of cutoH' en-

ergy, The cutoA' dependence appears to have saturated
at a. cutoK of six times the bandwidth. The approximate

p(p) has a residual temperature dependence similar to
that of Z(k, so)/so ili Fig. 1. Although for a Fermi liquid
the slope of Q(T, p) versus T and the coefficient y(p)
evaluated from Eq. (20) should agree as T —+ 0, we do
not feel confident about extrapolating our numerical re-
sults for either of these to T = 0; the finite-temperature
corrections to these quantities are presumably different
(the difference corresponds roughly to that between sta-
tistical alld dynamical quasiparticle energies ), and their
functional forms are not known. As a crude consistency
check, we note that the value obtained from the two
lowest-temperature points in Fig. 2 is 1.62/t, while the
limiting value of the Fermi-surface integral at T/i = 0.03
is 1 67/t The . agre. ement seems satisfactory in light of
the uncertainties noted above.

Another quantity of both theoretical and experimental
interest is the crystal-momentum distribution function,
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FIG. 4. The momentum distribution function n(k) plot-
ted for k along the (10) direction and Tjt = 0.015. The open
circles are the incoherent part from Eq. (22}.

If v e eva. quate tile quaslpal'tlcle colltl'lbutlon using the
same approximations as we used in Eq. ('20), the cor-
responding approximation for the incoherent contribu-
tioil (opeil syiiibols iil Fig. 4) appeal's to be contlnll-
ous at 1@. This figure provides further evidence for the
quasiparticle interpretation of our results and also warns
against a. naive interpretation of experimentally deter-
mined 1TlolTlentum dlstrlbutlons, such as those extl acted
fro111 positron-annihilation experiments.

Iu conclusion, we emphasize that the results reported
here should not necessarily be interpret, ed as evidence
against, the occurrence of a Luttinger liquid or a marginal
Fermi liquid in the 2D positive-U Hubbard model. We
have simply presented evidence that the self-consistent
propaga. tor-renornzalized fluctuation exchange approxi-
mation leads to conventional Fermi-liquid behavior (at
least well away from half filhng), and hence that the ori-
gin of a Luttinger liquid or marginal Fermi liquid must
be sought in more sophisticated approximations.
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