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Screening in modulation-doped quantum wells: Finite-thickness correction
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The electrostatic potential of a point charge screened by quantum-confined free carriers in a semicon-
ductor heterostructure is calculated analytically, with inclusion of a spatial extension of the screening
charge along the growth axis. The resulting expression is tested by computing numerically the binding
energy of excitons between E2 and H1 subbands in a one-side modulation-doped quantum well, giving

0
values in good agreement with experiment. The finite-thickness correction is 2.1 meV for a 150-A quan-
turn well with a carrier density of 10" cm . It is found that the screening effect can be significantly re-
versed in wide wells with large carrier concentration due to the band-bending effect.

Charge screening is a fundamental issue in the theories
of transport and optical properties of semiconductors,
and the specifics of the screening efFect is related to the
dimensionality of the semiconductor system. ' On ac-
count of the fact that the Thomas-Fermi screening length
for a two-dimensional system is concentration indepen-
dent, it is predicted that in semiconductor heterostruc-
tures and quantum wells (QW's) the screening effect is sa-
turated at high carrier densities. Namely, if the screening
carriers are described by a two-dimensional density of
states, then a Coulomb center cannot be screened out at
any carrier concentration, and a residual and sizable
Coulomb interaction will always remain, and this pre-
view is supported by experimental data, which show that
excitons can be detected in the presence of a high-density
quantum-confined electron gas. ' The bleaching of ex-
citons observed at large carrier densities ' is attributed
to the phase-space filling (PSF) effect. However, PSF
bleaching is only effective for excitons involving filled
subband states, and hence excitons between unoccupied
subbands are always detected at low temperatures.
These excitons are described by a binding energy which is
reduced from the undoped value on account of screening.
Although the screened exciton binding energies have
been estimated experimentally, ' there is some difficulty
in comparing the experimental values to the theory, since
the latter is usually developed within the strictly two-
dimensional limit, or else is not applicable to excitons be-
tween excited subbands, since only the electrostatic po-
tential average over the charge distribution in the funda-
rnental subband is available. ' ' ' '" The purpose of this
communication is to estimate the correction on the
screening effect which follows from the finite thickness of
the screening charge along the growth axis when applied
to carriers in the excited electronic subbands. To achieve
this goal, we consider here the E2-81 exciton binding en-
ergy in a one-side modulation-doped Al„oa& „As quan-
tum well and compare the results with those obtained in
the two-dimensional limit and estimate the finite-
thickness correction. First, the electrostatic potential of
a Coulomb center is calculated in the random-phase ap-
proximation (RPA), whereby the spatial extension of the
E1 screening charge is incorporated via standard varia-

tional wave functions. Second, the resulting potential is
applied to calculate the E2-H1 exciton binding energy as
a function of well width and carrier density.

Consider a semiconductor heterostructure with elec-
trons occupying states in the fundamental E1 subband,
and a positive elementary charge at some position zo in
the growth axis. The electrostatic potential q&(r) of the
Coulomb center is described by the Poisson equation (in
cylindrical coordinates and SI units here)

V p(p, z, zo)= —(4m'/e)[p;„d(p, z, zo)+e5(p)5(z —z )],

where p;„d is the screening charge, induced by the positive
charge, and e is the dielectric constant, taken to be posi-
tion independent throughout the structure. Taking ad-
vantage of the axial symmetry, it is convenient to Hankel
transform' y and p;„d to obtain

8 y(k, z, zo) —k (p(k, z, zo)
az2

p;„d(kzzo)+ 5(z —zo) . (2)

If the confinement of the E1 electron along the growth
axis is less than =2a~, where az is the bulk exciton Bohr
radius calculated with the transverse exciton mass, then
to a good approximation' ' the positive charge will not
modify the electronic wave-function component in z, and
in the random-phase approximation the induced charge
will be given by' '

E'

p;„d(k, z, zo) = — sf (k/2kF )yz&(z)(p(k, zo) ),2''K

where the E1 subband is assumed parabolic, described by
an effective mass m *, s =2sce m '/eh' is a screening con-
stant,

(y(k, zo) ) = fy,', ( )qz(I, z,z, )dz,

and at T=O K
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sf (k /2ki; )P (k, zo)P (k, z)

k +sf (k /2k'. )(P(k))
(4)

1, k &2k~

1 —[1—(2k~/k) ]', k &2k~,

where k~ is the Fermi wave vector. The factor f (k/2k~)
accounts for the finiteness of the Fermi surface and en-
sures the absence of screening when the subband is empty
(that is, when k+=0). Equation (3) is identical to the
semiclassical Thomas-Fermi approximation if the factor
f(k/2k~) is substituted by unity. Under condition (3)
we obtain the general solution to Eq. (2):

ve —I I~ —~oi
q)(k, z, zo) = e

ek

where P(k, z)= f e "~' '~yz, (z')dz', and the average is
taken as before.

In order to incorporate the finite thickness of the
screening charge into our model, the particle density
yzi(z) can be approximated by standard variational wave
functions. For low carrier densities, when the band bend-
ing is small, a good approximation is

(2/L)' cosnz/L, ized L
0, [zf &L,

where parameter L is adjusted to obtain the best agree-
ment with the Hartree wave function. For this wave
function we obtain

and

1, k=0

senh(kL/2)e
—

I I kAO, Izl (L/2
P k, z =

2 [1+2(kL /2m ) cos mz/L —e " cosh(kz)], kAO, ~z~ & L /2
kL,

1, k=0
(3 I3)/kL ——2(P/kL) (1—e " ), k&0,

where P=[1+(kL/2m) ] . For higher carrier densities, when the band bending is significant, the modified Fang-
Howard wave function can be used (Ref. 2, pp. 166 and 186):

Nzi, exp(ki, z/2), z (0
N(z +zi, ) exp( bz/2), —z & 0,(z)= '

where zi, =2/(b+ki m„/mi, ), N=(b /2)'~ [1+hz', + ,'b zi(1+b/—ki, )] '~, ki, =2(2m', VI, )'~ /fi, m and mi, are
the electron efFective mass in the well and in the barrier, respectively, and Vb =1.247 X0.65x eV is the conduction-band
discontinuity at the Al Gai As/GaAs interface. In order to obtain the best agreement with the Hartree wave func-
tion, parameters b and x were adjusted. For the modified Fang-Howard wave function the result is

zi, c(b+kb)
P(k, z)=N e ' (1—2k', z)+ z&0, k=kb,

2kb (b +ki, )
T

P(k, z)=N + c(b+k)
(b+k)'

2kzi,

(ki, —k)(ki, +k)

P(k, z)=N e

P(k, z)=N

zi, 4b z +6b z (2bzI, +1)+3(2hz+1)(2b zi, +2bzi, +1)
k„+b 12b

zi, c(b —k) q 2[ax( ~+z) +al(zb+z)+ao]—kz —bz

k, +k (b —k)

z~0, k=b,

z&0, k&b,

4

ki, ki, +k
2zi c(b+k) zi", 2(2b+k)zi, (8b +9bk+3k )(2b zI, +2bzI, +1)

(b+k) (kq+k) b(b+k) b (b+k) 2b (b+k)

where a0=2k(3b +k )/(b+k), a, =4bk(b —k)/
(b+k), az=k(b k) /(b+k), and c—(x)=x z&~+2xzi,
+2.

Given the screened electrostatic potential y(k, z, zo),
we can compute the binding energy of an exciton between

excited subbands (say, subbands E2 and H 1) by finding
the fundamental eigenvalue E of the equation' '

r—fi
p + V(p) EP(p) =0, —

2pp Bp Bp
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where

V(p)= —e f k dk Jo(kp)y(k z zo)yEz(z)yH, (zo)dz dzo
(6)

and p is the in-plane exciton reduced mass.
Now the calculation procedure can be described.

Wave functions HEI(z), ATE&(z), and y»(z) were ob-
tained in the Hartree approximation as described in Ref.
15. Limiting ourselves to the Hartree approximation
means that the exchange-correlation correction to the
subband particle densities' has not been included in our
model, however, for n-type quantum wells in the electric
quantum limit this correction is small and will not
significantly alter the Hartree result (Ref. 2, p. 165).
Wave function yE, (z) was then approximated by a best-fit
analytical expression to give the electrostatic potential
(4), and gzz(z) and yHI(z) were used to calculate integral
(6) by Gaussian quadratures, ' and finally the E2-H 1 ex-
citon binding energy was calculated by a numerical solu-
tion' to (5). In the calculations, we consider a one-side
modulation doped GaAs-Al Ga, As QW with
Alp 3Gap 7As barriers, the dielectric constant was taken
to be 12.6, the electron mass (0.07+0.08x)mo, the in-
plane H1 hole mass 0.25mp, ' ' and the H1 mass along
the z direction (0.38+0. lx)mo, where x =0 in the well
and x =0.3 in the barriers. The conduction-band offset
was taken to be 0.65 KEG, where KEG =1.247x eV.

Figure 1 shows the exciton binding energy as a func-
tion of carrier density obtained in the Thomas Fermi ap-
proximation, in the two-dimensional limit [that is, by tak-
ing yz, =5(z) at the inverted interface] and finally the re-
sult of (4). For larger carrier densities than shown, the
E2 subband starts to be populated, and the PSF mecha-
nism of exciton bleaching would have to be included. It
can be seen from Fig. 1 that the finite thickness of the
screening charge enhances the screening effect, and this is
expected since the larger the well, the closer we are to the
bulk situation, where we know that the binding energy
vanishes at large carrier concentration. The finite-
thickness correction is quite substantial at any significant
doping level [for instance, 2.1 meV (2.3 meV) at a carrier
density of 10"cm for L, =150 A (L, =200 A)]. More-
over we can see that for a one-side modulation-doped
QW, there is a critical carrier density (around 10"cm ),
above which the screening strength undergoes a turning
point. The latter effect is a consequence of the spatial
separation of the E1 electron and the E2-H1 exciton due
to the band bending [as can be seen from (3), the screen-
ing charge density decreases when the H1 hole moves
away from the El electron). This efFect should be more
pronounced in wider wells, where the spatial separation is
stronger. In Fig. 1(b) the E2-Hl binding energy for a
200-A well, which can be considered as an upper limit for
the reliability of the approximations used here, is shown.
For the largest carrier density allowed by the electric
quantum limit, the E2-H1 binding energy obtained is
around 2.0 meV (3.5 meV in the two-dimensional limit),
which compares to the experimental value of 1.6+0.2
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FICx. 1. Binding energy for E2-H1 excitons in a one-side
modulation-doped QW (a) L, = 150 A, (b) L, =200 A. Dotted
line is the Thomas-Fermi result; dashed line is the RPA result in
the two-dimensional limit; solid line is the RPA result with ac-
count of finite thickness of the screening charge.

10
meV for a QW of the same parameters.

In conclusion, we have shown that the finite-thickness
correction on the screening effect is significant, and this
correction was calculated for the E2-H1 exciton binding
energy for a one-side modulation-doped QW. On increas-
ing the carrier density in the E1 subband, the screening
effect can be significantly reversed due to band bending
and spatial separation of the screening charge and the ex-
citon.

The author is grateful to Professor K. Bajaj for a criti-
cal reading of the manuscript. This work was supported
by Conselho Nacional de Desenvolvimento Cientsfico e
Tecnologico, Project No. CNPq. 306335/88-3.



BRIEF REPORTS 3343

T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1982).

G. Bastard, 8'aue Mechanics Applied to Semiconductor Hetero-
structures (Les Editions de Physique, Les Ulis, 1988), pp. 166
and 204—212.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Adv.
Phys. 38, 89 (1989).

4J. A. Brum and G. Bastard, Phys. Rev. B 30, 905 (1984).
~H. N. Spector, J. Lee, and P. Melman, Superlatt. Microstruct.

1, 149 (1985).
~G. D. Sanders and Y. C. Chang, Phys. Rev. B 31, 6892 (1985).
~M. H. Meynadier, J. Orgonasi, C. Delalande, J. A. Brum, G.

Bastard, and M. Voos, Phys. Rev. B 34, 2482 (1986).
C. Delalande, G. Bastard, J. Orgonasi, J. A. Brum, H. W. Liu,

and M. Voos, Phys. Rev. Lett. 59, 2690 (1987).
H. Yoshimura and H. Sakaki, Phys. Rev. B 39, 13 024 (1989).

~~R. Stepniewski, W. Knap, A. Raymond, G. Martinez, J. C.
Maan, B.Etienne, and K. Ploog, Surf. Sci. 229, 519 (1990).
F. Berz, Semicond. Sci. Technol. 5, 572 (1990).
J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1962), p. 77.

G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Phys.
Rev. B 26, 1974 (1982).
G. Duggan, Phys. Rev. B 37, 2759 (1988).

~~A. B. Henriques and E. C. Valadares, Superlatt. Microstruct.
10, 2 (1991).

~W. H. Press, B. P. Flannery, A. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes (Cambridge University Press,
New York, 1987), pp. 121—126.
X. L. Zheng, D. Heiman, and B. Lax, Phys. Rev. B 40, 10523
(1989).


