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Time-dependent approach to resonant tunneling and inelastic scattering
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A time-dependent approach is applied to the resonant-tunneling problem. The time dependence of the
accumulated charge and the tunneling current are calculated. Special attention is given to the eftect of
inelastic scattering on the resonant-tunneling process. The coherent and incoherent contributions to the
total current are found, and are shown to modify it, sometimes in an unexpected manner.

The tunneling of carriers through potential barriers is a
very important and well-studied quantum-mechanical
phenomenon. It is remarkable, however, that the process
of penetration through double-potential barriers—
resonant tunneling —received almost no attention until
the seminal work of Tsu and Esaki, ' which has stimulat-
ed intensive theoretical and experimental work on the
subject. Nevertheless, some fundamental questions con-
cerning the nature of carriers transport by resonant tun-
neling remain to be settled. Two such questions are the
role played by inelastic scattering and the time evolution
of the process.

Usually resonant tunneling is treated in a time-
dependent framework using the transfer-matrix tech-
nique. This approach starts with a free wave at
infinity impinging on a double-barrier potential that traps
it in the region between the two barriers. The trapped
wave undergoes multiple rejections off the two barriers.
As a result the total transmission probability peaks at
certain energies which correspond to the quasistationary
states of the double-barrier potential. The accounting of
multiple reAections in this framework is a rather delicate
procedure, especially when inelastic processes randomize
the phases between them. Furthermore, it is hard to
reconstruct the time development of the system. There-
fore, there are convicting descriptions of the transport
through the structure, and different predictions re-
garding some measurable quantities, like the charge
buildup due to the carrier trapping.

Actually, the resonant state resembles a bound state
more than a scattering state. In fact, the bound-state
wave function in the potential well between the two bar-
riers already includes all multiple refiections of the
trapped wave. It is therefore very attractive to build up
the resonant state from the bound-state wave functions
rather than from free waves propagating back and forth,
thus avoiding the need to account for the multiple-
reAections terms. Such an approach has been proposed
in Refs. 9—11 for treating the decay of a quasistationary
state, and indeed was shown to be much simpler for ap-
plications than other techniques. An advantage of this
approach is that it also directly reproduces the time
dependence of a system during the tunneling process.

In this paper we extend this time-dependent approach
to the resonant-tunneling problem. We find the time
dependence of the accumulated charge and the tunneling

current. Special attention is given to the role of inelastic
processes which cause the phase randomization in the
resonant tunneling. We calculate explicitly the coherent
and incoherent contributions to the total current and
show that these inelastic processes always increase the to-
tal current through the structure.

To demonstrate this approach we start with the prob-
lem of tunneling from a narrow quantum well to continu-
um through a single potential barrier, Fig. 1. The quan-
tum well, on the left side, contains only one level and the
continuum is represented by a large well to the right
which contains very dense levels, such that when
I.z —+ ~, we have a true continuum. We have shown '
that the time evolution of the system can be expressed in
terms of an effective wave function g(t)=(bo(t), bR(t)).
Here bo(t) is the probability amplitude to find the system
at time t in the energy level Eo corresponding to the
eigenstate 4&o(x) of the narrow-well Hamiltonian, where
the barrier thickness is taken to be infinite. The vector
bR(t) =(bR, . . . , bR ), where bg is similarly defined as the
probability amplitude to find the system at time t in the
energy level EP corresponding to the eigenstate y (x) of
the right large well Hamiltonian, where the barrier thick-
ness is again infinite. Then the time dependence of f is
given by the following effective Schrodinger equation:

d bo(t) Eo QR bo(t)

bR(t) Q„HR bR(t)

where (HR)ij =E)5;I, QR =(&R, . . . , QR) is a row ma-
trix, and QR is the transposed (column) matrix. A~R is
the coupling between the level Eo in the narrow well and
the level Eg in the right well. For Eg =Eo the coupling
Q~z is given by
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FIG. 1. Tunneling from the quasistationary level Eo to con-
tinuum.
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a
Q~ = 4o(xo)g (xo), (2)

where xo is some point between the wells (the final result
is not sensitive to the choice of xo), and
a=[2m(Vo E—o)]' . If E)WEo there is an additional
correction term proportional to the integral over the
overlap of No and g~. It is of the order cQz /Vo, where
s=E) Eo—. If s-Q~it this term can be neglected. Note
that we have adapted units where A= 1.

Solving Eq. (1) (by employing the Laplace transforma-
tion) one obtains in the continuum limit (L~ ~0D) that
the probability to find the system in the small well de-
creases exponentially: ~b o(t)~ = exp ( —I ot), with the ex-
ponential factor I o=2ir[Qz(Eo)] pz(Eo), where pz(E)
is the density of states in the right well, and Q~ (Eo )—:QJ~

for Eg =Eo, Eq. (2).
Let us now apply our approach to the problem of reso-

nant tunneling through the double-barrier potential, Fig.
2(a). As before we represent the continuum at the two
sides by two large wells, which contain a dense spectrum
of energy levels, Ef and E~ for the left and right wells,
respectively. The narrow quantum well, which is formed
between the two barriers, contains only one level, Eo. As
in the previous case the time dependence is given by an
effective Schrodinger equation

bL(t) HI Ql 0 b~(t)
i bo(t) = QL Eo Q„bo(t) . (3)

~ d
dt

b, (r) 0 Q', H, b, (r)

Comparing Eq. (3) to Eq. (1) we see the additional terms
related to the left (L) well: bI =(bl', . . . , bg ) is the prob-
ability amplitude to find the system in the left well,
(HI ), =Ej5;, and QL = ( QL, . . . , QL ) represents the
coupling between the levels Ej in the left well and the
level Eo in the narrow well.

Consider the electrons initially localized in the left well
with the occupation function f(E)). First we look for

Ea

the charge accumulated in the small well during the tun-
neling. We denote B o(t) as the probability amplitude for
an electron which was initially in the left well at the level
j, to be found in the narrow well at time t. [B~.o(t) =ho(&)
is the solution of Eq. (3) with the initial condition
b~(0)=5,J, bo(0)=0, bz =0. ] We can easily show that
the accumulated charge in the narrow well at time t is
given by

o(&)= g f(E))(EF Ej)l—B,o(t) ',
l

(4)

where q and m are the electron charge and mass, and EF
is the Fermi energy. The factor m(E~ Ej )lm—. appears
from the integration over the transverse electron momen-
ta. Replacing the sum by an integral for the dense elec-
tron states [g .~ Jp(E)dE] one obtains from Eqs. (3)
and (4)

o(t)=
2 J dE f(E)(E~ E)—

277 (E E) +—y
X I 1 —2cos[(Eo E)t]e —~'+e i'] .

Here y = I /2, where

r=r, +r,
~l QL (Eo )PL ( Eo ) +QR (Eo )PR (Eo ) ]

is the total width of the quasistationary state Eo due to
tunneling into the left and right large wells. The energy
shift is included into Eo, and we assumed that Q(E) and
p(E) vary slowly near the resonance.

To find the current we use the following procedure:
We first calculate the probability amplitude B.k(t) for
transition from the level Ef in the left well to the level
E~ in the right well. Then we calculate the accumulated
charge Qz (t) in the right well according to Eq. (4), where
the amplitude B.o is replaced by B &, and we sum on all
j's and k's. The current which Aows in the right well is
defined as J(t)=dg~(t)ldt. Carrying out the calcula-
tions we get

EF I I
J(t)= I dE f(E)(E~ E)—

2& (E Eo) +y—
X I 1 —2 cos [(Eo E)t]e r'+e—

(7)

EL' Eo

Eg k
R

It can be seen that in the limit of t ~ ~, Eq. (7) coincides
with the result for the current obtained in the transfer-
matrix approach.

If all the levels in the left well are populated
[f(E)=1], and the resonant level Eo is not close to the
integration limits, one can integrate Eqs. (5) and (7) and
obtain the accumulated charge and current densities

qm (Ez Eo ) I Io(t)= (1—e '),
7T r

FICx. 2. Resonant tunneling through the double-barrier po-
tential (a) without and (b) with inelastic scattering.

qm(EF —Eo) I I I'~
J(&)= (1—e ') .

'IT r (8b)
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It is interesting to note that the time development of the
system is governed by the total decay width of the level
Eo. However, the ratio between o(t) and J(t), which is
commonly assumed ' to be the total tunneling time 1/I
is in fact given by o /J= 1/I ~, i.e., it is related to the
exit barrier only. This was indeed observed in recent ex-
perirnent. '

We now apply our technique to analysis of the interest-
ing problem of the effect of inelastic scattering on the
resonant-tunneling process. To approach this problem it
is very important to find a model which on the one hand
is quite general to bear essential features of inelastic

events and on the other hand can be tested experimental-
ly. Such a model is shown in Fig. 2(b). Here the narrow
well contains two levels, an upper one Eo and a lower one
Eo. An electron which tunnels from the large left well
into the upper level Eo can either relax inelastically into
the lower state and then tunnel out into the right well, or
tunnel out directly into the right well. We shall assume
in the following that the inelastic process is phonon emis-
sion, but the analysis holds for any inelastic process.
Similar to the previous case the time behavior of the sys-
tem is given by an effective Schrodinger equation' ' "

bL (t)

bo(t)

i b~(t). d
dt

co(t)

HL QL 0

QI Eo Q~

0 0 h 0

0 0 0

—ph

Eof+H„h

0,'OI H~+H h

bL (t)

bo(t)

b~(t)

co( t)

c„(t)

(9)

where co =—Ico } and cz =—Icz'} are the probability ampli-
tudes to find the electron at the level Eo in the narrow
well and at the level E~ in the right well, respectively,
where the phonon

~
l ) with the energy E& is emitted.

Q h
=—IQ„'h} couples the two levels of the narrow well by

the emission of a phonon
~
l ), and is given by

Q~h = ( @0,l l V~h I @o0 ), where V h represents the
electron-phonon interaction. [The transitions
(@o,k ~ Vzh ~@o,k') which influence the final result only
to the third order of V „are neglected in Eq. (9).] H~h
and II~ are diagonal matrices with the matrix elements cI
and E~, respectively, and I is the unit matrix. The sub-
matrix 0 zOI is obtained from the unit matrix by replac-
ing each diagonal element by Qz =(Qz, . . . , Q& ), and
represents the coupling of the levels Eo and EI', by tun-
neling [Eq. (2)].

Notice that Eq. (9) takes into account only the dom-
inant inelastic processes (the relaxation to the level Eo) in
which the electron remains in the quantum well. Anoth-
er process is the so-called phonon-assisted tunneling,
where the electron emits a phonon and makes a transition
from the narrow-well state ~40, 0) to a continuum state
~y. , l ). This process is very weak since it is proportional
to (yj, l

~ V~h ~ @0,0)-Q~ Q„h and we neglect it. In fact,
it was considered in detail in Ref. 4 and was shown to
have no effect on the total current.

Solving Eq. (9) with the same procedure as in the previ-
ous case we can determine the accumulated charge and
the tunneling current in this system. The current J(t)
through the structure can be written as
J(t)=J, (t)+J2(t)=(dQ, /dt)+(dQ2/dt), where Q, and
Q2 are the charges accumulated in the right well due to
tunneling from the levels Eo and Eo, respectively. For a
case where all the levels in the left well are populated
[f(EL )= 1] one obtains

qm (EF Eo)—
Ji (t) = r, r,

(1—e ), (10a)

qm (EF Eo)—J,(t)= r, r,„
I~

(10b)

where I z
= I L + rz + I ~h. Here r~h =2m.

~
Q„"h

~ p~h( s& ) is
the inelastic width, p h(E) is the density of photon states,
and cI =Eo —Eo. Therefore, the total steady-state
current at t ~ ~ is given by

J=J,+~2= qm(E, E, ) r, (r, +—r,„)

and is independent of the tunneling width I R. Note,
however, that if I ~ =0 it follows from Eq. (10b) that
J2(t) —=0. If the levels in the left well are not fully occu-
pied we obtain a more general result

J=
2

dE E EF —ETE,
271

where

r, (r„+r,„)
T(E)=

(E—Eo) +(I r/2)

(12)

is the total transmission through the structure. Compar-
ing Eqs. (11) and (12) with Eqs. (7) and (8) in the limit of
t ~~, one finds that inelastic processes modify the reso-
nance current by replacing the outgoing width I z by the
total outgoing width I ~ + I p„.

Our analysis clarifies the essential nature of true phase
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randomizing inelastic events in electron transport.
Furthermore, it can help us assess their influence on the
total current in resonant tunneling. Let us first consider
the surprising absence of I tt dependence in Eqs. (11) and
(12). It indicates that the total stationary current J does
not depend on subsequent processes which happened
after the electron relaxation to the level Eo. The reason
is the high density of final states of the electron-phonon
system [coI, which makes the process irreversible and
therefore disconnects the inelastic flux from the initial
channel. This irreversibility is the essential characteristic
of a true incoherent process. In fact, the emission of a
phonon is just an example for any transition inside the
well with a high density of final states, such as scattering
by irregularities in the potential leading to energy
transfer into transversal motion. It is remarkable, how-
ever, that the I"R dependence does nevertheless appear in
the transient behavior of the tunneling current J(t), as is
evident from Eqs. (10).

Let us assess the influence of inelastic processes on the
total current. An important consequence of Eq. (13) is
that the integrated transmission

(14)

[and hence the total current, Eq. (11)] always increases
with I „&. This finding is in contrast to a commonly as-
sumed sum rule that the integrated transmission is in-
dependent of the inelastic width. The di6'erence origi-
nates from the phenomenological assumption of Ref. 3
that only the transmitted part of the inelastic processes
should be included in the total transmission. '

Finally, to demonstrate the application of our analysis
to the practical case - of the double-barrier resonant-
tunneling diode, let us consider two extreme cases,
I h((rl, l z —the so-called coherent limit (J„h), and
I h)) I L, I z —the so-called incoherent (sequential) lim-
it (J;„,). It is evident from Eq. (11) that
J„h—rLI it/(rr. +I z), whereas J;„, is always —I I.
Therefore, when I R » I I, as is the case in the resonant-
tunneling diode under bias, Fig. 2(b), J„h=J;„„and in-
elastic scattering does not change appreciably the total
current. However, when I L » I R we get that J«„—rR
while J;„,—I I . It follows that even though the transmis-
sion peak T(Eo) of Eq. (13) is strongly suppressed in the
incoherent limit, the total current in that limit increases
such that J;„,»J«h. Such a considerable increase of the
resonant-tunneling current in the presence of inelastic
scattering can be verified experimentally.

R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
~M. Buttiker, IBM J. Res. Dev. 32, 63 (1988).
3A. D. Stone and P. A. Lee, Phys. Rev. Lett. 54, 1196 (1985).
4L. I. Glazman and R. I. Shekhter, Zh. Eksp. Teor. Fiz. 94, 292

(1988) [Sov. Phys. —JETP 67, 163 1988)]; N. S. Wingreen,
K. W. Jacobsen, and J. W. Wilkins, Phys. Rev. Lett. 61, 1396
(1988);Phys. Rev. B 40, 11834 (1989).

5T. Weil and B.Winter, Appl. Phys. Lett. 50, 1281 (1987).
B.Ricco and A. Ya. Azbel, Phys. Rev. B 29, 1970 (1984).

7E. Mendez, in Physics and Applications of Quantum Wells and
Superlattices, edited by E. Mendez and K. von Klitzing, Vol.
170 of 1VATO Advanced Study Institute, Series 8: Physics
(Plenum, New York, 1987), p. 159.

8J. F. Young, B. M. Wood, G. C. Aers, R. L. S. Devine, H. C.
Liu, D. Landheer, M. Buchanan, A. J. SpringThorpe, and P.

Mandeville, Phys. Rev. Lett. 60, 2085 (1988).
S. A. Gurvitz and G. Kalbermann, Phys. Rev. Lett. 59, 262

(1987);S. A. Gurvitz, Phys. Rev. A 38, 1747 (1988).
S. A. Gurvitz and M. S. Marinov, Phys. Rev. A 40, 2166
(1989);Phys. Lett. A 149, 173 (1990).
S. A. Gurvitz, I. Bar-Joseph, and B. Deveaud, Phys. Rev. B
43, 14703 (1991).

~ T. K. Woodward, D. S. Chemla, I. Bar-Joseph, H. U.
Baranger, D. L. Sivco, and A. Y. Cho, Phys. Rev. B 44, 1353
(1991).
if the total inelastic-scattering term [Eq. (6) of Ref. 3] is in-

cluded, one gets an expression for T which is identical to our
result for the symmetric barriers case, Eq. (12)
(I & =I I =I, /2, where I, is the phenomenological elastic
width of Ref. 3).


