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We study the macroscopic and mesoscopic transport properties of granular metal films by using a
quantum-percolation model. A granular metal film with metal fraction p is simulated by conducting
grains randomly occupying the sites of a square lattice with probability p. Electrons are allowed to hop
between nearest-neighbor grains. This model incorporates the granular property of a film and enables us
to study the magnetoconductance in both the weak- and strong-scattering regimes. The calculated mag-
netoconductance exhibits a sign change as the temperature varies, as well as oscillations as a function of
the applied magnetic field. Both are consistent with some recent experimental data. The universal con-
ductance fluctuations and resonant-tunneling characteristics are also studied systematically in both the
extended and the localized regimes of mesoscopic samples. At the percolation threshold, the localiza-
tion behavior is studied by using both the finite-size-scaling method and the resonant-tunneling method.
Our results show no evidence for superlocalization. The effect of a magnetic field on localized wave
functions at the percolation threshold is also examined.

I. INTRODUCTION

Granular metals are metal-insulator composites
formed by cosputtering or coevaporation. They are
mostly in the form of thin films <1 pm in thickness.
Over the past two decades, the electrical transport prop-
erties of granular metal films have been a topic of active
experimental and theoretical study.! In the dielectric re-
gime, where the metal grains are dispersed in an insulat-
ing matrix, electric conduction is by the hopping mecha-
nism in which the charge carriers are transported from
grain to grain via thermally activated tunneling.”> In the
metallic regime, on the other hand, electrons can per-
colate directly through connected metallic networks so
that the conductivity is expected to exhibit metallic be-
havior. However, what we have actually observed show
significant deviation from the usual metallic behavior. In
particular, it was found that at low temperatures, i.e.,
T <10 K, all granular metal films exhibit the behavior of
weakly increasing resistance as the temperature is de-
creased.* Also, the low-temperature magnetoresistance
was found to have the opposite sign as that of metal.
These behaviors have been interpreted as the manifesta-
tions of electron localization effects.>® The outline of this
interpretation is easy to appreciate and is briefly de-
scribed below.

Since by definition a granular metal is a dirty metal,
election-impurity scattering is inherent and important in
these materials. A direct consequence of multiple
electron-impurity scattering is the well-known diffusive
transport behavior. In the past decade, however, it was
found that wave diffusion differs from classical particle
diffusion in one important aspect, i.e., the coherent back-
scattering effect.® As a general wave phenomenon, what
this effect states is that as long as all the scatterings are
elastic and time reversal invariant, the scattered wave in
the 180° backward direction is always coherent and
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should therefore exhibit constructive interference. As a
result, scattering in the backward direction is twice as
probable as in the other directions and can thus lead to a
diminished diffusion constant (since a wave has less
change of moving forward than backward). This effect
has indeed been seen experimentally for light scattering
from random media.’

The magnitude of this coherent backscattering effect
depends on several factors. It is proportional to the
scattering strength of the impurities. When the scatter-
ing is strong (negative) correction to the diffusion con-
stant is correspondingly large. When the correction be-
comes equal in magnitude to the classical diffusion con-
stant, the electron (or the wave) would be localized. The
effect also relies on the time-reversal invariance of the
medium. Thus for a uniformly moving medium or a
medium with an externally applied magnetic field the
coherent backscattering effect can be reduced, which im-
plies an increase in the conductivity. This is the source of
the negative magnetoresistance in granular metals. In
addition, the effect’s magnitude is also dependent on the
sample size. In general, for a 2D weak-scattering sample
of size L XL the renormalized conductivity (which is
proportional to the diffusion constant by the Einstein re-
lation) is given by>®
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Here o is the normal-metal conductivity, / denotes the
elastic-scattering, mean free path, e the electronic charge,
and # Planck’s constant. The sample-size dependence
can be directly translated into temperature and
magnetic-field dependence through the following argu-
ment. At finite temperatures, an electron has an inelastic
scattering time 7, which is inversely proportional to a
power of the temperature T as 7, < T 7, where p ~1-3.
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Since the coherent backscattering effect relies on all the
scatterings being elastic, its sample size may be defined by
a dephasing length L, <1/ Dri,=V/1l;, /2, where D, is
the classical diffusion constant and I;, =v7;, is defined as
the inelastic scattering length. By using the dephasing
length in Eq. (1), one immediately gets a 0 <InT temper-
ature dependence for the correction term. This is usually
the explanation for the observed increasing resistance for
decreasing T in granular metals. In words, what it means
is that as T decreases, L, increases, which implies a
larger coherent backscattering effect and thereby a small-
er diffusion constant. In similar manner, the application
of a magnetic field creates a magnetic length
Ly=V'hc/4eH, where ¢ denotes the speed of light.
When Ly becomes smaller than the dephasing length L,
L, becomes the relevant sample size in Eq. (1). That
means

2 H
Sc(H)= 27721‘i1n ‘Ho ] s (2)

where Hy=hc /4eL§, is the characteristic magnetic-field
strength at which Ly =L,.

While the localization theory can give qualitative ex-
planations to the observed transport phenomenon in
granular metals, yet all the quantitative theories to data
have been based on the assumptions of weak scattering
and weak magnetic field. In granular metals, as the
volume fraction of insulator increases, the validity of
such weak-scattering assumption becomes increasingly
dubious. Thus, extending the theory into the strong
scattering and strong field regimes is one motivation for
this work. Another important motivation is to study the
mesoscopic transport behavior in 2D granular metal
films. Mesoscopic is a term describing the material prop-
erties on a scale intermediate between the molecular and
the bulk. Here it denotes the electrical conduction be-
havior at a sample size L <L4. The important distinc-
tion of this transport regime is that all the scatterings are
elastic so that there can be effects due to phase interfer-
ence of the electronic wave functions. Universal conduc-
tance fluctuations is an example of such an effect?® recent-
ly found in mesoscopic conducting samples. In granular
metals, the ability to continuously vary the amount of
geometric randomness offers a new angle to study such
phase interference effects.

In this work a granular metal film is simulated by a 2D
quantum percolation model in which the sites of a simple
square lattice are randomly occupied by metallic grains
with a probability p, where p = p.=0.593 to ensure the
connectivity of the metallic network. Electrons are al-
lowed to hop only between nearest-neighbor grains. The
empty sites are regarded as insulating. Thus the random-
ness of the model arises purely from its geometry. By us-
ing Green’s function method and the multichannel Lan-
dauer formula,’ the conductance of a finite sized model
may be explicitly evaluated. For macroscopic conduc-
tance the calculated conductance is averaged over many
different configurations. Our results indicate deviations
from the weak-coupling predictions of Eq. (1) as well as a
sign change in the magnetoresistance as temperature is
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varied. As a function of the magnetic field, the magne-
toresistance also exhibits weak oscillations when the mag-
netic length becomes comparable to the granular particle.
These results are consistent with some recent experimen-
tal data.* The properties of Anderson localization transi-
tion of this quantum percolation model has been studied
by series expansion'® including the magnetic field effect.!!

For mesoscopic conductance, on the other hand, it is
the single configuration result that is important. Since
the configurations are random, the object of our study is
therefore the distribution of the conductances. We find
three regimes. In the ballistic and weakly scattering
transport regimes, i.e., sample size L <<localization
length £, the distribution is normal, and the root-
mean-square conductance fluctuation is larger than e?/h.
In the very localized regime, i.e, L >>localization length,
the distribution is log-normal and the conductance fluc-
tuation is small. Between these two limits there is a tran-
sition regime in which the distribution of conductances is
between normal and log-normal. For 10/ <L <§,, i.e.,
in the transition regime and part of the normal-
distribution regime, the root-mean-square fluctuation of
the conductances is constant as a function of L and on
the order of e?/h. By definition, this is the regime of
universal conductance fluctuations. Our results therefore
suggest experiments on granular metal films to verify the
existence of the three distinct regimes by looking at con-
ductance fluctuations and their variation with tempera-
ture, magnetic field, and p.

In what follows, Sec. II describes the quantum percola-
tion model and the method of calculation. Results on
macroscopic conductance and comparison with experi-
ments is presented in Sec. III. Mesoscopic conductance
behavior is presented in Sec. IV, followed by concluding
remarks in Sec. V.

II. MODEL DESCRIPTION AND THE
CALCULATIONAL APPROACH

Consider a simple square lattice in which a fraction p
of the sites is occupied by metal grains. We will only
consider the regime p >p.=0.593 so that the metal
grains always form a connected network. In the presence
of a perpendicular magnetic field the Hamiltonian of the
quantum percolation model can be written in the follow-
ing tight-binding form:
H= 3 ¢]i)(i[+1 Sexp i l, @

i ]

2mi fj
—— J A-dl
Lij ‘

o

with

0 if site i is occupied by a metal particle ,
€= S . .
' oo of site i is occupied by the insulator ,

where ¢, denotes the unit of quantum flux, Ac /e, A is the
vector potential, ¢ is the nearest-neighbor hopping matrix
element, taken to be unity in this work, and [i,j] denotes
the nearest-neighbor site indices of a square lattice with a
lattice constant a taken to be the typical granular particle
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size ~100 A. In our numerical calculations the length is
calibrated in units of a. In Eq. (3) the first term is the site
energy term. Here we assign infinite site energy to insula-
tors, which would prevent electrons from hopping to
such sites. The second term describes nearest-neighbor
metal grains. Here the applied magnetic field can intro-
duce a position-dependent phase to the hopping matrix
element, obtained by using the “Peierls substitution.”1?
This model can be easily generalized to models of finite
thicknesses, so that 3D effects may be considered.

In order to calculate the conductance we connect two
sides of a sample of size L X L by perfect leads, i.e., p =1.
The conductance is evaluated by using the multichannel
Landauer formula,’ i.e.,

L Ly

0

2T, Evi_l
i=1 =1

L, >
S (1+R,—T; ), !

i=1

4

Eetm

where L, denotes the number of propagating channels in
the leads. Hard wall boundary condition is chosen along
the transverse direction y with discrete transverse
momentum index k,=wn/(L+2)(n=1,2,...,L+1).
The real solutions of k, in the following dispersion rela-

tion determine the number of allowed channels L :
%=2[cos(kxa)+cos(kya)]. (5)

A factor of 2 due to spins has been included in Eq. (4).
The values of T; and R; are related to the transmission

1

and reflection matrices by

Loy

T,= 3 ’tijlz s (6a)
ji=1
Ly

R;,= 2 lr,'j|2 » (6b)
=1

which in turn are calculated numerically by using recur-
sive Green’s function technique,'>* with

|t;12=v,0,|GH(L +2,0)[? (7

ij|
and
|7 12=1iv/v,0,G,f (0,00—8,,1%, (8)

where G,;"(n,n’) is the retarded Green’s function with
source at n’ of the x coordinate of channel j and receiver
at n of channel i. Positions O and L +2 are located inside
the incoming and outgoing sides of the leads, respective-
ly. The channel velocity v in Egs. (4), (7), and (8) is given
by OE /dk, evaluated at k,(i). Technically, we have as-
signed zero value to any hopping matrix element connect-
ing to empty site(s). Thus the infinite site energy ap-
peared in Eq. (3) becomes irrelevant in the calculation.
Here we would also like to point out that, in the
strongly localized regime, the recursive Green’s method
used in our calculation of G;;j(n,n’) can also be used to
probe these wave functions which peak near the center of
the disordered medium. In order to probe these func-
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tions, resonant-tunneling method!® have been used to lo-
cate the corresponding resonant energies. At each reso-
nant energy, the function G;(n,0) is calculated explicitly
for every n lying inside the disordered medium, i.e.,
1<n <L. Since the dimensionless conductance at reso-
nant energy is usually of order 1 (<<L), Eq. (4) can be re-
placed by
LO
- - +
@2/ 2i§1 T,=2Trut™ . 9)

g:

The matrix ## * can be diagonalized to obtain eigenvalues
{g,] and eigenvectors { U, (i)}, witha=1,2,...,L,. At
resonant energies, most of the g, are practically zero, and
only one (or two) eigenvalue(s) is (are) nonzero and con-
tribute to the conductance. These nonzero eigenvalues
are always bounded between O and 1. In most cases,
there is only one eigenchannel capable of transmitting
electrons and this eigenchannel can provide a probe to
explore the wave function, which is believed to be nonde-
generate. The corresponding wave function of the coor-
dinate (n,y) is then proportional to the Green’s function
and given by
LO
bo(my)= 3 w,(»G](n,00U,(j), (10)
Lj=1

where U,(j) is the eigenfunction and w;(y) is the part of
the wave function along the y axis of the ith channel in
the pure lead. The general property of the matrix ™+
and its effective eigenchannels have been discussed in
Ref. 16 in connection with universal conductance fluctua-
tions.

III. MACROSCOPIC TRANSPORT BEHAVIOR

Calculations based on quantum percolation model as
described above have yielded a number of realistic
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FIG. 1. At E/T=0.01 and p =0.75, dimensionless conduc-
tance G /(e?h) is plotted as a function of perpendicular magnet-
ic field, expressed in units of fraction of quantum flux ¢,. Curve
denoted (a) is for sample size 7X7, averaged over 600
configurations, curve denoted (b) is for sample size 15X 15, aver-
aged over 800 configurations.
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FIG. 2. At E/T =0.01 and p =0.85, dimensionless conduc-
tance G /(e*h) is plotted as a function of perpendicular magnet-
ic field, expressed in units of fraction of quantum flux ¢,. Curve
(a) is for sample size 15X 15, curve (b) is for sample size 30X 30.
The results are averaged over 200 configurations.

features observed experimentally. Here we show the re-
sults of numerical calculations with Fermi energy fixed at
E /t =0.01, i.e., close to the band center. The dimension-
less magnetoconductance calculated with p =0.75, 0.85,
and various sizes L are shown in Figs. 1 and 2, where the
fraction of quantum flux, f =Ha?/¢y, is used as the unit
of magnetic field in the horizontal axis. Curves (a) and (b)
in Fig. 1 are obtained from the average of 600-800
configurations for a sample of size 7X7 (L =7) and
15X 15 (L =15), respectively. It is seen that whereas for
the smaller sample, corresponding to higher tempera-
tures, the initial variation of the conductance is down-
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FIG. 3. Measured magnetoresistance, AR /R, plotted as a
function of magnetic field for three different temperatures. The
sample is a granular Cu film with metal fraction of 64%. Data
is provided by Beamish, Patterson, and Unruh (Ref. 4).
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ward (positive magnetoresistance), for the larger sample,
corresponding to lower temperatures, the opposite is true
(negative magnetoresistance). Therefore we have clearly
seen a change in the sign of magnetoresistance as the
temperature is varied due to the increasing importance of
coherent backscattering at lower temperatures. This is
indeed seen experimentally as shown in Fig. 3 for granu-
lar Cu films* with metal fraction of 64%.

This sign change can be viewed as the result of the
competition between two terms shown on the right-hand
side of Eq. (1) for the weak-scattering limit. The first
term always gives normal metallic conductance while the
second term gives the coherent backscattering contribu-
tion. As the value of p is increased, the increase of elastic
mean free path / is expected to push the sign change in
magnetoresistance to larger sample sizes (and hence
lower temperatures). This is indeed what has been seen
in our numerical calculations. For the case of p =0.85,
Fig. 2 shows that the sign change occurs for sizes be-
tween 16 and 31. It should be noted here that we choose
E /t =0.01 because the states are more localized in the
band center for this quantum percolation model'”!® (see
also Fig. 6). No qualitative difference is expected if one
moves away from the band center.

Another common feature for both theory (Figs. 1 and
2) and experiment (Fig. 3) is the oscillating nature of the
magnetoconductance as magnetic field varies. This is due
to the existence of a length scale, defined by the granular
particle size, which can interfere with the magnetic
length Ly +V'hc /4eH . The origin of the oscillation may
be made transparent by examining the conductance of an
ordered sample in a magnetic field which is shown in Fig.
4 for a sample of size L =63. The structure seen in the
magnetoconductance is found to be directly related to the
variations in the 2D (“butterfly”) spectrum found by
Hofstadter.!® For instance, the positions of the peaks and
dips shown in Fig. 4 are exactly the values which give the
commensurate fluxoid states. Thus the oscillations seen
in Figs. 1 and 2 are the remnant effect of commensurate
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FIG. 4. Dimensionless conductance G /(e2/h) is plotted as a
function of magnetic field in units of fraction of ¢, for a p =1
sample of size 63 X 63.
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FIG. 5. For E/t=0.01 and a fixed sample size 60X 60, di-
mensionless conductance G/(e’/h), averaged over 100
configurations, is plotted as the logarithm of f. Curve (a) is for
P =0.85, the slope is 0.90; curve (b) is for p =0.80, the slope is
0.24.

fluxoid state after configurational averaging. In order to
see the relevance of our calculations to the experimental
data, we can choose an average metal particle size to be
a =100 A. A flux fraction of f =0.14 shown in Figs. 1
and 2 corresponds to about 7 Telsa which is just the scale
of field shown in Fig. 3. The oscillation amplitude is ex-
pected to be very much reduced for the experimental data
due to the particle size distribution and the finite thick-
ness of the sample.

Logarithmic dependence of the conductance is general-
ly expected for 2D samples at low field and in the weak-
scattering regime as shown in Eq. (2). However, the
coefficient of the logarithmic dependence is by no means
universal. In fact, it is strongly dependent on the scatter-
ing strength. In Fig. 5 the averaged (over 100
configurations) dimensionless conductance g[ =G /(e?/
h)] is plotted against In(f) for the sample size of L =60.
There are clearly regions of linear behavior in both
curves (a) and (b). However, the slopes have the values of
0.90 and 0.24, respectively. Thus the effect of stronger
disorder is seen to reduce the coefficient by a factor of
more than 3 from its weak-scattering value. However, it
should be noted that the value of 0.90 here for the weaker
scattering case differs from 1/7 predicted by Eq. (2).
This could be due to the inaccuracy of the Landauer for-
mula in the weak-scattering limit.

IV. MESOSCOPIC TRANSPORT BEHAVIOR

A. Universal conductance fluctuations (UCF)

Recently considerable theoretical and experimental in-
terest has been focused on the study of non-self-averaging
quantum transport propertles in sample of mesoscopic
size.® In such systems, the size L is smaller than the de-
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phasing length L4 across which electron loses its phase
memory. L, is usually determined by the inelastic
scattering length. It has been shown from diagrammatic
analysis in the weak-scattering limit that, in the regime
where L is much greater than the elastic scattering length
L but smaller than the localization length, the dimension-
less conductance g =G /(e?/h) fluctuates from sample to
sample, and has a universal root-mean-square (rms) fluc-
tuation magnitude of order one. This fluctuation magni-
tude is independent of degree of disorder, sample size L,
chemical potential, and magnetic field, provided that the
temperature is low enough so that both conditions L ;> L
and kpp <hD /L? are satisfied. Here D is the diffusion
constant.®2°722 Numerical tests of UCF have been car-
ried out on various models by using different
methods.!#2*~2° The distribution of mesoscopic conduc-
tance has also been studied by invoking random-matrix
theory both in the metallic and strongly localized re-
gimes.lmﬁ—29 Here we investigate systematically the re-
gime of validity for UCF in the quantum percolation
model as a function of percolation probability p, sample
size L, and Fermi energy E /t. Taking the ergodic hy-
pothesis, which is believed to hold, we equate the fluctua-
tions of g from sample to sample to that of a given sample
as a function of E /t and magnetic field. Although the re-
sults presented here are based on calculations using Eq.
(4), we have also calculated g by using Eq. (9). No
significant differences have been found when the value of
g is an order of magnitude smaller than the total number
of allowed channels.

In Fig. 6 we plot the dimensionless conductance g as a
function of Fermi energy E /t at p =0.7, 0.8 after averag-
ing over 100 configurations. Due to the symmetry be-
tween = E, only the portion E /t >0 is shown. The small
value of g near the band center is known to be caused by
the existence of a large number of localized states at the

2.8

J'\J'\ [ N

./'\.'/

£t \(o)
2
61.2—/ r\
e AR \
0.4 o ’\00\’ .\
y. “\"0 * -
0 . . . . 2047 PUPU £ 1
0 0.5 1 1.5 2 25 3 35 4

E/t

FIG. 6. Dimensionless conductance G /(e2/h) plotted as a
function of Fermi energy E /t for sample size 15X 15. The re-
sults are averaged over 100 configurations. Curve (a) is for
p =0.85, curve (b) is for p =0.75.
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band center.!” Here we can roughly divide the energy

space into two regions: (1) a less localized (higher con-
ductance) region with 0.3 <E /t <2.0 and (2) a more lo-
calized (lower conductance) region with E /¢ outside the
range of (1). The region of validity for UCF in these two
regions is discussed separately below.

At E /t =0.5, the rms value of Ag=V (g?)—(g)?is
plotted in Fig. 7 as a function of sample size L for
different values of p ranging from 0.65 to 0.90. One hun-
dred to six thousands configurations have been generated
for each L and p combination. Those configurations
which do not percolate across the sample are dropped.
In general, less configurations are required for good
statistics as L becomes large and p approaches one. Al-
though Ag is in general a smoothly decaying function of
L, there exists a region where the value of Ag decays very
slowly even for large L, e.g., 0.75 <p <0.85 and L > 30.
The value of Ag in this region agrees well with the
theoretical UCF value of 0.862 in 2D. For p close to one,
a much larger L is required to reach the region of UCF
since the elastic scattering length increases. On the other
hand, as p becomes closer to the percolation threshold
p.(=0.593), the localization length becomes smaller and
the region of UCF is also limited to small L. Both of
these features can be seen clearly in curves of p =0.9 and
0.7 in Fig. 7. It is worthwhile to point out that in the re-
gion of UCF the average g is always an order of magni-
tude smaller than the total number of allowed channels.
From the analysis of a number of effective channels,!®
this implies the sample size to be at least an order of mag-

6 T | I
a
51 —
4 —
o
<
3__ -

. \
1 .\Q\ A ) e— - T
B \ e ° A
o. .\.\ L 4
\D o o
\D“u
0 | 1 10
0 25 50 75 100

FIG. 7. The rms dimensionless conductance fluctuation Ag
plotted function of sample size L for various values of p: A for
p =0.90, o for 0.85, A for 0.80, 4 for 0.75, @ for 0.70, and O
for 0.65. The value of E /tis 0.5.
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p =0.75, (b) is for p =0.80, and (c) is for p =0.85. The value of
E /tis 0.01.
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nitude larger than the elastic scattering length, i.e.,
10/ < L. In this case, Eq. (4) can be replaced by Eq. (9),
which is the basis of many theoretical discussions on
UCF.

The situation is quite different in the more localized re-
gion, 0<E/t <0.3. At E/t =0.01, the curves of Ag for
different values of p are shown in Fig. 8. There is hardly
a region of constant Ag that can be identified. This may
be understood as follows. For p <0.85 the localization
length can be estimated by using the finite-size scaling
method. In Fig. 9, the average of the logarithmic con-
ductance is plotted as a function of L. The linear behav-
ior signals the exponential decay of the conductance.
From the relation &,,=—dL /d{In(g)), we obtain the
localization lengths &), for p =0.75, 0.80, and 0.85 to be
2.7, 5.0, and 16.4, respectively. These numbers are small
compared to our size of interest, i.e., L =30 to 90. When
p becomes greater than 0.85, there is a drastic increase in
the localization length. The corresponding increase in
the elastic scattering length, which is proportional to
(1—p)~ ! in the weak disorder limit, pushes the region of
UCF to much larger sample sizes (L >90). A rough esti-
mate of elastic scattering length can be made by using the
number of effective channels,!® which is the dimensionless
conductance evaluated by using Eq. (9). In the extended
region (L <localization length) we have g=N
=2Lyl/L where L, is the number of allowed channels.
From this relation, the values of / are found to be about
1=12, 4, and 1.6 for p =0.95, 0.9, and 0.85, respectively.
Thus it requires at least L > 120(=10/) in order to see
UCF for p =0.95. This is consistent with the corre-
sponding curves shown in Fig. 8.

If the same considerations are now applied to the cases
shown in Fig. 7, we found that the values of [ at
E /t =0.5 are about 7, 3.7, 2, and 1.3 for p =0.90, 0.85,
0.80, and 0.75, respectively. Although these numbers are
about a factor of 2 higher than the corresponding num-
bers in the case of E /¢t =0.01, the localization length &
is also much greater. From finite-size scaling, localiza-
tion length is found to be =30 for p =0.70. A rough es-
timate gives £;,,=100 and 250 for p =0.75 and 0.80.
This is again consistent with the corresponding curves
shown in Fig. 7. Thus we expect the curve for p =0.8 to
remain flat up to L =200.

Overall, our analysis confirms the theoretical predic-
tion that the UCF exists in regions where sample size L is
much greater than the elastic scattering length / but
smaller than the localization length &,,., independent of
disorder and Fermi energy.

B. Statistical distribution of g

Here we would like to discuss the statistical distribu-
tion of the dimensionless conductance g. Although there
is a general belief that the distribution of g should be nor-
mal in the extended side while log-normal in the localized
side;% !¢ yet, to our knowledge, there exists no systematic
numerical study of this problem. Extensive numerical
calculations in this work have revealed that in general,
there are three types of distribution in the following three
regimes: (1) extended limit, (2) localized limit, and (3) in-
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FIG. 10. Histogram of the conductance distribution for 500
configurations. The parameter values are E /t =0.01, p =0.95,
and L =60. The dashed line is a Gaussian line shape to guide
the eye.

termediate regime. In the extended limit, transport is
ballistic, or nearly so. The sample size L is considered to
be larger (but not much larger) than the elastic scattering
length I but much smaller than the localization length
Eioe 1€, | L << §).. The distribution of g in this limit is
found to be normal. In terms of g and Ag, the corre-
sponding criterion for normal distribution is that
g R 3Ag. In the localized limit, the sample size is con-
sidered to be much greater than localization length, i.e.,
£loc <<L. The corresponding distribution then becomes
log-normal. The intermediate regime lies between the
above two limits and the distribution of g is neither nor-
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FIG. 11. Histogram of the conductance distribution plotted
as a function of In[G /(e?/h)] for 900 configurations. The pa-
rameter values are E/t =0.01, p=0.75, and L =60. The
dashed line is a Gaussian line shape to guide the eye.
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mal nor log-normal.

Three typical cases are shown in Figs. 10-12 for
L =60, E/t=0.01 and p =0.95, 0.85, and 0.75. At
p =0.95, the value of / is about 12 from the previous dis-
cussion and the localization length is expected to be
much greater than 60. The distribution of g for 500
configurations is shown in Fig. 10 and is seen to be a very
good Gaussian. At p =0.75, the localization length is
only 2.7 (much smaller than sample size L =60), and the
histogram of In(g) is shown in Fig. 11 for 900
configurations. The distribution is found to be a good
Gaussian in terms of In(g), i.e., the distribution of g is a
log-normal in this regime. However, the case of p =0.85
belongs to the intermediate regime with £,,,=16, which
is not much smaller than the sample size (60). The distri-
bution, with 700 configurations, is shown in Fig. 12 in
terms of both g and In(g). They are clearly non-
Gaussian. This peculiar distribution can be viewed as the
intermediate one between normal and log-normal, i.e.,
the large conductance part is normal [Fig. 12(a)] while
the smaller conductance part is log-normal [Fig. 12(b)].
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FIG. 12. (a) Histogram of conductance distribution for 700
configurations. The parameter values are E /t =0.01, p =0.85,
and L =60. (b) Histogram of the conductance distribution plot-
ted as a function of In[G /(e2/h)] for 700 configurations. The
parameter values are the same as (a).
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In fact, the region of UCF (10/ <L <§&,,.) lies in this in-
termediate regime. In Fig. 13 we show the different
transport regimes of the quantum percolation model as
delineated by p and sample size L.

C. Behavior at the percolation threshold

As the value of p approaches the percolation threshold
D, electrons are strongly localized for all energies E /t.
Unlike the corresponding regime in the Anderson model,
in our model there exists a geometrical correlation length
&, which characterizes the density fluctuation of a per-
colation cluster. Within the scale £, the system behaves
as a fractal, and beyond £, the system is homogeneous.*®

(a)

100|

Localized

-l
50
1 0.95 0.9 0.85 0.8 0.75
[}
150 \ T T T
\ (b)
\
\\ Localized
\
100 \ UCF _
\
\
- \
\
501 \ -
Diffusive \
\
AN
Ballistic T~
! ) 1
1 0.9 0.8 0.7 0.6

FIG. 13. Transport regimes of the 2D quantum percolation
model as a function of L and p. The upper solid line denotes the
localization length, the lower solid line denotes the mean free
path. Dashed line denotes ten times the mean free path. (a)
E/t=0.01, (b) E/t =0.5.
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At p.(=0.593), the whole system becomes a fractal with
fractal dimension ~ 1.89. Here, we would like to study
the statistics of In(g) and the localization behavior of the
wave function with such underlying fractal geometry. In
particular, we examine the evidence for superlocalization,
i.e., electronic wave function decays faster than simple
exponential.

In this strongly localized regime, there are at least two
methods which can be used to study the localization be-
havior of the wave function. One is the finite-size scaling
method used previously. It can provide the averaged
properties of electron localization. The other is the
resonant-tunneling method,!> which can provide us with
a tool to directly probe the wave function as described in
Sec. II. Below we give a brief description of the
resonant-tunneling method and our extension of the
method.

The problem of resonant tunneling is well understood
in 1D. Its generalization to 2D has recently been carried
out for the Anderson model.'> However, in that work
the measurement of localization length is still indirect,
i.e., near the resonant energy the spinless dimensionless
conductance g /2 is given by the following relation:!?

LR
o= 2rir _, (11)
,, |k, IR
(E—E,) 5 5

where E, is the energy of the localized state and 'L, 'R
are related to the localization length &, by T
exp(—x /&,.) and T'Rexp[ —(L —x)/&,.]. Here L is the
sample size and x denotes the position of the localization
center along the tunneling direction. For consistency
with our previous discussions, here we define ;. as the
decay length of the probability density. By measuring the
height B and width y of the resonant peak, the localiza-
tion length &, . is obtained as

&=L /In(By?) , (12)

with
. FLFR
B FL rR
2 2
and
rtr rx
=—+—.
YT

We have applied the above method to our model for
E/t=0.5. Among many hundred realizations carried
out at p=p., we have been able to found some
configurations which have resonant peaks near
E /t =0.5. The rest of the configurations have values of g
many orders of magnitude less than one. A typical tun-
neling result for a sample of size L =45 is shown in Fig.
14 where the shape can be well fitted by a Lorentzian
with E, =0.500189, 8=0.8, and y =1.2X 10™%. By using
Eq. (12), the localization length is found to be about 2.5.
The result of finite-size scaling is also shown in Fig. 15
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FIG. 14. Resonant peak of a particular configuration of size
L =45 at the percolation threshold p. =0.593.

from which we find £;,,=3.30. Although the values of
&1oc Obtained by the resonant-tunneling method are con-
sistent with the result of finite-size scaling, one can still
not probe directly the shape of each individual wave
function.
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FIG. 15. —{Ing) plotted as a function of sample size L for
p=p. and E /t =0.5.
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Here we extend the resonant-tunneling method to the
direct evaluation of wave functions. As described in Sec.
II, in the strongly localized regime most eigenvalues of
the matrix ¢zt are vanishingly small and usually only one
(or two) eigenvalue(s) is (are) on the order of one. By
transferring the problem into an eigenchannel representa-
tion, the explicit form of the wave function can be ob-
tained via Eq. (10) by evaluating the Green’s function
with resonant eigenchannel as a source. Since one of our
aims is to investigate the possibility of a superlocalization
on a fractal geometry,’>? we have calculated the wave
functions at those resonant energies found previously at
p. and E /t=0.5. We first locate the center of a wave
function where the probability density is maximum, then
the average probability density as a function of distance
R from the center is calculated. A typical result is shown
in Fig. 16 where the logarithm of the average probability
density I(R) is plotted as a function of R. This corre-
sponds to the case of Fig. 14 discussed above. The center
of the wave function is at x =24 and y =34, which lies
just near the midplane of the sample (L =45). The data
in Fig. 16 can be fitted by a linear line. From the slope
we found the localization length to be 2.5, agreeing well
with the estimate of indirect tunneling method [Eq. (12)].
Although Fig. 14 shows an exponential decay of the wave
function, we prefer to answer the question of superlocali-
zation by using the following statistical analysis. Eight
resonant cases have been chosen with sizes ranging from
L =46 to 73 and energies ranging from E /t =0.2 to 0.5.
Each of these data can be fitted by a linear line. The de-
viations of these data points from the best linear fits are
superimposed on a single data sheet where the distance R
in the horizontal axis is renormalized by the localization
length found for each case. The result is shown in Fig. 17
where different symbols denote different cases. Since all
the data points in Fig. 17 distribute evenly above and
below the line of zero fluctuation, there is no statistical
indication of superlocalization. If there is any superlocal-
ization, one would expect the data points to exhibit sys-

10, T T T T

In [I(R)]

-5 1 L 1 1
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R

FIG. 16. Logarithm of averaged probability density I plotted
as a function of distance R from the center of the localized wave
function obtained from the resonant peak shown in Fig. 14.
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FIG. 17. Statistical deviations of averaged probability densi-
ty I(R) from the linear behavior for eight different wave func-
tions obtained from the resonant-tunneling method. The dis-
tance R from each localization center is normalized by the cor-
responding localization length. The distribution is seen to be
uniform and symmetric about zero.

tematic deviation from a uniform distribution. Our con-
clusion is therefore consistent with the results of a recent
work using direct numerical simulations,* i.e., there is no
superlocalization.

Besides the single-resonant-peak cases, there are also
cases where two-resonant peaks overlap when the energy
separation of two localized states is less than their widths.
A typical example is shown in Fig. 18 for a sample of
L =60. The resonant energies are E,/t=0.5000 and
0.5014, respectively. Although this double-peak case has
been discussed before,!® its wave functions have not been
explored. From the calculation of the wave function at
each resonant energy, we found that these two wave func-
tions are centered approximately at an equal distance
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FIG. 18. Two overlapping resonant peaks of a particular
configuration of size L =60 at the percolation threshold.
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FIG. 19. Logarithm of averaged probability density plotted
as a function of distance R from the centers of the two localized
wave functions obtained from the two resonant peaks shown in
Fig. 18.

away from the midplane of the sample. The probability
density decays from one center and picks up a small reso-
nant peak in the neighborhood of the other center due to
the closeness in energy of the two states. For the reso-
nant case of Fig. 18, the centers are at x =23, y =35 for
E,/t =0.5000, and x =39, y =12 for E,/t =0.5014, re-
spectively. The logarithm of each probability density is
plotted in Fig. 19 as a function of R. Both curves show a
small bump in the neighborhood of R =21, which is the
distance between two centers.

The effects of the magnetic field on the localization
properties have also been studied. Again eight single-
resonant cases have been analyzed, and the wave function
is found again to decay exponentially. There is no sign of
superlocalization even in the presence of a magnetic field.
The change of localization length under a strong magnet-
ic field (for a single sample) has been studied in detail for
the Anderson model.!® Similar behavior is expected in
the present quantum percolation model. Here we are
more interested in the behavior of averaged localization
length in the low field region. The averaged localization
length at low fields is studied by using the finite-size scal-
ing method. For each sample size ranging from 15 to 60,
hundreds of percolation configurations were averaged. In
Fig. 20 &, is plotted as a function of f(—Ha?/¢,). The
general trend of & variation under a magnetic field is
consistent with the known results.!>!>33 However, the
data shown in Fig. 20 seem to indicate a linear depen-
dence in the low-field region rather than a square-root
dependence obtained in the hopping model.>

V. CONCLUDING REMARKS

A quantum percolation model has been introduced to
study both the macroscopic and mesoscopic transport
properties of granular metal films. This model takes into
account the granular properties of the film and enables us
to study the magnetoconductance in the strong scattering
and strong field regimes. A multichannel Landauer for-
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FIG. 20. The localization length at p =p. and E/t=0.5
plotted as a function of the magnetic field, expressed in units of
fraction f of the quantum flux ¢,. Error bars are shown.

mula is used to calculate the conductance. The averaged
magnetoconductance calculated shows a sign change as
the sample size varies. There also exists oscillations in
the magnetoconductance in large fields due to the finite
granular particle size. Both observations are consistent
with some experimental data.

The mesoscopic properties of this model have been
thoroughly studied. On the extended side, the rms of
conductance fluctuations are calculated for various values
of percolation probability p, sample size L, and Fermi-
energy E /t. A region of universal conductance fluctua-
tions is identified which is consistent with the known
UCEF criterion, i.e., elastic scattering length 10/ <L < lo-
calization length &, ,.. The distribution of conductance is
normal in the extended limit (/ <L =¢§, ) and log-normal
in the localized limit (&, <<L). Between these two lim-
its, the distribution is of mixed type.

The behavior of the wave function in the strongly lo-
calized regime is studied by both the finite-size-scaling
method for the averaged property and the resonant-
tunneling method for single-sample properties. The
resonant-tunneling method has been extended to explicit-
ly calculate the localized wave function. At percolation
threshold p., both methods show the wave function to be
exponentially localized. We find no indication of superlo-
calization. This is also true in the presence of the mag-
netic field. Our finite-size-scaling results show that aver-
aged localization length is an increasing function of mag-
netic field and shows a strong linear dependence at low
fields.

Although our calculations here are only focused in 2D
system, it is straightforward to generalize this model to
films with finite thickness or 3D systems. The study of
these problems will be our future endeavor.
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