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GaAs(110) terrace-width distributions and kink formation
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Scanning-tunneling-microscopy studies of [112]and [110]step structures on cleaved GaAs(110) show
that [112]steps are straight whereas [110]steps are made up of kinks along [112]. These step and kink
structures are very different from those on Si surfaces. Through quantitative analysis of terrace-width
and kink-length distributions, we show that [110] steps are weakly interacting while kinks are nonin-

teracting.

Steps on surfaces play a key role in determining surface
morphologies and stabilities, as demonstrated by studies
of Si surfaces. ' For example, the 7 X 7 reconstruction of
Si(111)starts from step edges where the step is believed to
act as the source of adatoms needed for the reconstruc-
tion. For vicinal Si(111) surfaces, step energies and
step-step interactions ultimately determine whether a sur-
face is orientationally stable or will become faceted. For
stepped Si(100) surfaces, the surface can have single- or
double-height steps, depending on the interplay between
step energies and strain energies. Many attempts have
been made to model steps using statistical mechanics. ' '

Unfortunately, there has been little experimental
confirmation of these models. In particular, it is still an
open question as to whether the simple terrace-step-kink
model first proposed in 1927 by Kossel is a reasonable
description of a real surface. With the invention of scan-
ning tunneling microscopy (STM), there have been exper-
imental attempts to address the question. Wang and co-
workers have measured the terrace-width distribution on
vicinal Si(111) misoriented toward [112] and have con-
cluded that step-step interactions are short range and
repulsive. Swartzentruber et al. ' have studied kink dis-
tributions on vicinal Si(100) and have shown that kinks
are almost independent.

While there have been a number of excellent studies of
steps on Si surfaces, steps on III-V semiconductor sur-
faces have long been neglected, despite the important role
they play for molecular beam epitaxy growth of tilted su-
perlattices. " Indeed, little is known about GaAs step
structures, ' the mechanism that creates steps on the
cleaved surface, step-step interactions, step energies, step
chemistry, and the role of steps in determining Fermi lev-
el pinning. In this paper, we present a study of step
structures on cleaved GaAs(110). We show two types of
steps running along [112] and [110] where the [112]
steps can be either single or double height. The single
height steps are stable, and their edges are straight. The
[110] steps are single height, but they always appear
rough with kinks along [112]. By measuring the terrace
width and kink length distributions of [110] steps, we
show there is a weak interaction between steps and that
kinks are independent. By parametrizing the kink length
distribution, we address the nature of this surprising sur-

face morphology produced by cleaving. We find that the
kink distribution of [110]steps for GaAs(110) is different
from that of Si(100) single steps, suggesting that the form
of the e6'ective Hamiltonian governing the creation of
these kinks is diA'erent.

The experiments were carried out in an ultrahigh vacu-
um chamber at pressures below 1 X 10 ' Torr using a
scanning tunneling microscope built by Park Scientific In-
struments. ' GaAs(110) surfaces were obtained by cleav-
ing 3 X4 X 10 mm p-type posts (Zn doped, 3 X 10'
cm ). All of the surface appeared mirrorlike to the eye,
but both types of steps were repeatedly obtained, al-
though with variations in average terrace widths. More-
over, the step structures do not depend on the cleaving
direction. Most of the STM images were taken with—1.9-V sample bias and 0.1-nA tunneling current to
highlight As atoms. '

Figure 1 shows a mosaic for GaAs(110) that demon-
strates the stability of [112]-type steps. Two single-
height steps run from the lower left and split into a
double-height step and a single-height peninsula struc-
ture. The direction of the step is determined to be [112]
from atomically resolved images. ' For the double-height
step, the macroscopic direction does not exactly follow
[112]but is made up of segments of double-height steps
along [112] that parallel the peninsula. This suggests
that double-height steps along [112] are also stable.
Structures consisting of many consecutive single-height
steps along [112] have also been observed. ' The penin-
sula structure of Fig. 1 is approximately 82 atoms long,
one atom high, and two to five atoms wide. Its existence
indicates that the energy cost of a [112]step is very low,
as discussed below.

Figure 2 shows a mosaic for cleaved GaAs(110) that re-
veals 4—5 single-height steps with the macroscopic step
direction parallel to [110] stepping upward from lower
left to upper right. %'hat makes these steps special is that
their edges have large fluctuations around the mean posi-
tion with kinks made up of [112]-type steps. These kinks
are often elongated parallel peninsulalike structures ex-
tending over a lower terrace and long cuts into the ter-
race, microscopically resembling the structure of Fig. 1.
Although two step edges can be close together, no step
crossing has been observed. Only one step collision at
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FIG. 1. Mosaic STM image showing two single-height [112]
steps (lower left) that yield a double-height step and a peninsula
one layer high parallel to [112]. Each image corresponds to 225
AX225 A. The width of the peninsula varies from two to five
atoms. 1,5
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mathematically as a fermion for steps that do not cross.
Comparison with this theory makes it possible to deduce
the nature and the strength of step-step interactions. To
do so, we measured the local terrace widths (in units of
the distance between As atoms along [112],namely 6.92
A) for surfaces that resulted from cleaving parallel and
perpendicular to [110]. Measurements of 828 and 941
terrace widths for these surfaces, with average terrace
widths L, of 10.7 and 9.7, were used to generate the distri-
butions plotted in Fig. 3(a). The observed creation proba-
bility is much broader than for vicinal Si(111) where
there was strong short-range repulsion between steps.
However, it is sharper than what is expected for nonin-
teracting steps using the kink distribution deduced from
the experiment. A weak interaction, 3.7/x (eV/kT), is
obtained from fitting the measured distribution to the
theoretical model. '

It is important to note that our step structures were ob-

one atom site was found in hundreds of images. To our
knowledge, these images present the most irregular step
edges ever observed. STM I-V measurements show that
the Fermi level is pinned in midgap. This may explain
the often-observed phenomenon in photoemission experi-
ments where the Fermi level is pinned even for "mirror-
like" cleaved surfaces.

For a given stepped surface, the terrace width distribu-
tion is largely determined by energetic step-step interac-
tions. ' Strong repulsive interactions result in a sharp
distribution that peaks at the mean terrace width while
an attractive interaction gives a much broader distribu-
tion. In fact, quantitative theoretical investigations of the
correlation between terrace width distribution and step-
step interaction have been achieved by treating each step
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FIG. 2. Mosaic image showing [110] steps on cleaved
GaAs{110) with a large number of kinks along [112]. Each im-

age is 160 A X 160 A and L = 10.7.

FIG. 3. (a) Terrace width distribution for [110]steps on sur-
faces having average terrace widths L =10.7 and 9.7 obtained
by cleaving perpendicular and parallel to [110], respectively.

0
The terrance width x is measured in units of 6.92 A, corre-
sponding to two As atoms distances along [112]. Widths are
normalized to the average terrace width L. P(x/L) is the prob-
ability of finding a terrace of width x/L. The solid curve is the
distribution predicted by a model for weakly interacting steps
(Ref. 6). (b) Measured kink length distribution for kinks along
[112] on [110]-type steps. Kinks are measured in the same
units as terrace widths. The symmetric distribution demon-
strates that the kinks are independent.
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tained by cleaving, in contrast to step structures on vici-
nal Si surfaces that resulted from misorientation and an-
nealing. In particular, the step structures on vicinal Si
can approximate equilibrium step configurations because
Si is mobile at high annealing temperature. ' It is not
obvious that the GaAs surface can respond fast enough at
the moment of cleaving to minimize its surface free
energy, thereby putting itself in an equilibrium
configuration. However, even if the observed GaAs(110)
steps represent nonequilibrium structures, the above
analysis should still be valid. In fact, the same terrace
width distribution could be obtained by calculating the
probability for m random walkers. ' '

For kinks on each noninteracting [110] step, like the
terrace width itself, their distribution rejects the interac-
tion between kinks. We measured the probability of
finding two adjacent kinks as a function of their separa-
tion the same way as was done for the stepped Si(001) by
Swartzentruber et al. ' and we obtained similar results. '

This suggests that the kinks were independent, but the
test is not stringent enough to ensure their independence.
For example, consecutive kinks may tend to run in the
same direction due to kink-kink interactions. Visual in-
spection of published STM images' ' suggests that kinks
on single-height steps of Si(100) may be an example of
such interacting kinks. Therefore we measured the kink
distribution as a function of both the length and the
direction where consecutive kinks going in the same
direction are counted as positive kinks while those that
reverse direction are defined as negative kinks. The plot
shown in Fig 3(b) d. emonstrates that the kink distribution
is symmetric and, hence, the creation of kinks on [110]
steps is independent.

In an equilibrium picture, the kink-length distribution
is determined by the minimization of step free energy.
The probability of creating a kink of length n along the
step edge is proportional to exp( E„/kT), w—here E„is
the energy cost of a kink of length n. In Fig. 4, we plot—1n[N(n)/2N(0)] as a function of kink length. The fac-
tor of 2 results from the assumption that kinks with the
same length cost the same amount energy regardless of
the direction. The data are fitted to a form E„=no.+C,
where c, is the energy of the smallest kink. ' The best fit
gives s/kT=0. 478+0.023 and C/kT= —0.65+0. 10. C
has been interpreted as the corner energy. '

Large amounts of energies must be supplied to the
crystal to cleave and produce a stepped surface. As a re-
sult, it is conceivable that the surface free energy is mini-
mized to produce an equilibrium configuration of
kinks. Because of the large energy, the equilibrium
configuration should be equivalent to a frozen high-
temperature configuration of a surface obtained by an-
nealing. This speculation is supported by the resem-
blance of the observed step surface morphology and the
high-temperature step configuration generated by Monte
Carlo simulations. ' In the equilibrium picture, the
kink energy s is also the step energy for [112]steps. To
estimate the magnitude of the step energy, we assume
room temperature and obtain a=0.012+0.006 eV. This
is comparable to the energy for stable steps on vicinal
Si(001).' Even if the kinks correspond to a nonequilibri-
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FIG. 4. Experimental lot of In[N(n)/2N(0)] as a function of
kink length n. Here the sign of the kink is not distinguished.
The dashed line is the fit to the form nc+c and solid line is the
fit to the form (an) .

um configuration, the length distribution is expected to
be the same as long as the probabilities for smallest kinks
in a long kink are the same.

Although the linear fit adequately describes the data, it
is interesting that much better agreement is obtained
when the data are fitted to a quadratic form (an) as
shown by the solid line in Fig. 4. ' The best fit gives
a =0.21+0.026, where I/&2a is the half width of the
normal distribution. The implication for the equilibrium
picture is that the kink energy E„is not linearly propor-
tional to the kink length n but is proportional to n . In
the nonequilibrium picture, the fit indicates that a
different random process is responsible for kink forma-
tion where the smallest kinks that make up a long kink
are no longer identical. A possible cause of the kink for-
mation is random propagation of cleaving. In this case,
[112]represents the direction that is preferred for cleave
propagation, i.e., the direction that costs the least bond-
breaking energy. Although the mechanism capable of ex-
plaining the observed kink distribution is not known in
either picture, the fact that the same surface morpholo-
gies are obtained independent of the cleaving direction
suggests that it is the energy, not the stress field, that is
responsible for the creation of kinks.

In conclusion, through quantitative analysis of the
terrace-width and kink-length distributions, we have laid
the groundwork for understanding step structures on
cleaved III-V semiconductor surfaces. %'e have shown
that the terrace width distribution is different from those
for vicinal Si(111) (Ref. 9) and the steps are weakly in-
teracting. Kink creation events are shown to be indepen-
dent. The kink distribution for cleaved GaAs(110), un-
like kinks on Si(100),' is best described by a normal dis-
tribution, indicating that a different form of Hamiltonian
is responsible for the creation of kinks.

We thank N. C. Bartelt for many discussions and for
providing the theoretical curve for Fig. 3(a). This work
was supported by the National Science Foundation under
Grant No. DMR-86-10837.
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