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We have numerically studied spatial properties of electronic wave functions in GaAs/Al Ga& As
double-barrier resonant-tunneling (DBRT) structures, particularly those properties which strongly affect
the interaction of electrons with confined phonon modes in the barrier and quantum-well layers and play
a role in phonon-assisted tunneling. We use a transfer-matrix approach to examine the detailed spatial
structure of DBRT electronic wave functions for various injection energies and applied voltages in two
representative structures. In addition to verifying expected behavior for transmission probability and
scattering phase shift versus energy, we find that, off resonance, the electronic wave functions show
significant spatial asymmetry in the well layer, which enhances coupling of electrons to shorter-
wavelength confined phonon modes. A formula for the excess current due to phonon-assisted tunneling
is given. Finally, we present numerical evaluations of the matrix elements which describe the
electron —confined-LO-phonon interaction for lower-order confined modes and these indicate that pho-
non emission occurs preferentially in the GaAs well and not the Al Gal „Asbarrier layers for typical
DBRT structures.

I. INTRODUCTION

Over the past few years there has been considerable in-
terest in predicting the current-voltage characteristics of
double-barrier resonant-tunneling (DBRT) structures.
Many techniques have been applied to the problem in-
cluding the Wigner function, ' the density matrix, the
transfer Hamiltonian approach, and the Tsu-Esaki
scattering approach. Although these techniques have
provided general qualitative agreement with experimental
results, quantitative agreement is still lacking. The
discrepancies are due to a range of causes including
space-charge effects, elastic scattering of electrons by in-
terfaces and impurities, and the inelastic scattering of
electrons by longitudinal-optical (LO) phonons.

One of the more striking effects associated with the
electron —LO-phonon interaction is a phenomenon
known as pho non-assisted tunneling. Recent low-
temperature experiments have reported "satellite" peaks
in the current-voltage characteristics of DBRT devices
for applied voltages =70—140 mV above the main reso-
nance peaks. ' '" It has been suggested that these satellite
peaks are produced when electrons tunnel nonresonantly
into the double-barrier device, drop into the resonant
state by emitting an optical phonon, and tunnel out
through the second barrier. '

To calculate the effect of this and other electron —LO-
phonon interactions on the current, most researchers use
the Frolich interaction approach, which relies on the cal-
culation of a matrix element (f~H„,~i ), where H„,is the
Frolich Hamiltonian and the initial and final states ~i )
and

~f ) are product states describing the electronic and
phonon configurations. The detailed form of the Frolich
Hamiltonian in DBRT structures is a matter of some de-
bate since LO phonons can be confined in well or barrier

layers. ' ' Interface modes are also possible, but are
not considered further in this paper. Although a precise
description of confined modes requires a microscopic
molecular-dynamics treatment, a good approximate pic-
ture for confined modes is obtained using the dielectric
continuum model. ' ' In this picture, LO phonons are
confined fully in the well due to differing dielectric prop-
erties of barrier and we11 layers. The electrostatic poten-
tial generated by these phonons is of the form
P(z) ccsin(nmz/d) with n= 1,2,3, . . . in the confinement
area 0&z &d, and identically zero outside this region.
Note that these modes have a potential which is continu-
ous at boundaries, although the corresponding ionic dis-
placement field u o- t)PIBz ~ cos(n ~z/d) is discontinuous.
For this reason, some authors ' have proposed an alter-
native continuum picture which employs hydrodynamic
boundary conditions; in this case, the phonon displace-
ment field is of the form u ~ sin(n trz/d) with
n=1,2,3, . . . and is continuous at boundaries while the
electrostatic potential P(z) ~ cos(n mz/d ) is discontinu-
ous.

In this paper we study how the spatial structure of the
initial and final electronic wave functions +; and 4f
affects the electron-phonon interaction when we consider
confined modes of either type discussed above. The form
of the wave functions can strongly affect what types of
confined LO phonons are emitted as well as the overall
strength of the coupling between the electrons and pho-
nons. Two particularly important questions are the fol-
lowing: (i) are confined modes in the barrier layers or the
well layers more likely to be emitted, and (ii) is the
lowest-order mode, i.e., n=1, always the most likely for
emission or can higher order modes —e.g., n =2—
dominate?

Although sophisticated methods have been developed
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II. TRANSMISSION PROBABILITY
ACROSS DOUBLE-BARRIER STRUCTURES

We assume for the DBRT structure that the potential-
energy function varies in the z direction only. Using the
effective-mass approximation, we then separate the
three-dimensional single-electron Schrodinger equation
into parts which are transverse and parallel to the device
layers. The total electron energy E„,is then written as
the sum of these parallel and transverse components:

E o E+6 ~kll~ /2m', (2.1)

where kII is the wave vector in the x-y plane parallel to

to treat electron-phonon interactions in quantum wells
using a quantum transport approach, ' these methods
tend to be practically unwieldy, even without the addi-
tional complication of confined versus simple bulk pho-
non modes. Thus a simpler technique which captures the
essential features of the electron-confined phonon interac-
tion and can be easily performed on a microcomputer will
be useful for interpreting experimental phonon-assisted
tunneling data and designing new experimental struc-
tures.

In this paper we use a transfer-matrix approach' to
obtain the electron transmission probability through
GaAs/Al„Ga, „AsDBRT devices and also adapt this
method for finding the spatial dependence of the electron-
ic wave function. Section II outlines the method and
presents results for the transmission probability and
coherent scattering phase shift versus incident electron
energy as well as current-voltage characteristics in the
absence of any inelastic scattering. In Sec. III we present
numerical results showing the spatial dependence of wave
functions of selected energies inside the double-barrier
structure. The focus is on those spatial properties which
affect the electron coupling to the various confined pho-
non modes (i.e., with n = 1,2,3. . .). In particular, we find
that for energies off resonance the wave functions show
significant spatial symmetry with respect to the GaAs
well center. This asymmetry is quantified in Sec. IV with
the introduction of an asymmetry parameter 5. In Sec. V
we give a formula for the excess current due to phonon-
assisted tunneling and discuss qualitative features of this
process. Finally, in Sec. VI we numerically calculate
matrix-element integrals which describe the
electron —LO-phonon interaction in DBRT structures
when the phonons are confined and suggest how these
may be interpreted experimentally.

Throughout the paper, numerical results are presented
for two different GaAs/Al„Ga, „Asdevices. Device A

0
has two 30-A undoped Alo 8Gao 2As barriers surrounding

O

a 60-A undoped GaAs well and was selected because it is
equivalent to DBRT samples currently being studied in
experiments focusing on phonon-assisted tunneling
effects. ' Device B has two 40-A undoped Alo 45Gao 55As

0
barriers surrounding an 80-A undoped GaAs well and is
more representative of DBRT structures studied in previ-
ous experiments. The numerical results reported here
were obtained on a microcomputer with a computational
accuracy of eight decimal places.

the GaAs/Al Gai As interfaces, and E denotes the
electron kinetic energy perpendicular to the interfaces
(i.e., in the z direction). The total wave function can then
be expressed as a product:

y(x, y, z)= e ll lip(z (2.2)

where 3 is the area of the device, kII and rII are vectors in
the x-y direction, and y is a solution to the following
one-dimensional Schrodinger equation:

d 1 dy + U(z)y=E&p .
2 dz m '(z) (2.3)

(2.4)

m*/neo =0.067+0.083x for 0 +x ~ 1,
and

(2.5)

e/e =13.1 —3.0x for 0&x +1 . (2.6)

Ignoring accumulation and depletion efFects, the volt-
age drop in each section is given by

d)Vi= V,
2( e, /e2)d 2+ d,

(2.7)
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FIG. 1. Schematic drawing of the exact potential U(z) for a
double-barrier structure and the step approximation used in

transfer matrix calculations. Device A has parameters d& =60
A, d2=30 A, and Vo=684 meV. Device 8 has parameters

dl =80 A, d2=40 A, and V0=338 meV. Vo is the conduction-
band-edge discontinuity.

Here m *(z) denotes the position-dependent electron
(band gap) effective mass and U(z) is the potential seen
by a single electron, which includes effects of both
conduction-band discontinuities at GaAs/Al Ga& As
interfaces and external applied voltage. A typical graph
of U(z) is shown in Fig. 1. The conduction-band offset,
effective mass, and dielectric constant in each region of
the DBRT structure are determined as functions of the
aluminum concentration x by the following standard ap-
proximations: '

0.75x eV for O~x ~0.45
hE, = '

20.75x+0.69(x —0.45) eV for 0.45 &x + 1
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(2.8)

where V is the total applied voltage, E'1 is the dielectric
constant in the GaAs well region, and e2 is the dielectric
constant in the Al„Ga1 As barrier region.

To solve for the transmission probability, we use a
transfer-matrix method similar to one presented, for ex-
ample, by Ando and Itoh. ' This method, in which the
exact potential is approximated by a series of steps (see
Fig. 1), has among its advantages computational simplici-
ty and good accuracy. In fact, Ando and Itoh' have
shown —and we have reconfirmed here —that as the
number of steps increases, the solution rapidly converges
to a single result. For double-barrier structures of the
type considered here and under low bias ((1.0 V), 15
steps for the entire structure is generally sufficient to en-
sure excellent convergence.

Because the potential is treated as constant over each
step, the solution to the one-dimensional Schrodinger
equation is given in the jth step as a superposition of
plane waves:

k.z. —k.z.
p~(z~ )= Aje ' '+B,e (2.9)

with the z component of the complex wave vector k
given by

1/2
2m *(U E)—

g2
(2.10)

AJ+ 1 A
(2.11)

where

and

k.a —k.a

1
(1+r )e ' (1—r. )eJ

M k.a —k.a
(1—r. )e ' (1+r)e.

J J

(2.12)

m -*+,k.
I'
J m k+1

(2.13)

and J=0, 1,2, . . . , N, N+1 for a total of N+1 steps.
Here U and m* are the potential and effective mass as-
sociated with step j, and z is distance measured from the
left-hand side of the jth step. Furthermore, the steps are
all assumed to have the same length a and the j values in-
crease as the structure is traversed from left to right (see
Fig. 1). Our method differs from the previous one of
Ando and Itoh' in that we use a separate coordinate sys-
tem for each step. This simplifies the form of the equa-
tions which follow and ensures that arguments of the
exponentials —i.e., +k.z —are small, giving improved
numerical accuracy.

Imposing continuity of the wave function y and its ap-
propriately normalized derivative (1/m *)(dy/dz) at the
boundary between steps j and j+1, one derives a matrix
formula that relates the successive A and B plane-wave
coefficients, namely,

The M matrices are then multiplied together to relate
the plane-wave coefficients A0 and B0 in the emitter layer
to the coefficients AN+, and BN+, in the collector layer:

AN+1 A0
(2.14)

BN+, 0

with

M11
M, , =

21

M, 2
=MN- M 1M0.

22
(2.15)

Setting Ho= 1 and B~+,=0 in Eq. (2.14)—which

physically corresponds to an electron incident from the
left-hand side of Fig. 1 and generates left justified
states —we arrive at the following simple expression for
the transmission amplitude AN+1.

T

k0
AN+1 kN+ 1 22

(2.16)

where we have used the relation det(M . )=r , whic. h in
turn leads to det(M „,) =ko/k~+, (note that the
effective-mass factors cancel because the collector and
emitter layers have identical material composition).

The transmission probability P is now defined as the
ratio of the transmitted particle flux divided by the in-

cident particle flux and depends on both the incident
electron energy E and the applied voltage V. This
definition leads directly to the following simple expres-
sion:

P(E; V)=
0

(2.17)

Figure 2(a) shows a numerical calculation of this
transmission probability versus incident electron energy
for device A with zero applied voltage. Sharp peaks
occur in the transmission for the resonant energies
E1=77.14 meV and E2 =313.62 meV, the energies of the
ground and first excited quasibound states of the GaAs
well. As predicted for a potential structure which is sym-
metric about the well center, P(E;0) has a peak value of
1.0 at each resonance, corresponding to complete
transmission.

Figure 2(b) shows a plot of transmission probability
versus applied voltage for the same structure with the in-
cident electron energy fixed at 1 meV. In this case the
potential is no longer symmetric; thus the transmission
probability no longer achieves a peak value of 1.0. Oth-
erwise, the P vs E and P vs V curves are remarkably simi-
lar, with successive peaks in the latter (at 0.150 and 0.639
V, respectively) occurring at applied potentials which are
roughly twice the corresponding peak values for the P vs
E curve. This is reasonable as the potential-energy drop
at the center of the GaAs well is one-half the total ap-
plied potential drop, and because the applied voltages are
low enough so that tunneling properties of the potential
structure are relatively unaffected. To summarize, we
find for device A that varying the energy of the incoming
electrons with fixed voltage and varying the applied volt-
age for fixed incident energy both lead to qualitatively
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similar transmission curves. Behavior of device B is also
qualitatively similar under voltage or electron-energy
variation.

Another important property of coherent transport
through the DBRT structure is the scattering phase shift
of the transmitted electron, given by
a = tan ' [Im(pz+, )/Re(y~+, ) ]. Figure 3(a) shows the
phase shift a as a function of incident electron energy for
device A with no applied voltage. For most of the energy
range the phase shift gradually increases; however,
around resonance it rapidly shifts through 180. The
abruptness of this shift is shown in Fig. 3(b), where a is
plotted for energies very near the ground-state resonance.
As expected, the width of the step (approximately 0.03
mev in this case) corresponds to the characteristic reso-
nance width of transmission curve in Fig. 2(a).

The phase shift e may be related to the time delay A~
experienced by a wave packet through the approximation
h~=hda/dE. ' For most energies the time delay is
rather small, but near resonance the wave packet spends
significantly more time in the DBRT structure. One
effect of these time delays may be to enhance certain
types of inelastic scattering —e.g. , the interaction with
confined phonons —near resonance.

Once the transmission probability is obtained, the
current density through the structure is calculated using
the Tsu-Esaki current formula

em*k, TJ=
2m A

X P(E; V)ln
1+exp(E+ E—) Ikz T

dE,
o

' 1+exp(E~ E——e V)/ks T

(2.18)

where EF is the Fermi energy, T is the temperature, E is
the electron kinetic energy transverse to the device lay-
ers, k~ is the Boltzmann constant, and m * is the electron
effective mass in GaAs.

Figure 4(a) shows a plot of the current density J vs ap-
plied voltage V for device 2 with E~=20 meV (corre-
sponding to a doping in the emitter layer of roughly
2X10' cm ) and T=4 K. The current peaks at ap-
proximately 0.15 and 0.6387 V, the same voltages as the
transmission resonance peaks in Fig. 2(b). Because the
transmission peaks are very narrow (=3X10 eV for
the ground state) and the thermal energy is small
(=3X10 eV), the observed width of the current peaks
is determined entirely by the energy bandwidth of the
Fermi distribution in the emitter layer which, at low tem-
peratures, is simply the Fermi energy EF. This is impor-
tant if one wants to separate out the effects of phonon-
assisted tunneling satellite peaks' from the principal res-
onant tunneling peaks in experimental I-V curves. In or-
der to observe distinct satellite peaks we need to have
principal current peak widths which are less than the
characteristic LO-phonon energies. We note that if
space-charge depletion and accumulation effects are im-
portant (as can occur, e.g., when undoped GaAs spacer
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FIG. 2. (a) Transmission probability vs energy for device 2
with no applied voltage. The transmission peaks are centered
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vice A. (b) Phase shift vs energy near the ground-state reso-
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layers are included in the DBRT structure, ") they may
also affect widths of current peaks.

As the temperature increases to T=77 K in Fig. 4(b),
the Fermi distribution in the emitter layer broadens,
washing out the left-hand side of the current peaks.
However, the right-hand side of the peaks remains abrupt
on the scale of the transmission resonance widths. As
stated above, these calculations have ignored effects of in-
coherent electron scattering, space-charge effects, and
more complicated many-electron effects, all of which can
be important in certain real devices. As a result, typical
experimental I-V curves for DBRT structures only quali-
tatively resemble the graphs in Fig. 4.

III. SPATIAL STRUCTURE
OF ELECTRONIC WAVE FUNCTIONS

Once the transmitted wave amplitude A~+, is found
using Eq. (2.16), the left-justified electronic wave function
can be calculated across the entire DBRT structure by in-
verting the M and then successively solving for the A J
and 8 according to

=M (3.1)

where

(1+1/r )exp( —k a ) (1—1/r )exp( —k.a )

(1—1/r )exp(k. —a) (1+1/r )exp(k a) (3.2)

Four plots of lyl at successively increasing electron en-
ergies are shown in Figs. 5(a) —5(d) for device A. In these
log-linear plots, lpl is shown as a function of transverse
position z over the entire double-barrier structure. In
Fig. 5(a), with the incident electron energy below the first
resonance, lyl behaves as expected: in the barrier re-
gions the wave function decays exponentially, while in
the well region the wave function is roughly constant.
Figure 5(b), a plot for the ground-state resonant energy
E=77.135 meV, is also consistent with theoretical predic-
tions. In particular, lpl is a symmetric function about
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the well center and strongly peaked there, so that the
effective electron density in the well is enhanced by ap-
proximately three orders of magnitude relative to the in-
cident wave amplitude.

In studying phonon-assisted tunneling, we expect that
the spatial behavior and overlap of the initial and final-
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FIG. 4. (a) Current density vs applied voltage J( V) for device
2 with Fermi energy EF=20 meV and temperature T=4 K.
(b) J ( V) for the same structure at temperature T= 77 K.

FICx. 5. Spatial dependence of
l
yl' throughout device 2 with

zero bias for electron energies: (a) E=50.000 meV, (b)
E=77.135 meV, (c) E= 113.135 meV, and (d) E=313.610 meV.
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state wave functions will play an important role. For the
important case of LO-phonon emission in the z direction,
the final state is taken to be the resonant state at
E=77.135 meV and the initial state has energy
E=77.135 meV+ficoo, where ficuo is the LO-phonon ener-
gy. Because the LO-phonon energy in GaAs is approxi-
mately 36 meV, the wave function plotted in Fig. 5(c) is
for an energy E=113 meV, that is, 36 meV above the
ground-state energy. It is important to note that the
wave function is now visibly asymmetric with respect to
the well center [the cusplike dip in Fig. 5(c) is simply a
zero of the wave function as plotted on a logarithmic
scale]. Finally, a plot of the first excited resonant state at
E=313.62 meV is shown in Fig. 5(d). It exhibits a large
enhancement of electron density in the well as for the
ground state, although there is now a sharp dip indicat-
ing a wave-function mode at the well center. This results
from the fact that the first excited state is spatially an-
tIsymmetric with respect to the well center.

An equivalent set of wave-function plots is shown in
Fig. 6 for device B with no applied voltage. Although
Figs. 5 and 6 differ quantitatively, their essential features
are the same. Off resonance, the wave functions of Figs.
6(a) and 6(c) decay in the barrier layers from left to right,
while the ground and first excited-state wave

functions —in Figs. 6(b) and 6(d)—are strongly peaked in
the well and exhibit the same symmetry properties ob-
served for device A. The nonresonant states—
particularly those of Figs. 5(c) and 6(c)—show significant
asymmetry which, when quantified below, is of a similar
order of magnitude for either device 3 or B. In addition
to devices A and B, we have numerically studied the spa-
tial dependence of wave functions in several other rela-
tively narrow DBRT structures with differing Al barrier
layer concentrations and layer thicknesses, and have
found that they all share these general features.

To better see the symmetric and asymmetric behaviors
of the resonant and nonresonant states we have replotted
in Fig. 7 the wave functions of Fig. 5 in the well region
using a linear scale. Clearly visible in Figs. 7(a) and 7(c)
is the strong lack of symmetry with respect to center of
the GaAs well. This behavior has important conse-
quences for the relative magnitudes of the electron-
phonon matrix elements discussed in Sec. VI.

We have also examined the spatial dependence of wave
functions when the applied voltage is varied and the in-
cident energy is fixed and we find behavior which is quali-
tatively similar to that observed above for fixed voltage
and variable incident energy. Again, the wave function is
strongly peaked in the well on resonance, and for an ap-
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FICJ. 7. Spatial dependence of ~y~ in the well region of de-
vice A for electron energies: (a) E=50.00 meV, (b) E=77.135
meV, (c) E= 113.135 meV, and (d) E=313.620 meV.
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plied voltage 2(36 meV)/e=72 mV above the resonant
value, the wave function shows significant asymmetry
with respect to the well center. We find that this asym-
metry is of a similar order of magnitude for either fixed
energy conditions or the zero voltage bias conditions dis-
cussed above. Additionally, we find that the ground and
first excited states have approximate spatial symmetry be-
havior about the well center, but not the exact symmetry
observed for zero voltage bias because the DBRT poten-
tial structure is no longer perfectly symmetric about the
well center. We have found that this similarity between
spatial behavior versus voltage or versus incident energy
holds for applied voltages up to the order of 1 V.

IV. WELL ASYMMETRY PARAMETER

(4.1)

In order to quantify the degree of asymmetry in the
GaAs well with respect to the well center, we now define
a quantity 5, which can be termed a "well asymmetry pa-
rameter. " For an electronic wave function y the parame-
ter 5 is defined by

b=dn 0' z
2

where the integral implied in Eq. (4.1) extends only over
the GaAs well from z=0 to d, , and g is the standard
normalization: (y~tp) . Physically, this parameter is
just the normalized first moment of the electron probabil-
ity distribution ~y~ restricted to the well and relative to
the well center at z =d

&
/2. The well asymmetry parame-

ter 5 is plotted versus incident energy in Fig. 8 for device
with no applied voltage. As expected, 5 passes

through zero as the energy sweeps through the ground
and first excited-state resonances; this behavior rejects
the exact symmetry of these states. Also visible in Fig.
g is the fact that 5 attains its maximum value of —30%
for an electron energy —150 meV; this is -73 meV in ex-
cess of the first transmission peak. For an incident ener-
gy of 109 meV, which is approximately one optical-
phonon energy ( —36 meV) above the ground-state reso-
nance, we find that 6-22%. Thus we confirm that the
electronic wave functions that couple to the ground state
through confined LO-phonon emission are strongly asym-
metric.

Other DBRT structures that we have studied share
these general features. We generally observe an absolute
maximum in the asymmetry parameter 5 for energies
40—120 meV above the ground-state value with max-
imum value typically of the order of 30%. DBRT struc-
tures with relatively wider GaAs wells generally exhibit a
smaller maximum value of 5 as well as a smaller value of
5 at 36 meV about the ground state. This will reduce the
5 value for nonresonant states with energy on LO-phonon
energy A'coo in excess of the ground-state energy, which
are exactly the states that lead to phonon-assisted tunnel-
ing in I-V curves at low temperature. On the other hand,
lower A1, Ga, „Asbarrier heights (i.e., those with small-
er Al concentration) tend to slightly increase the max-
imum asymmetry as well as the asymmetry at one pho-
non energy above the ground state. Thus we anticipate
that processes which are sensitive to wave-function asym-
metry such as electron —confined —phonon scattering with
the lowest-order phonon mode (n =1), should be more
readily observable in wide DBRT structures that also
have large x values. On the contrary, if we want to
suppress this type of scattering, the trend should be to-
wards narrower DBRT structures with smaller x values
(although not x so small that the phonons are no longer
confined' ).

For a nonzero applied voltage, the 5 vs E and P vs E
curves both shift downward in energy, but other features
are qualitatively similar to the case of zero applied volt-
age. This behavior is shown in Fig. 9, which plots the
well asymmetry parameter and transmission probability
for device 3 with a fixed applied voltage V=0.1 V. In
this case the effect of the applied bias is to slightly in-
crease the maximum value of asymmetry to -33%; also,
the energy value for which maximum 5 occurs is approxi-
mately 65 meV in excess of the ground-state resonant en-
ergy, a smaller energy separation than that which occurs
for the same device when unbiased. Furthermore, for an
incident energy of 66 meV —approximately one optical-
phonon energy above the ground-state resonance —we
find 5-27%, which implies that the eff'ect of applied
voltage is to increase the asymmetry of electronic wave
functions which couple to the ground state via confined
LO-phonon emission. We have confirmed these trends in
other DBRT devices at several different applied voltages

0.3-
0 ~ 2-I

E 0.1-
L

0 ~ 0-05

-0.1—

E -0.2-
E~ -0.3-

-0.4-'
0.0 0.1 0 ' 2

-10
CO

M

~O
M
th~~0

0.3 0 ' 4

-10
Q
U

-10 ~$
~8

-10
0.5

I

-10

li

0 ~ 3-
4l
E 0.2-

0.1-
I
E 0.0-
E
thg -0.1-

0 ~ 0 0 ~ 1 0 ~ 2 0 ~ 3 0 ~ 4 0 ~ 5

0-1

02 e
B.

0-3 N
~I0

0-5 0
0

6 U

CF
0-7

Incident Energy (eV) Incoming Energy (eV)

FIG. 8. Well asymmetry parameter 6(E) and corresponding
transmission probability P(E; V) for device A with zero applied
bias.

FIG. 9. Well asymmetry parameter 6(E) and corresponding
transmission probability P(E; V) for device A with an applied
voltage of 0.1 V.
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and find that maximum asymmetry parameters as high as
45% can be achieved for appropriately designed struc-
tures.

V. PHONON-ASSISTED TUNNELING

Several experiments have observed satellite peaks in
DBRT current at voltages just above the resonant peak
and have attributed these peaks to phonon-assisted tun-
neling. ' '" At these voltages a small but finite portion of
the emitter electronic wave function extends through the
DBRT structure, as we have seen above. This wave func-
tion can couple with the resonant state through the emis-
sion of a LO phonon. If the width of the Fermi sea of
electrons is less than the phonon energy and the experi-
ment is performed at low temperatures, then the resonant
state energy will be less than energy of the conduction-
band edge. Therefore every electron that drops into the
resonant state can only tunnel out through the collector
barrier resulting in measurable current.

To calculate the excess current due to phonon-assisted
tunneling we first consider what types of electronic states
will contribute to the current. In a DBRT structure with
emitter and collector contacts, we can create two types of
orthogonal electronic states. Left-justified states, the
kind we have considered here, are formed by an incident
plane wave incident from the emitter. Right-justified
states are formed by plane waves incident from the col-
lector. The phonon-assisted tunneling process is illustrat-
ed in Fig. 10 for a specific incident electron energy, and it
is easy to see that the initial wave function for phonon-
assisted tunneling will be composed only of left-justified
states. Right-justified states can enter the well and emit a
phonon, but once the electron has dropped into the reso-
nant state it can only tunnel back out through the collec-
tor barrier. Thus the contribution of right-justified states
to the current will be zero.

On the other hand, since the energy of the final state is
lower than the conduction-band edge energy in the
emitter, the final (resonant) state for phonon-assisted tun-
neling can only be a right-justified state. When the width
of the resonant state is relatively narrow it is generally
reasonable to approximate the final state as a fully
confined state in the well. ' For the DBRT structures
considered here this approximation is quite good.

The excess current density due to phonon-assisted tun-
neling can then be calculated using

(5.2)

where E, is the energy of the initial electronic state, Ef is
the energy of the final electronic state, Scop is the energy
of the emitted LO phonon, and &„,is the Frolich Hamil-
tonian. Note that the states

~f ) and ~i ) are direct prod-
uct states of the electronic and phonon wave functions.

As stated in the Introduction, the exact form of the
Frohlich interaction due to confined phonon modes in
DBRT structures is not known. Two widely used models
are the dielectric continuum model and the hydro-
dynamic continuum model. In both of these models,
&„,can be written as

~con —~ e'q

[ 2+(~ yd )2)1/2

where

Xf (z, n)~a (qll +a t( q (5.3)

Scope

AI.,ep

1/2

(5.4)

The electrostatic potential associated with the phonons is
given by

nmf(z, n ) =sin
d

(5.5)

for the dielectric continuum model, or

where g, (k)=2AL, /(2n. ) is the density of states in the
emitter, f, (k) is the Fermi distribution of carriers in the
emitter, AI., is the effective volume of the emitter, and

p;,„(k)=gf g (i ~f ) is the total phonon emission rate
per electron from a given initial emitter state with wave
vector k. The sum gf is over all final states which have
a z component of energy equal to that of the resonant
state. Equation (5.1) is heuristically justified by noting
that there are f, (k)g, (k) emitter electrons per unit
volume of k space which tunnel by confined phonon
emission into the collector at a rate per electron W„„(k).
To obtain the total phonon-assisted tunneling current we
simply multiply these factors by the electronic charge
and integrate over k space.

The scattering rate W(i~f ) is calculated using the
Fermi golden rule:

J= e8'„„kg,k, E k dk, (5.1)
nnf(z, n ) =cos (5.6)

eV

)) VNf~E—
1

FICx. 10. Schematic illustration of phonon-assisted tunneling
in a DBRT structure under applied voltage V. The emitted
phonon is assumed to have negligible momentum parallel to the
interfaces.

for the hydrodynamic continuum model. In these formu-
las,

q~~
is the wave vector of the emitted phonon in the x-y

plane, a„(q~~)and a„(q~~)are the creation and annihilation
operators for phonons, ep is the permittivity of free space,

and xp are the high- and low-frequency relative dielec-
tric constants, respectively, Scop is the energy of LO pho-
nons, and d is the width of the confining region, either
the well or the barrier. When this Hamiltonian is substi-
tuted into the Fermi golden rule, Eq. (5.2), the resulting
emission rate is easily shown to be
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W(i ~f )= 2+a p
'2

Pl 7T

'ii "ii qii
(5.7)

where the overlap integrals of the electronic states with
the phonon potentials are given by

n 'ITZP„= yf (z)sin p;(z)dz
0

(dielectric continuum model), (5.8)

nmzP„= yf (z)cos y, (z)dz
0

W„„(k,n) ~
p2

n

2
—=Q. . (5.10)

We could also deduce this expression directly from Eq.
(5.7) simply by noting that the terms for which W(i ~f )

is maximum have qii =0.
Although the precise calculation of W„„(k)can be a

somewhat complicated procedure, the relative strength of
the satellite peaks due to phonon-assisted tunneling can
be approximately determined using Eq. (5.10). In partic-
ular, satellite current peaks are expected to be directly
proportional to the Q„'s. We choose an initial state that
has a z component of electronic energy that is A'co0 above
the resonant value since these are the states that will con-

(hydrodynamic continuum model) . (5.9)

The rate in Eq. (5.7) must then be summed over the
final states in the parallel direction to calculate the total
emission rate W„„(k).This emission rate has several im-

portant properties. First of all, it is largest when

q~~~
((nrrld, i.e., when the emitted phonon has very little

momentum in the x-y plane and most of the electron-
energy loss is in the z direction, a tendency which is
generally confirmed by experiments in bulk materials. '
Thus most of the phonon-assisted tunneling current
arises from initial electronic states that have a z com-
ponent of energy that is -fico0 above the resonant state
energy. Second, when qii is small, we have found that
W„„(k)is only a weak function of k~~~, where k

~

is the in-
coming electron momentum in the x-y plane. Thus we
have the following useful approximation for the total
emission rate:

tribute most strongly to the phonon-assisted tunneling
current. Then, using Eq. (5.10), we can determine wheth-
er phonons are emitted preferentially in the barrier layers
or the well, and which type of model for the confined
phonons —the hydrodynamic or the dielectric
continuum —will give the larger excess current. The
comparisons will only be approximate, but they are much
easier to perform than the direct current calculations and
give a useful guide to the relative importance of different
types of confined phonon scattering in measured current
voltage curves.

VI. MATRIX-ELEMENT CALCULATIONS

We have numerically calculated the Q„from Eq. (5.10)
in the dielectric continuum for the GaAs well of device A

using confined phonons with mode numbers n=1,2,3,
and the results are displayed in Table I. In the first line
of the table we calculate the Q„where yf is the ground
state with energy 77.1352 rneV and the initial state y; has
energy 113.1352 meV, one GaAs optical-phonon energy
in excess of the ground-state value. The length of the
confining region d is measured in angstroms, and the fac-
tor L, that arises from the normalization of the incoming
electronic state has been removed. In the full calculation
of current, Eq. (5.1), the factor L, cancels with an identi-
cal factor in the density of states. Note that Q, is the
largest of the three, indicating that the emission of a pho-
non with n=l is the most likely. The second line of
Table I displays the Q„where q&f is now the first excited
state with energy 313.6137 meV and the initial state has
energy 349.6137 meV, again assuming 36-rneV LO-
phonon energies. Note that the emission of an n =3 pho-
non has been considerably enhanced by the different spa-
tial properties of the first excited state.

The third and fourth lines of Table I presents calcula-
tions of the Q„for the left-hand Al Ga& „Asbarrier.
For x values greater than 0.7, the LO phonons in
Al Ga& „areprimarily AlAs-like, with an energy of
50.1 meV. As a result, in the first row of Table I we cal-
culate the Q„where the initial state y; has an energy of
127.2352 meV, 50.1 meV about the ground-state value,
while the second row presents calculations of the Q„
where y; has energy of 363.7137 meV, 50.1 meV above
the first excited state. In both cases the n= 1 mode dorn-
inates the higher-order modes.

We have numerically calculated the Q„in the hydro-
dynamic continuum model for the well and barrier of de-
vice 2 with confined phonons of mode numbers 1, 2, and
3, and the results are displayed in Table II. In the first
line of the table we calculate the Q„where pf is the

TABLE I. Electron-phonon matrix-element integrals calculated with the dielectric continuum model.

Initial energy
(meV)

113.1352
349.6137
127.2352
363.7137

Final energy
(meV)

77.1352
313.6137
77.1352

313.6137

Layer

well
well
barrier
barrier

1.88 X 10
2.38 x 10-'
3 98X 10
1.24 x 10

tl =2

2.00 X 10
2.68 X 10
5.45 x10-"
2.82 x 10

—»

n =3

5.07 x 10-'4
3.48x10 '
5.38 x10-"
2.52 x10-"
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ground-state wave function with energy 77.1352 rneV and
the initial state y; has energy 113.1352 meV, which is one
GaAs optical-phonon energy in excess of the ground-
state value. The second line of Table II displays the Q„
where yf is now the first excited state with energy
313.6137 meV and the initial state has energy 349.6137
meV, again assuming 36-meV LO-phonon energies. For
the ground-state resonance Qi and Q2 are approximately
the same, indicating that, in contrast with the dielectric
continuum model, the n=2 and 1 modes will contribute
just about equally. This is due to the difference in spatial
symmetry properties of phonon potentials in the dielec-
tric versus hydrodynamic continuum models.

The last two lines of Table II present calculations of
Eq. (5.10) for the first AI„Ga, As barrier. In the third
row of Table II we calculate the Q„where the initial state

y, has an energy of 127.2352 meV, 50.1 rneV above the
ground state, while the fourth row presents calculations
of the Q„where y; has energy of 363.7137 meV, 50. 1

meV above the first excited state. In both cases the n =1
mode dominates.

The first thing we note about these tables is the strong
effect of electronic state symmetry properties. This fol-
lows because phonon-assisted tunneling in DBRT struc-
tures does not involve transitions between two subbands
or entirely within one subband. Thus, in contrast to cal-
culations of electron-confined phonon interactions in
quantum wires, ' no phonon mode may be excluded on
the basis of its symmetry properties alone, and the rela-
tive symmetry of the electronic states will thus play a de-
cisive role in determining which phonons are preferen-
tially emitted. This effect is most striking for the hydro-
dynamic continuum model, as the Q, and Q2 are approx-
imately equal in line 1 of Table II. If phonon-assisted
tunneling were either a purely intersubband or intrasub-
band process, one of these Q„would be zero.

In both the dielectric and hydrodynamic continuum
models, the electron-phonon matrix-element integrals in
the well are larger than the corresponding integrals in the
barrier for energies near the first resonance of device A.
Thus, for the dielectric continuum modes of Table I, the
largest Q„ in the well layer with final-state energy
E=77.1352 meV is about 500 times larger than the larg-
est corresponding Q„in the barrier layer. Similarly, for
the hydrodynamic modes of Table II, the largest Q„in
the well region with Anal-state energy E =77. 1352 meV
is more than 1000 times larger than the largest corre-
sponding barrier value. This means that, in general,
there is a greater probability of emitting a phonon in the
well rather than emitting a phonon in the first barrier for
energies near the first resonance. This tendency should

be even greater in the real case where voltage is applied,
since this tends to reduce the magnitude of the final-state
wave function in the first barrier. We have verified this
behavior in other DBRT structures with design parame-
ters similar to device A —that is, relatively narrow bar-

0
riers ((50 A) with relatively large Al concentration
(x )0.6). As an experimental consequence of preferred
phonon emission in the GaAs well, we expect the
phonon-assisted tunneling satellite peaks in I-V curves
due to confined modes in the well will be substantially
larger than satellite peaks due to barrier confined modes.

Current-voltage characteristics may also enable
researchers to distinguish between the two types of
confined phonon modes referred to above. Note that the
electron-phonon matrix-element integrals for the dielec-
tric continuum model tend to be substantially larger than
the corresponding integrals for the hydrodynamic contin-
uum model. For instance, comparing the largest ele-
ments of the first lines of Tables I and II, we notice that
the Q, entry in Table I is about 10 times larger than the
Q, entry in Table II. As a result, the current satellite
peaks due to phonon-assisted tunneling are predicted to
be approximately 10 times larger for the confined modes
of the dielectric continuum model. Detailed numerical
calculations of DBRT device current-voltage characteris-
tics which use the Q„values to predict absolute magni-
tudes for the satellite peaks are in progress and will be re-
ported in a separate publication.

VII. CONCLUDING REMARKS

In this paper we have numerically examined electronic
wavefunctions in GaAs/Al„Ga, „AsDBRT structures.
In addition to confirming expected behavior for the
transmission coefficient and current density, we have
shown that the electronic wave functions for off-
resonance energies can be significantly asymmetric with
respect to the center of the well. This turns out to have a
strong effect on the coupling between electron states and
the confined LO phonons in double-barrier quantum well
structures.

The sensitivity of spatial properties of electronic wave
functions on DBRT device parameters suggests the possi-
bility of "wave-function engineering. " Thus, for exam-
ple, the width of the well and the height of the barriers
might be experimentally designed in order to minimize
the effect of electron —confined-LO-phonon coupling, or
to enhance scattering via one phonon mode over another.
The asymmetry of off-resonance electronic wave func-
tions should also have measurable effects on the optical
properties of appropriately constructed quantum-well de-

TABLE II. Electron-phonon matrix-element integrals calculated with the hydrodynamic continuum model.

Initial energy
(meV)

113.1352
349.6137
127.2352
363.7137

Final energy
(meV)

77.1352
313.6137
77.1352

313.6137

Layer

well
well
barrier
barrier

Q. =1

9.02 X 10
5.72 x 10-"
9.21x 10-"
3.26 x 10-"

Il =2

8.22 X 10
2.46 x 10-'
7.69 X 10
6.47 x 10-"

n =3

2.79 x 10-"
5.05 X 10
3.96 X 10
7.54 x 10-"
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vices.
Throughout this paper, we have neglected various

effects that can be significant in determining the I-V
curves of real devices. A particularly important case con-
cerns space-charge effects in which accumulation and de-
pletion layers may form which take up much of the volt-
age drop across the device. This, in turn, can create
charge buildup in the well and may significantly alter the
shape of the potential in the DBRT structure. " Such
effects tend to be more important in structures that are
grown with large spacer layers. While the effect of
charge buildup can be quantified with the use of self-
consistent calculations, the effect of accumulation and de-
pletion layers is difficult to calculate under the nonequili-
brium conditions that result when a current Aows
through the device. One frequently used approximation
involves calculating the voltage drop across accumulation
and depletion layers using a static Poisson equation
which assumes that the Aow of current does not appreci-
ably alter the charge density. ' Such an approach could
be incorporated into our method for calculating phonon-
assisted tunneling in a straightforward manner.

If the dielectric continuum picture of localized phonon
modes is essentially correct, then an effect which is ex-
pected to be particularly important in double-barrier
structures with either vary narrow wells or barrier layers
is phonon-assisted tunneling due to symmetric interface
modes. We have recently performed calculations
which indicate the importance of phonon-assisted tunnel-
ing due to symmetric interface modes (which have A1As
phonon energies, i.e., 50.1 meV, and are associated with
the two inner heterointerfaces) in structures with narrow
well layers ((100 A). At the same time, structures with
very narrow barrier layers ((25 A) show strong effects
due to other symmetric interface modes which are associ-

ated with the outer heterointerfaces and have GaAs pho-
non energies, i.e., 36 meV.

Another potentially important effect concerns the
inAuence of the X point in the barrier layers on measured
I-V curves of DBRT structures. In Al Ga, „Aslayers
with x )0.45, the X-point minima of the conduction band
have lower energy than the I -point minimum; thus there
is a tendency for electrons to scatter from the I point as
they tunnel through the Al Gai As barriers. Experi-
mental and theoretical studies indicate that I -to-X con-
version becomes significant only for relatively thick bar-
riers (&50 A) where x &0.45; thus we may safely
neglect this effect in analyzing narrower DBRT struc-
tures such as devices 3 and B from above.

The effects of band nonparabolicity may also become
important if the electrons are sufficiently "hot." While
there are sophisticated ways of treating such effects, the
simplest method is to define an energy-dependent
effective mass. This has been found to give good agree-
ment between theory and experiment and we note that
such an energy-dependent effective mass can be easily in-
corporated into our transfer-matrix calculation. Finally,
we note that other complex effects such as many-electron
interactions, interface scattering, ' impurity, and trap
state scattering can be important in certain real de-
vices. The possible role of such effects in experimental
measurements depends sensitively on device parameters
and should be considered in constructing a complete pic-
ture of resonant tunneling in double barrier structures.

ACKNOWLEDGMENTS

We would like to thank Michael A. Stroscio, Theda
Daniels-Race, and Berndt Muller for helpful conversa-
tions.

W. R. Frensley, Rev. Mod. Phys. 62, 745 (1990).
2W. R. Frensley, J. Vac. Sci. Technol. B 3, 1261 (1985).
3M. C. Payne, J. Phys. C 19, 1145 (1986).
4R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).
B.K. Ridley, Phys. Rev. B 39, 5282 (1989).

7N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys. Rev.
Lett. 61, 1396 (1988).

M. Jonson, Phys. Rev. B 39, 5924 (1989).
W. Cai, T. F. Zheng, P. Hu, B. Yudanin, and M. Lax, Phys.

Rev. Lett. 63, 418 (1989).
' V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev.

B 36, 7635 (1987).
M. L. Leadbeater, E. S. Alves, L. Eaves, M. Henini, O. H.
Hughes, A. Celeste, J. C. Portal, G. Hill, and M. A. Pate,
Phys. Rev. B 39, 3438 (1989).
F. Chevoir and B.Vinter, Appl. Phys. Lett. 55, 1859 (1989).

'3M. V. Klein, IEEE J. Quantum Electron. QE-22, 1760 (1986).
' R. Fuchs and K. L. Kliewer, Phys. Rev. 140, A2076 (1965).
' M. A. Stroscio, Phys. Rev. B 40, 6428 (1989).
i6J. Menendez, J. Lumin. 44, 285 (1989).

M. Babiker, J. Phys. C 19, 683 (1986).
Y. Ando and T. Itoh, J. Appl. Phys. 61, 1497 (1987).

9P. J. Turley, S. W. Teitsworth, and P. Bhattacharya (unpub-

lished).
2 E. Gerjuoy and D. D. Coon, Superlatt. Microstruct. 5, 305

(1989).
H. C. Casey and M. B. Panish, Heterostructure Lasers
(Academic, New York, 1978), Pt. A, Chap. 4.
P. England, J. R. Hayes, M. Helm, J. P. Harbison, L. T.
Flores, and S.J.Allen, Appl. Phys. Lett. 54, 1469 (1989).
D. D. Coon and H. C. Liu, Appl. Phys. Lett. 47, 172 (1985).
B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984).
E. H. Hauge and J. A. St&vneng, Rev. Mod. Phys. 61, 917
(1989).
J. R. Barker, Physica B 134, 22 (1985).

27S. Collins, D. Lowe, and J. R. Barker, J. Phys. C 20, 6213
(1987).

A. P. Jauho and M. M. Nieto, Superlatt. Microstruct. 2, 407
(1986).

~9A. Messiah, Quantum Mechanics (Wiley, New York, 1958),
Vol. 1.
P. J. Turley and S. W. Teitsworth (unpublished).

'U. Sivan, M. Heiblum, and C. P. Umbach, Phys. Rev. Lett.
63, 992 (1989).
T. W. Hickmott, P. M. Solomon, F. F. Fang, F. Stern, R.
Fischer, and H. Morkoc, Phys. Rev Lett. 52, 2053 (1984).
The matrix elements for the right-hand barrier are not shown



3210 P. J. TURLEY AND S. W. TEITSWORTH

because the nonresonant wave functions are very small there,
as can be seen in Fig. 5. As a result, the contribution of
confined phonon modes in the right-hand barrier to the
phonon-assisted tunneling signal will be exceedingly small.
J. A. Kash, S. S. Jha, and J. C. Tsang, Phys. Rev. Lett. 58,
1869 (1987).

D. W. Nam, N. Holonyak, E. J. Vesely, and R. D. Dupuis,
Appl. Phys. Lett. 57, 46 (1990).
W. R. Frensley, in Nanostructure Physics and Fabrication,
edited by M. A. Reed and W. P. Kirk (Academic, New York,
1989), p. 231.

D. Landheer, H. C. Liu, M. Buchanan, and R. Stoner, Appl.
Phys. Lett. 54, 1784 (1989).
E. E. Mendez, W. I. Wang, E. Calleja, and C. E. T. Gongalves
da Silva, Appl. Phys. Lett. 50, 1263 (1987).
H. C. Liu, Superlatt. Microstruct. 7, 35 (1990).
T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).
D. D. Coon and H. C. Liu, Superlatt. Microstruct. 6, 409
(1989).
A. D. Stone and P. A. Lee, Phys. Rev. Lett. 50, 1503 (1987).
M. Biittiker, IBM, J. Res. Dev. 32, 63 (1988).

44H. A. Fertig and S. Das Sarma, Phys. Rev. B 40, 7410 (1989).


