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The motion of a single hole in a two-dimensional Heisenberg antiferromagnet (AF) is studied
in a representation where holes are described as spinless fermions (holons) and spine as normal
bosons. Assuming long-range AF order the spin dynamics is treated in linear spin-wave theory. The
formulation highlights the close relation with the conventional polaron problem. The holon Green's
function is calculated self-consistently within the Born approximation using finite-cluster geometries
for the numerical solution. As a remarkable result we find close agreement with the spectral function
A(k, io) of a hole calculated by exact diagonalization methods. A(k, cu) is characterized by a narrow
quasiparticle (QP) peak at the low-energy side of the spectrum, which is well separated from the
incoherent part for large enough J values. A complete characterization of our solution is given,
including the spectral weight, the dispersion relation, and effective masses of the QP state. A finite-
size-scaling study gives a nonvanishing spectral weight of the QP in the thermodynamic limit for
values 1/t typical for copper oxide superconductors. Our calculations indicate that the self-consistent
Born approximation is a valuable scheme for characterizing the dynamics of a hole in the t- J model,
even in the strong-coupling regime.

I. INTRODUCTION

An accurate description of the properties of charge
carriers in hole- and electron-doped high-temperature
superconductors (HTSC's) arising from their interaction
with the spin of the Cu atoms (S = 2) seems to be crucial
for the understanding of superconductivity in these mate-
rials. The undoped reference materials such as I,a2Cu04
are antiferromagnetic (AF) insulators and are well de-
scribed by the isotropic spin-

&
Heisenberg model. This

I

is a direct consequence of strong correlations on the Cu
sites leading to a Cu configuration close to d . The
strong interaction between carriers and spins is evident
from the disappearance of antiferromagnetic long-range
order at very low doping concentration. It has been sug-
gested early on by Anderson that the single-band Hub-
bard model, i.e. , including only the Cu sites of the Cu02
planes, may serve as the generic model describing the
essential physics of the charge carriers in HTSC's. The
t-J model considered here follows in the large-U limit by
projecting out doubly occupied configurations:5

The model is characterized by an antiferromagnetic su-
perexchange J and a kinetic energy with the constraint
of no double occupancy, i.e. , c; = c, (1 —n, ). For
later convenience we allow here for the anisotropic case,
i.e. , the Heisenberg (Ising) limit is given by n = 1(0),
respectively. We call it the t Jmodel wh-en in the Ising
limit. The connection of the single-band model to the
more realistic Emery model has been clarified by Zhang
and Rice and others.

The existence of quasiparticles (QP's) has been shown
in a number of numerical diagonalization studies of the
single-particle spectral function for two dimensions.
These spectra are characterized by a QP peak at low

energy well separated from the broad, incoherent part
of the spectrum which has a width of about 6—7t. The
coherent propagation of the QP is described by a dis-

persion relation Ey resulting from eA'ective nearest- and
next-nearest-neighbor hopping processes on the same
sublat tice. The minimum energy of EI, is at k
(+z-/2, +sr/2).

VVhereas considerable insight in the properties of these
strongly correlated systems has been achieved by the
above-mentioned diagonalization —and also by Monte
Carlo calculations, no comparable progress has been
made by analytical methods. In particular, the existing
analytical approaches and also the more recent concepts,
e.g. , auxiliary boson methods, have not yet been checked
critically against the wealth of spectral data obtained by
the numerical methods.

We follow here an approach proposed by Schmitt-Rink,
Varma, and Ruckenstein which is based on the approx-
imate diagonalization of the Heisenberg part of Eq. (1)
via Holstein-PrimakoA transformation. The kinetic part
in Eq. (1) rewritten in terms of spinless hole (holons) and
spin-wave operators yields the coupling between holes
and spin waves. The form of the Hamiltonian is thus
similar to that of the polaron problem. A detailed inves-
tigation of the single-particle Green s function based on a
"dominant pole approximation" has been given recently
by Kane, Lee, and Read. An alternative formulation
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has been suggested by Su et al. ~6 using a Bogoliubov —de
Gennes type of formalism. More recently, a similar ap-
proach has been applied to the spin-fermion Hamiltonian
for the |u02 planes, while the related ferromagnetic
problem was studied in detail in the context of the s-d
Hamiltonian.

The purpose of our work is to demonstrate that in
fact the most elementary self-consistent Born approxima-
tion of this problem yields spectral functions for the two-
dimensional (2D) case in good quantitative agreement
with previous numerical diagonalization studies for small
systems. Hence this approach may provide a valuable
scheme for further work on spectral properties, quasi-
particle interactions, etc. A preliminary report has been
given elsewhere.

We may therefore understand the appearance of a
bound state, i.e. , the QP, as a consequence of the holon-
spin-wave coupling similar to the standard polaron prob-
lem. An interesting aspect of this formulation of the t-J
model is the absence of a free kinetic energy for the spin-
jess fermions. The coherent propagation of the QP, with
a bandwidth W J for J ( t, is a result of the cou-
pling to spin waves. This is diA'erent from the usual no-
tion in the polaron problem, where the free (band) mass
becomes renormalized due to the coupling of phonons.
Here instead it is the coupling to the spin waves which is
the only source for the dispersion of the QP. This does
not invalidate the explanation of the QP in terms of the
"string picture, "~o where the hale is surrounded (with a
certain amplitude) by strings af Hipped spins. The spin-
correlation function around the spin polaron remains an-
tiferromagnetic, contrary to the quite popular concept of
a ferromagnetic polaron, ~ where the hole is assumed
to move in a ferromagnetic region.

The paper is organized as follows: Section II gives an
outline of the reformulation of the Hamiltonian in terms
af spinless fermions and spin waves. Section III contains
a description of the self-consistent Born approximation,
the analysis of higher-order vertex corrections, and the
explicit discussion of certain limiting cases. Numerical
results for self-energies and spectral functions are given
in Sec. IV. This section also summarizes the results for
the QP state and related quantities, including the spec-
tral weight, QP dispersion, eff'ective masses, bandwidth
and total energies for the perturbative and nonpertur-
bative regime, that is, large and small J/t. Section V
discusses the relation of our results to angular resolved
photoemission and further experiments. We summarize
our results in Sec. VI. An appendix gives some details of
the calculation of the holon Green's function.

II. t-J MODEL IN TERMS GF
SPINLESS FERMIONS AND
SPIN-WAVE AP ERAT(3RS

Our aim is the calculation of the single-particle Green s
function

as described by the Heisenberg AF (HAF) defined in
Eq. (1). To arrive at this goal, it will be profitable first
to diagonalize the spin Hamiltonian HJ, at least approx-
imately.

Following this physically motivated strategy we prop-
erly include the dynamics, i.e. , the spin-wave excitations,
and moreover the eff'ect of the zero-point motions in

~Qadi) will be automatically included in the calculation of
G (k, ~).

The transformation to spin waves is performed within
linear-spin-wave (LSVV) theory, ' although this ap-
proach may appear questionable in '2D and for S

However, a series of recent numerical studies have
shown 2 that even for this subtle case, i.e. , 2D and
S = 2, the predictions of LSW theory are qualitatively
correct and quantities such as the sublattice magnetiza-
tion (S~) and the spin-wave vejocityz are only slightly
renormalized.

Ta simplify the notation it is convenient to perform
first a rotation af the spins on the 8 sublattice by 180
about the S~ axis:z7

gZ gZ cj ~cj, j PB.
This canonical transformation changes the Neel configu-
ration

~
1'ft'1, ) into a ferromagnetic state with all spins

up and removes the further necessity to distinguish be-
tween sublattices. The Hamiltonian then has the form
H = Hg+ HJ, with

) (1 —n; )ct c (1 —n~ )+H.c. , (4)
(~j}~

Next we introduce Bose operators a; by means of
Holstein-Primakoff transformation, i.e. , for S =

z .'

S+= (1 —a a)a; a, ,

S; =aJ (1 —ata, )-at

The linear approximation provides a rather good descrip-
tion of the spin-dynamics as mentioned previously. Also
a mean-field consideration leads to a similar expectation,
as 1 —(ata, ) is close to ane, although the spin devia-

tions are not small in 2D, i.e. , (a, a,.) =
2

—(S~) = 0.2.
Following Ref. 14 we define creation operators for spin-

less holes

ht =c;g
and express the fermion operator c;g as a composite op-
erator

for a hole propagating in a fluctuating spin background The local-fermion Hilbert space (excluding double occu-
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pancy
~ t/)) is thereby mapped onto the product space

Ihole) Ispin), with nI, = 0, 1 and s = +-'.
In spin-holon notation there is a spin at each site even

in the presence of a hole, and spin and holon operators
commute, e.g. ,

[h, , S,+] = 0.

As compared to the original local-fermion Hilbert space,
which consists of three states, i.e. , ) 't)~, ( J.)~, and ~0)~,
there are now four states, namely ~0, 1'), ~0, $), ~l, 't), and
~1, J,). Here "1" denotes the presence of a hole.

To guarantee the correct dimensions of the local
Hilbert space we may add the constraint [Cl]: At a given
site there cannot be both a hole and a spin deviation,
thereby eliminating ~1, J,). Formally the constraint [Cl]
may be incorporated by adding

H, = A ) hthata;

to the Hamiltonian. For A )) 1 this term removes the
unphysical states from the low-energy sector. We shall
describe thereafter how this constraint may be included
in a diagrammatic expansion.

On the other hand, we would like to stress here that
our results for the motion of a hole in a quantum AF
show that the complete neglect of the constraint [Cl] is
not a severe approximation. Its proper inclusion in the
Ising limit is important, however.

The basic constraint [C2] of the t Jmodel-, namely,
that no double occupied configurations

~

t'J, ) are created,
5SZ.

c,T ) $)+ = (1 —n;&) c,
& ( $)~ = 0,

is automatically fulfilled as

h;i0, $) = 0,

and similarly for reversed spin orientations.
Following these steps the Hamiltonian becomes

Hip = —t ) (h, hta + H.c.)
', (')

+—) h;ht[n(a;a + aJa~t) + a;a, + a.ai]h~h.'',2(')

JN(s2 + —')(1 —b)—~.—
2 4

Here j(i) denotes the neighboring sites of i and z is the co-
ordination number. The additional factors h;h, - and h h
take care of the loss of magnetic energy in the presence
of holes. In mean-field approximation we may replace
h;ht = (1 —hth, ) by (1 —6), where 6 is the concentration
of holes.

In Fourier space and after Bogoliubov transformation
o,

&
——u a —e a, we arrive at

zt
Hi —— ) hqhq n (uqyi, + vqyi, ) + H.c.,k

Hz: ) cdqn n + Eg.

The spin-wave energy uq ——sz J(1—6)2vq and the Bogoli-
ubov coherence factors are given by the usual expressions
in linear spin-wave theory:

v, = 1 —(npq)',

) i/2

2vq )
1 —vq 5

vq = —sgn(pq)
2vq

The similarity of the Hamiltonian with that of the
classical polaron problem 2 is obvious. Here the spin
waves play the role of the phonons. As a noticeable
diff'erence we see that a bare term, Ho ——P& e&h&h&,

for the spinless fermions is absent. The kinetic term of
the t-J model transforms into the coupling term which
is proportional to t. Further, the coupling function
M(k, g) = (uqy~, + vqy„) in Eq. (12) vanishes at q = 0
and (qr, 7r), and becomes large at intermediate values of
the momentum transfer q. Hence, it is the coupling to
the short-wavelength spin fluctuations which is impor-
tant. As for the copper-oxides t ) J, the Hamiltonian de-
fined by Eqs. (12) and (13) then poses a strong-coupling
problem.

III. SELF-CONSISTENT CAREEN'S-FUNCTION) N
APPR(BACH AND VERTEX CQRRECTIQNS

A. Born approximation

Given the Hamiltonian of the t Jmodel i-n its form of
Eqs. (12) and (13), describing holons (spinless fermions)
strongly coupled to spin-wave excitations, we will calcu-
late next the holon Green's function:

G"(k, ~) = 0 hs ht 0).II+Zp '
Here the vacuum state for the spinless fermion operators
is the state without holes and with respect to the spin-
wave operators o« it is the quantum Neel state

(0);„=exp ) —'atat, ~N),
Dq

where ~N) is the classical Neel state, i.e., when we ac-
count for the rotation (3) the ferromagnetic state. The
electron Green's function in Eq. (2) after substituting

Here the function pq ——2(cosg + cosq&), defining the
lattice constant a = 1. The ground-state energy EJP in
Eq. (13) for s =

2
is given by

p z ( 1 —- l 1
Eq —— JN(l ——b—) s + ns 1 ——) vq +—

2 N — ) 4
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the electron operator ct. according to Eq. (7), appears
at first glance as a higher-order Green's function. How-
ever, when treating the Bose operators in the mean-field
approximation as is shown in the Appendix, 6 turns
out to be equivalent to G". That this close correspon-
dence of these two Green's functions persists beyond the
mean-field level can be concluded from the remarkable
agreement of our results obtained for G" and the exact
diagonalization results for G

The holon Green's function G"(k, u) = [u —K(k, u) j
can be calculated in a straightforward way within the self-
consistent Born approximation, ' which is equivalent
to the series of diagrams displayed in Fig. 1. Using stan-
dard techniques one finds for the self-energy at zero
temperature

N u —~~ —E(k —q, ~ —~~)
'

where M (k, q) = (uzp& + v&p&) . As we are particu-
larly interested in the strong-coupling case (Z ) J) the
self-consistent solution of this equation is crucial, and
must be performed numerically. From this the spectral
function is defined by A(k, u) = —(I/x)lmG" (k, u + ib)
with 6 ~ 0+. In practice, we take small values of 6 to
facilitate the numerical analysis.

We mention the appearance of the analogous equation
in the polaron literature, yet we are not aware of a
complete solution for the strong-coupling limit.

which defines a ladder spectrum for J ) 0. See also
Fig. 3 below. This may be understood in the string
picture, where the hole is bound in a linear potential
due to the Hipped spins. We mention briefly the results
in the Ising case, namely: (i) the number of split peaks
scale roughly with 1/J, (ii) the low-lying ones are sep-
arated by J ~, and (iii) most importantly, as a con-
sequence of (i) the spectral weight of the higher peaks
decreases with increasing J. For J = 0 Eq. (20) yields
the result Z(ur) = &(u + gu2 —4zt~), thereby a contin-
uous spectrum appears with an incoherent bandwidth of
4t~z Th.is result divers from the rpa where a reduced
bandwidth W;nc = 4tgz —1 is obtained. 2i

It has been noted earlier by Kane, Lee, and Read
that the discrepancy in the bandwidth is due to the fol-
lowing difference between the rpa and the Born series in
Fig. 1: In rpa a hole at site i~ arriving from i q may hop to
any nearest neighbor i3 except back to i3 —i~. Until now
there is no such restriction in the diagrammatic expan-
sion. If we look more carefully at the diagram, Fig. 1(c),
we observe that for i3 ——ii the hole has created two spin
deviations at sites i~ and i2, while hopping from i~ to
i2 and back to iq. Of course this process is unphysi-

(a)

B. Corrections beyond Born-approximation

The leading vertex corrections are displayed in Fig. 2.
We consider here diagrams in real-space representation,
as they allow for a direct interpretation in terms of el-
ementary processes. Also we limit ourselves here to
the Ising limit (n = 0), where we are in the position
to compare with analytical results obtained within the
retraceable-path approximation (rpa). 2i

First we will review the previous results for E obtained
within the Born approximation. In the Ising case the
equation for the self-energy, Eq. (19), becomes momen-
tum independent as the coupling function M has then
the form M(k, q) = pt. &. With uz ~ ~o —2Jz and

(I/K) P p~ = z one obtains

(20)
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FIG. 1. Leading diagrams included within self-consistent
Born approximation. Holon and spin-wave propagators are
represented by solid and dashed lines, respectively. The real
space coordinate labels pertain to the discussion of the Ising
limit in Sec. III B.

FIG. 2. Vertex corrections omitted in Born approxima-
tion. In the Ising case (a) describes an intermediate state
with a hole together with a spin deviation at site i~. Diagram
(b) describes the propagation of a hole around a plaquette
(clockwise or counterclockwise) from site ii to a next-nearest
neighbor site i3. This process leads to the delocalization of
the hole in the Ising limit.
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FIG. 3. Spectral function A(k, u) for a lattice of 16 x 16
sites in the t- J model and for J = O.lt. To obtain this dis-
persionless ladder spectrum Eq. (20) was iterated more than
100 times using a broadening b = 0.01t. Our unit of energy
ist=1.

cal. In the present framework it is the constraint [Cl]
which requires this diagram to be excluded for i3 ——iq.
It is straightforward to include the constraint also in all
higher-order diagrams of the Born series (Fig. 1). If we
do so we then arrive at

zg2
K(~) =

~ —(up —[(z —1)jz)E(~ —~p)
' (21)

in agreement with the retraceable-path approximation.
Turning now to the self-energy contributions in Fig. 2

which contain vertex corrections, we realize that the first
diagram, Fig. 2(a), again violates the constraint [Cl].
This diagram contains a hole at iq in an intermediate
state together with a spin deviation at the same site,
hence it should be dropped for n = 0.

The next diagram, Fig. 2(b) of order t /J, , is inter-
esting as it describes the motion of a hole around an ele-
mentary plaquette creating spin deviations at i~, i2, and
i3 and annihilating them in the same sequence. Thereby,
the hole has moved from i~ to i3. This process, as dis-
cussed by Trugman, leads to the delocalization of the
hole in the Ising limit.

In fact due to these processes the complete result for
A(k, ~) in the Ising limit is not a pure ladder spectrum
for J & t. A spectral function obtained by exact diag-
onalization is shown for comparison in Fig. 4 (see also
Ref. 11). Equation (21) is merely the result obtained on
a Bethe lattice, that is, excluding processes with closed
loops.

The discussion of the Ising case also demonstrates the
necessity to solve the equation for the self-energy (19)
self-consistently, as the problem must, be treated to infi-
nite order in perturbation theory. Only then is the cor-
rect analytical structure for Z(u) obtained in the strong-
and intermediate-coupling regimes.

FIG. 4. Exact diagonalization result for the spectral func-
tion A(k, u) of the t Jmo-del in a 4 x 4 cluster at wave vec-
tor k = (s/2, 7r/2) and for a value 1 = O. lt, using a constant
b = 0.01t.

Although we will not go int, o a discussion of the
isotropic case here, we wish to point out that the contri-
bution from vertex corrections seems not to be that im-
portant, for n = 1. The delocalization of holes is mainly a
result of the action of the spin-Aip terms in HJ, whereas
the Trugman processes give only a minor contribution to
the coherent motion for not too large values of J, and
are completely irrelevant for J & t. The unimportance of
the constraint [Cl] may be understood as a consequence
of the propagation of the spin deviations in this case.

It is also remarkable that the solution of Eq. (19) for
the isotropic case and J ~ 0 already gives a reduced
bandwidth R'inc 7t, without taking into account the
constraint [Cl], as is shown in the next section. In the
Ising limit, on the other hand, it is crucial to include this
constraint to obtain the reduction of the bandwidth.

IV. NUMERICAL SOLUTION AND
RESULTS FOR THE t-J MODEL IN 2D

A. Spectral functions

This section gives a description of the numerical results
obtained for the integral equation (19) in two-dimensions.
Selecting different cluster sizes the wave numbers k and
q in Eq. (19) are chosen as for a cluster with N sites and
periodic boundary conditions. This choice allows us a de-
tailed comparison with results from exact diagonalization
studies for small clusters, which are free of any approx-
imation. A systematic study of the convergence of the
results with increasing N is also feasible. We reduce as
much as possible the numerical eA'ort by exploiting all
possible symmetries. This amounts for instance in a cal-
culation of a 16 x 16 lattice to deal only with 25 0 points
in the irreducible wedge of the AF Brillouin zone (BZ).
A typical mesh for the energy scale u consists of 1000
points to achieve suKcient energy resolution. The sum
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rules on A(k, cu) were satisfied to within better than 0.1%
at each iteration. The number of iterations required in
the small- J limit was typically 50—80 and of course much
less for J & t.

In Fig. 5 we show spectral functions for a lattice of
4 x 4 sites and for J = 0.2 (we will refer all quantities in
units of f from now on). To allow for a direct comparison
with exact diagonalization results, where the excitation
energies cu„k = E„+ (k) —Eg in a photoemission pro-
cess refer to the ground state of the N-particle system,
we have included in our calculations of Fig. 5 (only for
this case) the energy shift resulting from the change of
the ground-state energy E&~, Eq. (16), when removing a
spin. As in the exact diagonalization study, see Fig. 6 for
comparison, we observe that a weH separated QP peak
is obtained at the bottom part of the spectrum with its
minimum energy at (ir/2, ~/2).

Several features deserve a discussion with this clus-
ter. First, it is well known that an accidental degeneracy
makes coincidence of (ir /2, 7r /2) and (ir, 0) states in this
particular geometry, so the minimum QP energy can-
not be distinguished from these two points. Secondly,
since there is a degeneracy of (0, 0) and (m, vr) states in
our broken symmetry treatment, we thus have only three
diA'erent k points, the others are shown in the insets of
Fig. 5: (0, 0) and (ir /2, 0). Consequently, the density of
states would then have two main peaks at the bottom

part (a third coming from (0, 0) has a very small inten-
sity), as compared with Fig. 11 of Ref. 11. Thirdly, as in
the exact calculation, the solution found for the spectral
function at (0, 0) has its main spectral weight at about

0 (see inset in Fig. 5), a feature which is shared by
all states close to the I' point, as will be seen below.

tA'e change now to the study of a bigger cluster. Re-
sults for the spectral function in a lattice of 16 x 16 sites
and J = 0.4 are shown in Fig. 7. The situation in this
case, as compared to Fig. 5, is that the QP peak is sep-
arated from a broad continuum, relatively structureless,
except for those states close to (0, 0). At (ir/2, x/2) there
are also some extra small peaks in the depletion between
the QP peak and the incoherent part [the energy inter-
val —2 ( u ( —1 in Fig. 7(b)j, which presumably wiH

change into a continuum with small spectral weight for
even larger systems. Spectra at (ir/2, ir/2) and (ir, 0)
are now different and the minimum QP energy is at
(ir/2, x/2) and the maximum at (0, 0). The total density
of states, Fig. 7(c), reveals the band of coherent states at
the low-energy side of the spectrum, with an incoherent
background starting at about ~ —1.5.

The corresponding data of Z(k, ru) for a lattice of
16 x 16 sites and J = 0.4 is shown in Fig. 8. Upper
panels (a) and (b) show real and imaginary parts of Z
for k = (0, 0) and lower panels (c) and (d) the same for
k = (7r/2, 7r/2). The solution is qualitatively different

(rr/2, n/z) (o,o)

0
6

~ 4
3

2

I, I i&4 I I I

(n/z, o)

ilUIII ELM
—1 0 1

FIG. 5. Spectral function A(k, u) at wave vector k = (s'/2, s/2) for a cluster of 4 x 4 sites and J = 0.2 as calculated in Born
approximation. Insets: k = (0, 0) and k = (s/2, 0). Our results have been shifted by the constant energy describing the change
of the ground state, Eq. (16) 0.28 in this case, to compare with the results from exact diagonalization studies of Fig. 6.
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lowest part of the spectrum. In other words, for small J
the spin fluctuations are not fast enough to completely
destroy the string which lasts for a time I/J. That
is, for J (( t the hole can perform many hops before the
spins can relax.

B. Quantities related to the quasiparticle

We present here some features of the QP peak, such as,
e.g. , its spectral weight and the dispersion as a function
of J, together with a detailed comparison with known
results from exact diagonalization for small clusters.

FIG. 6. Exact diagonalization result for the spectral func-
tion A(k, u) of one hole in the t- 1 model in the singlet sector
using a 4 x 4 cluster at k = (n/2, 7r/2), for 1 = 0.2. Repro-
duced from Ref. 11.

1.5

(o,o)

in these two cases. Many narrow oscillations are seen at
(x/2, n /2) slightly above the QP energy. The main effect
of these oscillations is to reduce spectral weight above
the QP peak.

We consider now briefly the limit of small J. Results
for J = 0.01 are given in Fig. 9. The total density of
states in I'"ig. 9(c) has the form of a broad continuum
with a reduced width lVjnc & 7t, similar to the rpa so-
lution for the propagation in a classical Neel background
and J = 0. In addition, one observes at the low-energy
sector small remnants of a ladder spectrum, which is k
dependent, superimposed on the continuum.

The reduced width of the continuum in this limit is
particularly remarkable in view of the discussion about
the t;J~ model, where it turned out crucial to include
the constraint IC1] in the Born approximation.

Again the results close to k = (0, 0) and (x, vr) difFer
from those at other k points. At k = (0, 0), as seen from
Fig. 9(a), the spectral function A(k, u) is described by a
broad Lorentzian-like peak centered at ~ = 0, with tails
stretching to the band edges. Both features are a conse-
quence of the coherence factors which determine M(k, q)
and which reAect the spin dynamics of the HAF. 1A'e also
note that this differs from results obtained in perturba-
tion theory around the Ising limit taking n = H~/Hz as
small parameter. 5 Finally, we observe a large depletion
of states around u = 0 at k = (vr/2, x/2), in Fig. 9(b),
which is less pronounced than the small-J result in the
4 x 4 cluster. Hence the strong depletion and even the
formation of two bands in the exact results for small- J is
probably a finite-size effect.

It is interesting to compare the solution for the small J
case with that of the Ising limit of Fig. 3. When the spin
Auctuations are suppressed (n = 0) the incoherent back-
ground disappears leading to a discrete ladder spectrum.
This is understood in terms of the string picture, where
the hole is seen to be bound in a linear potential, as al-
ready mentioned. Now, the appearance of the continuum
is concomitant with the reduction of the ladder when the
spin fluctuations are turned back on. For a given J, the
split peaks shrink and reduce their intensity as if an ef-
fective J,~ ( J is acting to produce the ladder at the

0.5

7

(b) (n/z, n/z)

4

~ 3

0

2.0 -() DOS J = 04
1.5

0.5

FIG. 7. Spectral functions A(k, u) for 16 x 16 sites and
J = 0.4: (a) k = (0, 0); (b) k = (s/2, n/2), a QP peak at the
leftmost part in both spectra is clearly seen separated from a
continuum; (c) total density of states A(w) = Pz A(k, u).
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coupling limit, where the basic assumption for the deriva-
tion of Eq. (23) clearly does not apply, this equation still
gives a rough estimate for the spectral weight results in
Fig. 10.

The results for a(k) in the strong-coupling regime
(J & 1.0) are shown in Fig. 11 for several k points.
These results may be well approximated by a simple
power law a(k) = AJ~ in this range. Taking their val-
ues within 0.01 & J & 0.5 we found a(x, 0) 0.71Jo. 0

and a(vr/2, x/2) 0.63Jo ss". Beyond J 1 a power
law cannot be used as the data saturates to 1, and one
may use instead Eq. (23). This departure from the fit
is indicated with dashed lines in the last portion of the
Atting curves of Figs. 10 and 11, respectively. The result
for k = (0, 0) is special again as in the diagonalization
studies. In this case the spectral weight increases slowly
with J as a(0, 0) 0.89J for 0.01 & J & 0.5. At
J 1 the spectral weight for all k values have about the
same magnitude. For large J the weight of the QP peak
at k = (0, 0) actually becomes the largest (see Table I).

The dispersion relation E~ of QP states, normalized
by its bandwidth H/ along the symmetry lines in the AF
BZ, is shown in Fig. 12. The results for J = 0.01 and

0.7

0.6:U: (rI/B, rr/8)
-= o : (o,o)

0.5 —:~: average
over th~

~ 0.4

~ 0.3

0. 1

0.0 I I I I I I I I I I I I I I I I I l I I I I I I I I I

0.2 0.4 0.6 0.8 1.0

FIG 11.. QP spectral weight a(k) at diR'erent k points for
a 16' 16 lattice in the strong-coupling regime 0.01 & J & 1.0.
The two interpolating curves represent a fit a(k) = A J for
k = (7r, 0) and (7r/2, z/2), respectively (see text).

1.0
J = 0.8 are plotted together with the large-J limit as
given by

0.8 (a)
z2t2 ) M2(k, q)

(24)

0.6

0.4

0.2

0.0 I I I I I I I I I I I I I I i I I I I I i I I I I I I I I I I I
1

For all other values of J, the dispersion relation lies
within these two boundaries. The main feature of this
solution is the local maximum at (z', 0) and the abso-
lute minimum at (n/2, m/2). Actually, a saddle point oc-
curs along the symmetry line I'-M. Hence the dispersion
defines hole pockets around (z/2, x/2). This dispersion
relation can be fitted using the following expression

0 1 2 3 4 5 6 7 8

J

1.0

0.6

0.4

0.2
(11/Z, 11/2)

0.0 I I I I I I I I I I I I I I I I I I I I I I
1

0 1 2 3 4 5 6 7 8

FIG. 10 QP spectral . weight a(k) for a 16 x 16 lattice in
the parameter range 0.01 & J & 8.0: (a) k = (0, 0) and (b)
k = (x/2, z'/2), plotted together with the analytic result for
the large- J limit, Eq. (23).

FIG. 12. Dispersion relation EI, of the QP band nor-
malized by the bandwidth W = E(0, 0) —E(x/2, vr/2) and
E = E(7r/2, x/2) along symmetry lines in the AF BZ: large-
J limit Eq. (24) (solid line), J = 0.01 (short-dashed line),
and 1 = 0.8 (long-dashed line). Inset: allowed k points for a
16 x 16 lattice along the symmetry lines in the AF BZ.
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TABLE I. Different quantities associated to the quasiparticle measured using a 16 x 16 lattice as a function of J/t: total
energy of QP sta.tes E at k = (7r/2, s/2), bandwidth W, relative spectral weights a(k) at different k points and its average
over the Brillouin Zone. Energy parameters are in units of t.

J/t
0.01
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4

E
—3.164
—2.951
—2.785
—2.540
—2.360
—2.209
—2.085
—1.970
—1.867
—1.770
—1.682
—1.600
—1.453
—1.335

W
0.027
0.129
0.239
0.430
0.600
0.741
0.850
0.921
0.960
0.981
0.979
0.970
0.940
0.895

a(7r/2, z /2)
0.029
0.076
0.131
0.217
0.284
0.340
0.387
0.431
0.469
0.504
0.538
0.565
0.619
0.663

a(7r, 0)
0.022
0.080
0.140
0.233
0.309
0.374
0.428
0.478
0.521
0.558
0.595
0.624
0.679
0.723

u(0, 0)
0.001
0.005
0.011
0.024
0.059
0.111
0.188
0.275
0.357
0.439
0.512
0.572
0.658
0.743

(a(k))sz
0.017
0.052
0.095
0.167
0.232
0.300
0.360
0.418
0.469
0.515
0.558
0.591
0.653
0.703

E(k) = zi + zg(cos k2 + cos k„)
+zs(cos 2k + cos 2k&), (25)

TABLE II. Values of the QP band parameters according
to Eq. (25) foi a 16 x 16 lattice as a, function of J/t. If the
fit includes the hopping processes related to further neighbors
they change by less than 270.

which is motivated by the inclusion of hopping processes
to first- and second-nearest neighbors on the same sublat-
tice. The imbalance coeFicient, z3, has been introduced
in Eq. (25) to distinguish between a dispersion where
the minimum energy for holes is on the Fermi surface
for noninteracting electrons (zs —0), and a case char-
acterizing hole pockets (zs ) 0).s2 The values found for
the parameters zy, z~, and z3 for diA'erent J values are
given in Table II. Another way of looking at the same
quantity is the contour plot in Fig. 13. The "pocketlike"
Fermi surface around (+7r/2, +z/2) is also clearly seen.
Here, the hole pockets result from the quantum Auctua-
tions in the ground state and are not a consequence of the
higher-order processes in t. ' In particular, the pockets
are also present for large values of J where the Trugman
processes become irrelevant.

From the dispersion of the QP we can calculate effec-
tive masses in parallel and perpendicular directions to
the magnetic zone boundary at k = (z./2, z/2). The re-
sults in Table III show a strong anisotropy (of order 4—7)

in both directions in the whole range of J values, with
the "light, " mass m~ ——(z2 + zs) and the "heavy"
mass rn~~

——z3, written in units of the free band mass
mo ——(4t) . These results are in agreement with those
published earlier. We note that these parameters de-
pend sensitively on the precise form chosen for the fit
to the dispersion relation, as the comparison with our
previous results (Ref. 19) shows.

The bandwidth W of QP states versus J for different
lattice sizes is shown in Fig. 14. We observe only rather
small differences between a 4 x 4 (o) lattice and a 16 x 16
() lattice due to finite-size effects. The results for a 8 x 8
lattice were not included since they almost coincide with
those for 16x 16 sites on the scale plotted. The inset gives
a comparison with an exact diagonalization study for
small values of J. We note that for the exact calculation
in a 4 x 4 cluster W crosses zero at about J 0.07. This
has been attributed to arise from higher-order processes
in t, , which contribute in the small-J regime. i In the
small-J region 0.01 & J ( 0.5 our numerical results can
be interpolated by W = 1.5Jo 7s. The bandwidth W has
its maximum value of 0.98t at J = 0.8, as compared to
the variational result, where the maximum is found at
J = 0.73. The decrease for large values of J can be
taken from the perturbative result Eq. (24):

TABLE III. Effective masses in units of the free band
mass (4t) at (s/2, z/2) in parallel and perpendicular di-
rections to the magnetic zone boundary, as a function of J/t

0.01
0.05
0.1
0.3
0.5
0.8
2.0
3.6

10.0

—3.160
—2.930
—2.749
—2.305
—2.020
—1.700
—0.998
—0.609
—0.234

0.006
0.026
0.052
0.131
0.180
0.197
0.150
0.094
0.037

$3

0.001
0.007
0.012
0.027
0.035
0.043
0.038
0.030
0.013

J/t
0.01
0.05
0.1
0.3
0.5
0.8
2.0
3.6

10.0

fA
))

1000.0
142.9
83.3
37.0
28.6
233
26.3
33.3
76.9

7A J
142.9
30.3
15.6
6.3
4.7
4.2
5.3
8.1

20.0

fA
)f FA~

7.0
4.7
5.3
5.9
6.1
5.5
5.0
4.1
3.8
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1.0

0.0

—0.5

—1.0

k„
—2.0

FIG. 13. Contour plot of the dispersion relation of QP
states using the large- J limit result, Eq. (24). The minima
(hole pockets) are centered at (kz/2, ks/2).
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I l I I I I I i I

0.5 1.0 1.5

W = E(0, 0) —E(7r/2, z/2):—ct2/J (26)

1.4

12
=

1.0
I

0.8

0.6
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0.2
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FIG. 14. Bandwidth of QP states W vs J for two lattices
4 x 4 (o) and 16 x 16 (~), together with the large-J limit
(long-dashed line), Eq. (24). Finite-size effects are small, i.e. ,
data for 8 x 8 not shown, are already indistinguishable from
the results for 16 x 16. Inset: comparison with exact diag-
onalization results (Ref. 11) in the range 0.01 ( J ( 1.0.

For the constant we get c = 2.0 using the 16 x 16 lattice.
This value is somewhat smaller than the variational result
(c = 2.6) of Sachdev. ss

The energy of the minimum of the QP band E;„(J)=
E (z/2, 7r/2) + AEJ as a function of J and for differ-
ent lattice sizes is given in Fig. 15. The dependence
of E;„(J) is again in good agreement with the pre-

FIG. 15. Total energy of QP states E;„(J)at (s./2, z-/2)
vs J for different lattice sizes, together with exact results for
4 x 4. Our data E (s /2, x/2) have been shifted by AEz for
comparison purpose. The curves are a fit to a power law in
the region plotted (see text and Table IV).

vious diagonalization results. For example, Dagotto et
aj.iz found these results well described by the power law

E~;„(J)= —3.17+2.83J in the interval 0.1 ( J ( 1.0
for a 4 x 4 cluster. To compare we have to account for the
change AE~ of the ground state E&~ in the photoemission
process. Observing that in Ref. 12 the n, nz/4 term is ab-
sent we obtain for the change of the ground-state energy,
Eq. (16), setting b = I/N

Alternatively, one may take AE~ —z J~(S; S;+i) ~
from

exact diagonalization studies as, e.g. , in Ref. 25. The
data for E~;„(J) is in fact well described by a simple
power law over a wide parameter range, i.e. , 0.1 & J &
1.5. For the unit cell size 4 x 4 we find E;„(J)
—3.11+3.05J ' . Data for other system sizes are given
in Table IV and show that there is good quantitative
agreement for this quantity between the self-consistent
Born approximation and the exact diagonalization. Fur-
ther, one may note that the finite-size eKects are not very
large in this case.

The lifetime of the QP states away from the minimum
remains infinite since due to their quadratic dispersion
they cannot decay by emission of spin waves. Only if the
group velocity of the quasiparticles becomes larger than
the spin-wave velocity, c = du&/dq = ~2J, the quasipar-
ticles are damped, otherwise conservation of energy and
momentum forbids decay processes. It is interesting that
for the self-consistent solution, Eq.(25), ~dEy/dk~ ( c for
a large part of the Brillouin zone. Only the states close
to I' and (z, 1r) appear to be damped as seen in Figs. 7(a)
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V. RELATION TO EXPERIM
ND PREVIOUS WORK
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AEg/1
1.404
1.328
1.309

Cluster
4x4
8x8

16 x 16
Exact

0.692
0.710
0.702
0.73

3 % 11
—3.20
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2.96
2.94
2.83

See Ref. 25.
b See Refs. 11 and 12.

and 8(b), respectively.
Finall we ~

The result is show
e ispersion curve.

own in Fig. 16 for the case

foll-. b -- -of
= a~+ L, with L the lin

l,~/I fo th 1o ff f h
c ion o q. (23) for a&k~ if w

mor ob rve that M '
u

cu o o the q inte ra

ot 1 t d to tho e perturbative case a s g
n s arting from the d

proximation. The
e dominant pole ap-

e numerical data in the r g

law. We find
ars o e consistent

)

a nonzero as m to
with such a scalin g

i 1ar ic e with finite spectral weight.

1.0

0(L) =0.317 ~
L0.8

0.6

0.4

0.P.

0. I

0.2 0.3

The mosos irect experimental counte.
suits pertains to

en a counterpart of our re-
o angu ar-resolved ultravio

sion spectroscopy. Ry. ecently this techni
raviolet photoemis-

inverse experiment (b
c nique and also the

en remsstr ahlun iso
ray absorption s t

g isoc romat and x-
spectroscopy have ac

resolu tion that t} 1

acquired such high
a le owener stagy t ( thi 1 V of
po ential, which have ver

d
ra in this ra.nge may b d 'bay e escribed as an a

1 b 1- d
'

h 1'

d(n h 1 of
wi s ight dispersive feat

and the opening of tl
urthermore , a Fermi edge

be observed. 35
o le superconduc

'
ucting gap could also

The weak dis ersispersive experimenta]. feaa eatures are fre-
as an in ication for p
em o cross the Fermi e

s

tdth t F 1'

a conclusion seems somewhat rem
a ermi iquid picture

e calculation for
'

1 s
explanation of the a

or a sing e hole ssuggests a natural

1

e appearance of an a
oh t ot bon ri ution. At finite o

t" h t t f

It appears tempting to assume th
e sing e-hole case, in

ok o d( 2
chah fH

, ir 2), characterize t

co
s o SC's also at

1
~

ncentr ation. Re tl,
a finite doping

a2 Sr CuOq. ss As c b
0 Sr doping in

a ~ 4. s can be seen from th
tours in Fig (13) the h
to

be filled closee ole pockets will
ra ion and at hi herg dop ng the Fer

s e ectronlike. "
However sucuc a simple extra olatio

hole result seems sms questionable as the s
e y opin . D'to 1 fI' tdb

f th t J dl...,tl, A.,t, d.
k t 1 d b op g

tll it, t spec ra are corn at
face as given b

pa i le with a Fermi

with Luttinger's theore S

C11 40yye ave een obtained r

A recrecent discussion of the spin- olaropo p
t p imental situation i th

s has been given by Mott. 4i

FIG. 16. Fin'inite-size-scaling stud o~ ty f he spectral '
ht

a e or systems of si

value of J.
ermodynamic limit for this

VI. SUMMARY

We have studied th
quantum antife

e motion of a
'

erromagnet with a
single hole in a 20

malism. The approac present
a Green's function for-

ticular the cl
p nted here highlights in

e c ose connection f th
1 1 1 bln pro em. The spin waves play the



SPIN POLARONS IN THE t-J MODEL 329

role of the phonons in this case. We have pointed out
that there are some differences. Particularly, there is no
bare kinetic term for the holons in the t-J model. Never-
theless, the bound state describes a coherent motion on
the scale of J. The coherent propagation is a result of
the coupling Hq between the spinless fermion and spin
waves. This is different, from the usual notion in the po-
laron problem, where the mass of the particle becomes
larger through the coupling.

The formulation in terms of spinless fermions auto-
matically fulfills the constraint of no double occupancy.
Nonetheless, an additional constraint is required to re-
duce the local Hilbert space spanned by a spinless fermion
and a hard-core boson to the physical one.

However in the isotropic case (n = 1), i.e. , Heisenberg
interaction, our results suggest that this constraint is of
minor importance, at least for low hole doping.

The situation is different in the model with Ising inter-
action (t-Jz model). Only when the constraint is taken
into account does the Born series become equivalent to
the retraceable-path approximation. Processes not in-
cluded in this series contain closed loops and are de-
scribed as vertex corrections. These processes cause the
delocalization of the hole in the Ising limit.

We have solved numerically the integral equation for
the self-energy within the self-consistent Born approxi-
mation for a 2D square lattice in the isotropic case. Our
results show that this approximation gives a good de-
scription for the spectral function, the spectral weight
of the QP state and its dispersion. The bandwidth has
a maximum at J 0.8t and decays as 2t~/J for large
J, in agreement with Sachdev's variational result, which
presumably includes all relevant physical processes. In
particular, the direct comparison with exact diagonaliza-
tion results for the spectral functions obtained with a
4 x 4 cluster shows a remarkable agreement and demon-
strates that the self-consistent Born approximation is a
valuable scheme for this class of problems. We stress
that the equations work in the perturbative (J )) t) and
the strong-coupling regime (J ( t). For the latter the
self-consistent solution of the equations is crucial.

The study of the solution for large clusters reveals
that convergence is already achieved for a cluster of size
N = 16 x 16 sites. The results for 8 x 8 and 16 x 16 clus-
ters are almost indistinguishable on the scale plotted in
Figs. 14 and 15. Hence they are expected to be represen-
tative for the results in the thermodynamic limit. Also
very good agreement is found in comparing total energies
with exact diagonalization results. Moreover, as is seen
from finite-size-scaling analysis the spectral weight of the
quasiparticle does not vanish in the thermodynamic limit
for values of J/t typical for copper oxide superconductors.

Of course this does not answer an important question
concerning the application of these results to high-T, ma-
terials, namely, if at finite doping concentration quasi-
particles close to the Fermi surface still exist or whether
a Luttinger-liquid picture or some other state, char-
acterized by a vanishing renormalization constant Z = 0
would emerge. The extension of this approach seems pos-
sible to finite hole concentration and for finite tempera-
tures. Also the choice of certain spin-liquid —type ground

states, without long-range AF order, may be of consid-
erable interest.

When completing this manuscript we received a
preprint from Marsiglio, Ruckenstein, Schmitt-Rink, and
Varma who also report the observation of the surprising
quality of the Born approximation.
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APPENDIX: RELATION BETWEEN ELECTRON
AND HOLON GREEN'S FUNCTION

The electron Green's function Eq. (2) may be written

1G, (k, ~) = (go J~, c„, QD).~ —H+ Eo (Al)

Using Eq. (7) the annihilation operator c& (a =$) may
be decomposed into two separate contributions coming
from the two sublattices A and B. Taking care of the
sublattice rotation Eq. (3) one arrives at

ci~ — &1 —np) e '" Ii, +~n() ) e '" '6,
ipA j pB

(Ql —np h&z+ ~tip /l& ~).

where (1 —np) and np define the probabilities to find an
1' spin on the A or B sublattice, respectively. The spin

Here the additional factor a;at on the right-hand side of
Eq. (A2) enforces the constraint [Cl], that a hole should
not be created at a site when a spin deviation is present
in ~@p). Given a ground state ~@p) with quantum fluctua-
tions, Eq. (18), the operators (a,at) and a~ determine the
probability to find an up spin on the A and B sublattice,
respectively.

Considering this effect on the average we may write
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deviations are given by no —(ala;) =
2

—(9; ) 0.2 in
20.

The Green's function may then be written as

G"(k, ~) = (0 hk h„o),
1

0+Eo ' (A5)

where the prefactors give the statistical weights to find
an t spin on the A or B sublattice, respectively.

The implicit assumption here is that the orientation of
the spin removed when creating the hole is of no further
relevance. What counts is only the propagation of the
"spinless" hole and its interaction with the remaining
spins due to its motion.

Defining the Green's function for holons (spinless
fermions) as

GI(k, ~) = G"(k, u). (A6)

This consideration also suggests that this close corre-
spondence will disappear for a spin background without
staggered long-range order, i.e. , where the contributions
from the intersublattice Green's functions become sub-
stantial. An example is the t-J model in 1D, where the
spectral function is given as a continuum with a momen-
tum dependence resulting from such processes.

with h&
——(I/~2)(h& &+6& &), and ~0) being the vacuum

for both holes and spin excitations. Since the intersublat-
tice Green's functions G~tr, Gtr~ vanish in the problem
treated above, and as G&z ——G&n it is evident from
(A4) that
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