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Application of a transient-hot-electron-transport Green's-function approach
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The Green's-function approach to transient-hot-electron transport of Xing and Ting [Phys. Rev. B 35,
3971 {1987)]is applied to a GaAs/Al„Ga& „As heterojunction. Scattering mechanisms, such as remote
and background ionized impurity scattering as well as acoustic (via deformation potential and piezoelec-
tric coupling) and polar-optical-phonon contributions, have been included in the force and energy tran-
sient state equations. The effect of screening on the ionized impurities by the free carriers has been taken
into account approximately. Our results for the transient velocity are in reasonable agreement with
available Monte Carlo simulations. Theoretical calculations for the transient velocity and electron tem-
perature have been carried out for electrons with and without electron-electron interactions.

I. INTRODUCTION

Understanding the transient behavior of electrons in a
heterojunction under high electric fields is of great impor-
tance in the physics of small devices. Electrons in
modulation-doped heterostructures grown by molecular-
beam epitaxy can achieve high velocities. Mobilities ap-
proaching 10 cm /Vs in the dark and even higher at
low temperatures have been reported.

In short channel GaAs/Al Ga, „As heterojunction
devices the electron relaxation length is of the order of
the distance in which the electric field changes
significantly; therefore, as the size of the device gets
smaller it becomes increasingly important to have a
knowledge of the scattering mechanisms as well as elec-
trons' transient velocity and temperature during their
Aight through the two-dimensional channel parallel to
the heterojunction interface.

Hot-electron effects in semiconductor devices have
been the subject of much interest for the past three de-
cades. ' There exists a number of works proposed to
deal with transient transport, but most realistic calcula-
tions have been based on the phenomenological
Boltzmann equation and the Monte Carlo method.

A non-Boltzmann approach to hot electronic transport
has recently appeared in the literature. This work is
based on the study of the nonlinear steady-state electron
transport for a system of electrons interacting with im-
purities and phonons by Lei and Ting. ' This is an
analytical Green's-function approach to high-field trans-
port which is based on the separation of the center-of-
mass motion from the relative motion of the electrons in
the Hamiltonian' and the density matrix.

More recently Xing and Ting" extended the above
Green's-function formalism to study the transient current
due to hot electrons after turning on a strong electric

field. Here, as in the above works, ' the statistical
properties of the relative electrons are described by the
standard many-body theory. In addition, these electrons
are coupled with the electric field via the electron-
impurity and electron-phonon interactions.

The basic idea of the above approach" is that the evo-
lution equation describing the current density or center-
of-mass velocity V(t) is coupled with the evolution equa-
tion for the electron temperature T, (t). The difFerential
equation for V(t) includes a term which is proportional
to the electric field, which increases it, and terms which
include the scattering mechanisms due to ionized impuri-
ty (remote and background) and phonons (acoustic and
optical), which decrease it. The differential equation that
describes T, (t) has terms such as the energy input due to
the electric field, the kinetic energy of the center of mass,
and the energy lost to the phonon system. Finally, the
above equations are to be solved self-consistently for V (t)
and T, (t).

In this paper we make use of the versatility of this
method" to study the transient transport of a two-
dimensional electron gas (2DEG) parallel to a
GaAslAI, Ga, „As heterojunction interface in the elec-
tric quantum limit. In Sec. II we present the model Ham-
iltonian which includes contributions due to impurities
and phonons. We also give in this section the two-
dimensional coupled equations for V(t) and T, (t). In
Sec. III we specialize to the electric quantum limit. In
Sec. IV, we present our results, followed by our con-
clusion in Sec. V.

II. MODEL HAMILTONIAN

A. Contributions due to impurities and phonons

We work with the Hamiltonian for a 2DEG in a
GaAs/Al Ga& As heterojunction in the presence of im-
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purities, phonons, and an electric field parallel to the in-
terface given by'

matrix elements in the total Hamiltonian make use of the
above wave function and are given in Ref. 12.

H=H, +H, +H h+H, ;+H, (2.1) B. Nonlinear equations of transient transport

p2
H, = —eNER,

2%m
(2.2)

and describes the coupling of the electric field with the
center-of-mass coordinates in the x and y directions
defined as

where H, is the contribution due to the center-of-mass
part given by

In the recent work of Xing and Ting" a Green's-
function approach to transient-hot-electron transport in
semiconductors was developed. Here coupled differential
equations for the evolution of the drift velocity V(t) and
the electron temperature T, (t) were obtained. Regarding
the drift velocity, the authors studied a linearized
Langevin equation for V(t) as a function of t. Equation
(35) of that work" reads

P= gp, , R=—gr, .=1
l l

(2.3a) d eEV(t) =
q (t)+ f k (t, t s) V(t,—s)ds

t

dt m 0

Here P—=(P,P~), R—:(R„,R ), and N is the number of
electrons in the conduction channel. The quantities

p; =—(p, ,p, ) and r, —= (x, ,y,. ) are the relative momentum
and coordinate of the ith electron along the interface
which are given in terms of the center-of-mass coordi-
nates by

P
Pl Pl r';=r; —R . (2.3b)

@„„(r,z)=(1/A)' exp[i(kr)]g„(z),
A' k

E„k=E„+
2m

(2.4)

where g„(z) is the envelope wave function which de-
scribes the quantized motion in the z direction with asso-
ciated energy E„, and A is the area of the sample. The

With the above notation the rest of the terms in the to-
tal Hamiltonian, i.e., the relative electron H„ the phonon

Hph, the electron-impurity H, ;, and the electron-phonon
H, „h interactions, are given in second quantized form in
Ref. 12. It is important to note here, however, that while
the electric field appears to couple only the center-of-
mass coordinates in Eq. (2.2), in actuality the relative
electron coordinates are coupled to the electric field
through the electron-impurity and electron-phonon in-
teractions H, ; and H, h, respectively.

In the above Hamiltonian the electron states are
characterized by a subband index n and a two-
dimensional wave vector k—=(k, k~) with wave function

g„„and subband energy E„k give~ by

for the transient velocity. Here y(t) is a step function
defined below. The kernel k(t, t —s) carries information
on the difFerent scattering mechanisms (i.e., impurities
and phonons). The second term of V(t) in the above
equation depends on its previous values V(t, s); that is, its
memory. Furthermore, it is possible to obtain an equa-
tion for V(t) where all the above memory effects are con-
tained in the memory function M(t, co).

The memory function thus obtained, however, depends
on time and frequency in addition to being computation-
ally involved. Nevertheless, by replacing the memory
function by its value at co=0, the authors" obtained a
V(t) appropriate for moderate field values in the form

r

V(t)= f ds exp f Mz(u, O)du
m 0 S

(2.5)

where Mi(u, co) is the imaginary part of the memory
function at time u and frequency co given below.

The above neglect of the frequency dependence on
M (t, co ) corresponds to neglecting the frequency depen-
dence in the electron's scattering lifetime i.( t )
—= [Mz(t, O)] ', thus r is time dependent through the cou-
pling between V ( t ) and T, ( t ). In this manner nonlinear
effects are also included.

The imaginary part of the memory function above in-
cludes contributions to the scattering experienced by the
electrons due to remote and background ionized impuri-
ties and phonons. For the case of the 2DEG in the
GaAs/Al Ga& As heterojunction case studied here at
temperature T and including the multisubbands, we ob-
tain

1
M2(u, co)= g q„n;(z )~0u„„(q, )z~ odzo [II2(nn', q, z) —112(nn', q, O))/co

g, lf 71

+
&m qq ~. . q„ I iriQgi

[M„„(q,q„A, ) ~
n —n

co kBT
iri(Q&z+ co)

kBT,
11&(nn', q, Q&z+co)

A'( Qgi —to)—n
kBT,

II2(nn ', q, Q&i —co) (2.6)
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where

n(x)=[exp(x) —1] ', Q=(q, q, ), q=(q, q ) .

(2.7)

The unscreened electron-impurity interaction matrix
element for an impurity located at (r„z, ) is given by

Ze
u„„.(q, z, ) = F„„(q,z, ),

2edq
(2.8a)

and the electron-phonon interaction matrix elements for
the A,th branch are given by

M„„.(q, q„k.) =M(q, q„k)I„*„.(iq, ), (2.8b)

where C, is the electronic specific heat' in the absence of
electron-electron interactions, and given here by

XE.kf «.k»
e n, k

(2.10)

and y(t ) is a step function which is unity for t )0 (other-
wise it is zero), f (E„k ) is the Fermi function, and T, = T
at t =0.

In the above equation for T„the first term corresponds
to the rate of energy input due to the applied field E, and
the second is the rate of change of kinetic energy of the
center of mass. The third term W(T, ) carries informa-
tion on the rate of energy loss of the relative electrons to
the phonons. It is given here by

W(T, ) =2 g ~M„„,(q, q„A ) Q&&II ( 2nn', qQ&~)
q, q, A, , nn'

fi(Qgq)—n
k~T,

with M(q, q„A, ) the electron-phonon interaction strength
in a three-dimensional plane-wave representation.

In Eq. (2.6) Q~& is the phonon-dispersion relation for
the kth branch, II2 is the imaginary part of the density-
density correlation Green's function II, which is given in
Ref. 12 along with the expressions for F„„and I„„ofEqs.
(2.8). We note that the electron-electron interactions of
the 2DEG can be included (e-e), within the random-
phase approximation (RPA), or excluded (no e-e) in a
straightforward manner through the function H of Eq.
(2.6).

While not immediately obvious from Eq. (2.6), the
memory function Mz(u, co) is an implicit function of time
through the time-dependent electron temperature T, (t).
The differential equation obeyed by T, (t) has been ob-
tained under the same conditions as the line arized
Langevin equation for V(t) above" without any further
approximations. It is given by"

C, T, =NeEV(t)y(t) Nm V(t)— V(t) W( T, )—,
d d

'di dt

(2.9)

III. ELECTRIC QUANTUM LIMIT

We now specialize to the case for which the lowest sub-
band is populated in the GaAs/Ga Al& As heterojunc-
tion. In this limit we neglect upper subband effects and
the above equations of Sec. II are greatly simplified. We
take n =n'=0 in the expressions of Eqs. (2.6)—(2.11).
Furthermore, for the lowest subband we make use of the
variational envelope wave function'

' 1/2
—bz /2b

2
(3.1a)

where b is a variational parameter determined by minimi-
zation of the total energy given by'

12m, e

Ae
(3.1b)

where Nz, &
and N, are the depletion layer and interface

carrier density, respectively. The density-density correla-
tion function II2 of Eqs. (2.6) and (2.11) is the imaginary
part of H, which is given within the RPA by

IIO(q, w)
II(00,q, w)~II(q,w)=, (3.2)

where V(q) is the electron-electron scattering potential
(e-e) given by

2

V(q) = H(q),
2A eq

H(q)= (8b +9b q+3bq ) .1

8(b +q)

(3.3a)

(3.3b)

The unscreened ionized impurity scattering contribution
to Eq. (2.6) with the use of Eq. (2.8a) is given by

Jn;(zo)~u(q, zo)~ dzo

z ~

[ ANtI(q) e ~'+ An; J(q)],
2eAq

(3.4a)

where

T, ( t) constitute a coupled set of nonlinear equations.
Finally, it should be mentioned here that in general an

electric field is viewed as low (OSE S0.5 kV/cm) when
nonlinear effects (such as overshoot, hot-electron trans-
port, etc.) in V(t) do not play an important role. Such a
situation warrants a linear transport theory. If the field
reaches a value for which nonlinear effects play an impor-
tant role in transport, this field is viewed as moderate
(0.5 ~ E 52 kV/cm) or strong (E )2 kV/cm), depending
on the prominence of the nonlinear effects. "'

The present approximation employed in our work here
is appropriate for fields of moderate strengths because of
the approximations made in deriving them. " However, a
set of equations applicable to strong fields has also been
obtained by these authors which have not been investigat-
ed thus far for transient transport in heterojunctions.

(2.1 1)

with the notion that in the above equations V(t) and

6I(q)=
(q+b)

(3.4b)
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and

J(q)= 6 (2b +24b q+48b q
1

4(b +q) q

+43b q +18b q +3bq') . (3.4c)

—qfzl —z0 ]

]. —q]z —z1 ] Ze
p(q, z, zo)= ——e ' S,

q
' 2@A(q+S, )

+ e
Ze —q)~ —~ l

2eq 2 (3.5)

In the present work we include phonon-scattering con-
tributions in Eqs. (2.6) and (2.11) from acoustic (via de-
formation potential and piezoelectric coupling) and
polar-optical (via Frolich coupling) phonons. The form
of these terms is given in Ref. 12. The value of the pho-
non constants used here are given in Table I.

We have recently carried out a study of transient trans-
port in a GaAs/Al Ga& As heteroj. unction. ' In this
work we made use of a linear theory approach' and in-
vestigated the above unscreened impurity scattering con-
tribution. We found that the transient velocity versus
time curve obtained was much smaller than a Monte Car-
lo result' for E = 1 kV/cm for the case when the
electron-electron interactions were not included (no e -e).
We have found that the reason for the discrepancy was
due to the neglect of ionized impurity screening. ' In the
present work, the effects of screened ionized impurity
scattering can be taken into account in an approximate
way.

In the recent Monte Carlo work' the authors obtained
an expression for the initial guess of the self-consistent
screened ionized impurity potential which in the present
limit becomes

for an impurity at zo away from the heterojunction inter-
face. Here z& is the position of the maximum value of the
ground-state wave function in the interface, and S& is
given below. If we make the approximation

1 e 1 0 e 0
—q/z —z

/

—qfz —z
/

—q/z —z
/

(3.6)

in Eq. (3.5), we obtain an approximate expression for
u (q, z) to include screening given by

u (q, z, )= J q&(q, z, z, )~g(z)~ dz

Ze
2@A (q +ASt )

(3.7)

Here A, is to be considered a parameter. A value of A, =O
implies a complete neglect of screening [Eq. (2.8a)], and
A, = 1 corresponds to the above approximation. The
quantity S, above is given by

Quantity

TABLE I. Parameters used throughout our calculations of Figs. 1 —4.

Description Value

A

d.

N; =(ND —N~ )d,

flZ

N,
Ndepl

Nd. pl

S

+b

Tb

y, 80
E
T
b0
E0
E
Usl ~Ust

00
o
e14

Sample area
Al Gal As doped layer

thickness
Areal impurity density

in the alloy side
Background impurity

density
GaAs and optical

dielectric constants
Effective mass
Areal carrier density
Depletion charge density
Depletion charge density
Spacer layer thickness
Time unit
Temperature unit
Units of M2 and 8'
Electric field
Lattice temperature
Subband parameter
Subband energy
T=O Fermi energy
Transverse, longitudinal sound speed
Crytal mass density
Optical-phonon frequency
Deformation potential
Piezoelectric constant

1 cm
400 A

2.QX 1Q

1X10" cm

12.9, 10.92

0.067m 0
5X10" cm
5X10' cm
cm
100 A
1.20X10 " sec
63.575 K
8.32X10' Hz, 731 W
0.5, 1, 2, 3 kV/cm
77 K
3.20 X 10 cm
=—0 meV
17.89 meV
5.24, 2.48 (10' cm/sec)
5.36 g/cm
5.38 X 10' Hz
7 eV
1.2 X 10 V/m
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e N
2e AEd

1

—E
Ed, kB T 1+exp

kBT,
(3.8)

3.5-

2.5

X ln 1+exp
E —E

k T,

where EF is the electron-temperature-dependent Fermi
energy given by 0.5-

EF(0)
EF(T, ) =Eo+k~T, ln exp

kBT,
(3.9)

0
0 1 2 3

t (psec)

mN, A
EF(0)=Eo+

m

obtained from X=2+kf (Ek). Here EF(0) is the T, =0
Fermi energy, and we also take Eo—=0. The electronic
specific heat in the present limit is given by

3

C, =
2 EF(T, ) EF(T, )+ k~T, , (3.10)

e

which has been obtained from Eq. (2.10).
Finally, we note that the parameter k above has a dis-

tant relationship with the self-consistent screened impuri-
ty potential of Yokoyama and Hess. ' That is, A, =1 cor-
responds to the neglect of impurity Green's-function
correlations [Eq. (3.6)] in the first guess of the self-
consistent screened impurity potential. Thus we treat A,

as an interpolating parameter between A, =O (no screen-
ing) and A. = l.

IV. RESULTS

In this section our numerical results of the nonlinear
equations (2.5) and (2.9) for moderate electric-field
strengths are presented. Scattering mechanisms such as
impurities and phonons (acoustic and optical) have been
included. The calculations have been carried out in the
presence of electron-electron interactions (e-e) and in
their absence (no e -e). The values of the parameters used
throughout are given in Table I. In this table ~b —=fi/EI„
Ti, =Eb/k~, y =r—

b
', and W—o=

(Eblis'b)X10"—

, where
Eb me l2A (4m——e) Here m is t.he QaAs effective mass,
kB is Boltzmann's constant, and e=Keo is the GaAs
dielectric constant.

Here a comparison between this theory and a Monte
Carlo (MC) method would be helpful in order to see the
differences between the two methods fear describing tran-
sient transport. The present method, in contrast to the
MC works, is an analytical quantum-mechanical many-
body approach which requires less numerical effort than
a Monte Carlo calculation.

In Fig. 1 we compare our results for the transient ve-
locity [Eqs. (2.5)—(2.9)] with a MC simulation' for the
case of no e-e. In this figure we show that our V(t) is in
reasonable agreement with the MC results when the ion-
ized impurity screening parameter A, =0.5. As the value

increases, the impurity screening increases inof
strength, thus lowering the impurity scattering and in-

FIG. 1. Comparison of V(t) vs t with the Monte Carlo simu-
lation of Ref. 19 for E = 1 kV/cm in the absence of e-e interac-
tions. X=O is the nonscreened ionized impurity scattering.

creasing the overall value of the velocity. The agreement
for A, =0.5 is best at longer times since we expect that in
the limit of very large times the electrons reach equilibri-
um conditions and can be described classically. In this

2.5

1.5-

0
1

0.5-

—0.5
0 2 4 6 8 'IO 12 14 16 18 20

T /Te b

0

—0.05-

(b)

x = 0. 5

—0. 1

-0.15—

—0.2-

—0.25
0 2 4 6 8 10 12 14 16 18 20

T /T

FICz. 2. (a) The calculated energy-loss rate of electrons
8' ~8'/ p as a function of T, /Tb for the cases of e -e and no e -e
with acoustic and optical phonons. (b) The calculated scatter-
ing rate of electrons M2/y as a function of T, /Tb for e-e and
no'e-e. Screened ionized impurity scattering (A, =0.5) in addi-
tion to phonons has been included.
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limit both approaches give the same results.
The case for which X=O includes no screening result-

ing in a small value of the velocity and no overshoot be-
havior. The rest of the calculations have been carried out
for a value of A, =0.5.

In Fig. 2(a) we show our results for the calculated rate
of electron energy loss to phonons, W [Eq. (2.11) with
n =n'=0], in units of Wo of Table I. Here W is shown
as a function of temperature T, in units of Tb of Table I
for both cases of when the electron-electron interactions
are included (e-e) and excluded (no e-e). The case of no
e-e has a slightly higher energy-loss rate than the e-e
case. While 8' has contributions due to acoustic- and
polar-optical phonons, the shape and magnitude of 8' is

largely dominated by its polar-optical-phonon contribu-
tion. We note that 8'is negative below T =77 K because
when T, is lower than the lattice temperature T, energy
Aows from the lattice to the electron system.

In Fig. 2(b) the memory function Mz (in units of y of
Table I) [Eq. (2.6) with n =n'=0) is plotted versus elec-
tron temperature T, (in units of T& of Table I). The
memory function contains contributions due to screened
ionized impurity scattering (remote and background)
with A, =0.5 and contributions due to acoustic- and
polar-optical phonons. The magnitude and shape of both

(e -e and no e -e) curves are dominated by impurity
scattering at electron temperatures lower than about 100
K and by polar-optical phonons for electron tempera-
tures above 100 K. We also see in Fig. 2(b) that the Mz
which includes e -e is smaller in magnitude than the M2
which excludes e-e due to the many-bodany- o y screening
effects in the e -e case.

The above curves for W(T, ) and M2(T, ), which are
the most time consuming part of the calculations, have
been used to obtain the transient propert' V( ) dies t an

In Fig. 3 we show the velocity and electron tempera-
ture curves for the case of no e-e. The different curves
correspond to different values of the applied field. In Fig.
3(a) V(t) is plotted versus time. We see that as the elec-
tric field is increased, the magnitude of the velocity is in-
creased, and the overshoot peak shifts to shorter times
In Fig. 3(b) the electron temperature corresponding to
each V(t) curve of Fig. 3(a) is shown. The onset of elec-
tron heating as a function of time occurs earlier as the
electric field is increased. This onset gives rise to the
overshoot in the V(t) curves. As the electron tempera-
ture increases, so does the scattering mechanisms in M2
and the rate of energy loss to phonons 8'as shown in Fig.
2. This results in a decrease in velocity as time progresses
until steady state is reached. A slight undershoot is seen
for higher fields in Fig. 3(a), which is due to another in-
crease in T for E=e =3 kV/cm. However, in this regime

no e-e
A = 0. 5

3
6

V
Q

5
V

4
C)

3-

16

t (psec)
10 'I 2

6
t (psec)

10 12

l4

12

10

12

10—

0 ~0 20 30 40 50 60 70 80 90 ~OO

t/r

FICx. 3. (a) V(t) vs t (picoseconds) for when e-e is not includ-
ed. The different curves correspond to different applied
electric-field values. (b) T,(t)/Tb vs t/~b with no e-e and
different values of electric field.

0 10 20 30 40 50 60 70 80 90 )00
t/T

FIG. 4. (a& V&t) (t) vs t with e-e and different values of E. (b)
T &t&~T, ( )/Tb vs t/~b with e-e and different values of E.
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the electron temperature may be too high for the present
approximation to apply. We note that our overshoot
value of V(t) for E =3 kV/cm is about 1.6 times larger
than the Monte Carlo value' for the screening parameter
used here.

In Fig. 4 we show results similar to those of Fig. 3. We
have included the e eh-ere. In Fig. 4(a) the velocity
versus time curves have a similar behavior to those of
Fig. 3(a). That is, the E field increases the overshoot and
shifts it to shorter times. However, the magnitudes of the
V(t) as well as the T, curves for the e ecas-e are greater
in magnitude than those of Fig. 3 for no e-e. This
difference is due to the decreased scattering rate and
lower rate of energy loss of the electrons when the e -e in-
teraction is included, as seen in Fig. 2.

Finally, concerning 2D and 3D transport, no attempt
has been made in the present work to compare these two
cases using the present approximation. In the work of
Yokoyama and Hess, ' however, the authors found that
in the 2D case the velocity overshoot can be higher than
it is in 3D for both 77 and 300 K. This suggests that
perhaps the same is true for the electronic temperature
T'

V. CONCLUSION

In this paper calculations have been carried out for the
transient properties of electrons in a heterojunction inter-
face in the presence of impurities and phonons. The hot-
electron effects such as electron temperature and velocity
overshoot as a function of applied electric field have been
evaluated for electrons in the presence and absence of
electron-electron interactions (e eand no e--e).

In this work we have included screening effects on the
ionized impurity in an approximate fashion. We have
made use of a parameter A, through which value we in-
clude the screening. For A, =0.5 and E= 1 kV/cm we
have compared our calculation with a Monte Carlo
method' for the case of no e-e and found a reasonable

agreement for a reasonable field value; however, further
work is needed to provide a much better comparison at
much higher fields.

Here we have compared our calculations with Monte
Carlo calculations to point out the differences between
the two methods. It would be of great value to compare
the transient velocity with experimental evidence when it
becomes available. In particular, experimental electronic
velocity and temperature at very short times would be
most useful here.

The scattering mechanisms and energy-loss rates of
electrons in the heterojunction interface have been calcu-
lated as a function of electron temperature. Both of these
increase with T, . The magnitudes of these two quantities
are smaller for the case of when e -e is included than the
case for which the e-e is not included. This difference is
due to many-body screening effects.

The work carried out thus far is based on the simplest
approximation for nonlinear electron transport equations
obtained by Xing and Ting. " It would be of interest,
however computationally involved, to study the full set of
equations introduced in that work.

The effect of multisubband scattering that we found to
be important ' has not been investigated using the
present nonlinear model. Further investigations to in-
clude multivalley effects are also needed.
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