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Theory of band-edge optical nonhnearities in type-I and type-II quantum-weri structures
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A theoretical analysis of the many-body effects in the band-edge absorption spectra of highly excited
type-I and type-II semiconductor quantum-well structures is presented. The situation of a homogeneous
electron-hole plasma in a usual type-I structure is compared and contrasted to the situation in a type-II
structure, where the electron and hole plasmas are spatially separated into adjacent layers. The plasma
effects are determined through numerical solutions of a generalized Wannier equation, which accounts
for dynamical exchange and screening effects as well as Pauli blocking. In the description of dynamical
screening, an alternative to the so-called Shindo approximation is developed. The induced electric-field
effects in the type-II systems are investigated by solving the coupled Schrodinger and Poisson equations
for the charge carriers.

I. INTRODUCTION

The theory of highly excited semiconductors has long
been the focus of intensive research. The inhuence of an
electron-hole ( e h) plas-ma on the near-band-edge
optical-absorption spectra has been studied in great detail
for both bulk semiconductors and quantum-well struc-
tures. ' The description of the plasma is usually based
on the standard many-body theory of an electron gas, a
discussion of which can be found in Ref. 5 for the case of
a bulk system. The basic properties of an electron gas in
a quasi-two-dimensional structure are discussed, e.g., in
Ref. 6.

The general effects of an e-h plasma on the excitonic
absorption have been found to be (i) plasma screening of
the Coulomb interaction between the charge carriers,
particularly between the attracting e hpairs; (ii) -reduc-
tion of the band gap through exchange interaction and
correlation effects; and (iii) reduction of the absorption in
the band-edge region, which develops into optical gain
for sufficiently high plasma densities, as a consequence of
phase-space filling and Pauli blocking.

In recent years the interest in optically excited semi-
conductors continuously increased as more and more
modified and additional kinds of quantum-well structures
were developed. One very important example of these
systems are the so-called type-II structures. Here, the re-
laxation of a photoexcited e-h plasma toward a quasi-
thermal equilibrium is accompanied by a spatial separa-
tion of the two plasma components. Such a situation
arises, e.g. , in the GaAs/A1As system if the GaAs layers
are sufficiently thin to push the lowest confined I state in
the GaAs above the lowest X-like state in the A1As lay-
ers. This occurs if the GaAs thickness is less than and
the A1As thickness is greater than =35 A. If the GaAs
layer is replaced by (Al, Ga)As these restrictions are
somewhat lifted and type-II band alignment can be
achieved over a wide range of layer thicknesses.

In Fig. 1 we show the schematics of a simple
GaAs/A1As type-II quantum-well structure. The linear

and nonlinear optical properties of such a system have
been investigated experimentally in Ref. 8. It is shown
there that the I -X transfer is rapid ( =SOO fs), allowing
the carriers to thermalize to a quasiequilibrium distribu-
tion at the X minimum of the Brillouin zone. Since the
effective mass at the X minimum is strongly anisotropic,
one has to distinguish X electrons with momentum within
the plane (X„~) from those with momentum in growth
direction (X, ). Because of the quantum confinement the
minimum of the X„band is not degenerate with the
minimum of the X, band. Some controversy existed
about the energetic position of those two bands for a
given quantum-well structure. Conclusive studies using
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FIG. 1. Schematic of the type-II quantum-well structure.
The solid line indicates the z dependence of the I" point of the
conduction and valence bands of the bulk materials, and the
dashed line shows the X point of the conduction band, respec-
tively. Indicated are also the quantum-confinement shifts of the
I energies with the corresponding wave functions localized in
the GaAs region, and the quantum confinement of the X point
with the wave function localized in the A1As layer, respectively.
The arrows mark the direct (I -1 ) and indirect (X-I ) radiative
transitions with the corresponding typical time constants.
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optically detected magnetic resonance spectroscopy
determined that for 25-A GaAs wells and A1As
thicknesses greater than about 55 A, the lowest X
rninirnurn is X . In samples with thinner barriers the
lowest state is X, . The crossover is attributed to the in-
creasing confinement of the X„state overcoming the
strain splitting as the A1As thickness is reduced.

Similar to the case of n-i-p-i structures, ' the charge
separation in type-II quantum wells leads to a macro-
scopic electric field. In type-II systems, however, the lo-
calization of the hole plasma is solely determined by the
width of the quantum well of the holes, which in our ex-
ample is a 30-A GaAs layer. The length scale of the
electric-field variations is essentially determined by the
distance between the holes in the GaAs layer and the
electrons in the A1As layer, respectively. Since the A1As
layer is much wider than the GaAs well, the length scale
of the electric-field variations exceeds appreciably the lo-
calization scale of the hole plasma. As a consequence,
the spatially indirect transitions in a type-II system,
which determine the luminescence, are more affected by
the electric field than the spatially direct transitions,
which determine the absorption. " Both direct and in-
direct transitions are, however, strongly influenced by the
many-body effects associated with the existence of a plas-
rna. A first discussion of the many-body effects on the
luminescence and absorption of highly excited type-II
systems has been given in Ref. 11. It is our goal in this
paper to present a detailed theory of the nonlinear optical
absorption of quantum-well structures with and without
e-h charge separation. To this end we focus first on the
plasma effects which modify the absorption of a single
GaAs layer. In Sec. II we discuss briefly the basic
theoretical formulation of the problem. We use Green's-
function theory which we modify and improve to allow
for a unified description of type-I and type-II systems. In
Sec. III we present the dynamically screened Coulomb
potential employing a double-plasmon-pole approxima-
tion. In Sec. IV we finally derive the generalized Wannier
equation to describe the interband polarization in type-I
and type-II quantum-well systems. The derivation in-
cludes our alternative to the so-called Shindo approxima-
tion. We then analyze in Sec. V the effects of the space-
charge fields caused by the spatial e-h plasma separation
and its inhuence on the absorption spectra. In Sec. VI we
show numerical results and discuss in detail the inhuence
of the various many-body effects underlying the absorp-
tion changes of both type-I and type-II systems. A short
summary and conclusion is given in Sec. VII.

II. GREEN'S-FUNCTIONS THEORY

It is generally an extremely involved theoretical task to
describe a spatially inhomogeneo us system like a
quantum-well structure with induced electric fields due to
electron-hole charge separation in type-II systems. In the
following we therefore use an approximate approach
which allows us to split the complete problem into two
somewhat simpler parts. First, we consider the proper-
ties of a single semiconductor. layer with excited electron
(e) and hole (h) plasmas. To keep our treatment general
we choose the e and h densities n, and n& as mutually in-

dependent, allowing for a description of (i) a type-I
heavy-hole (hh) transition where nz —=n„z and n, =nz&0;
(ii) a type-I light-hole (lh) transition where n, %0,
nj, ——n+=0 since no light holes are present at not too
high excitation densities; (iii) a type-II hh transition with
nz =—nhh&0 and n, =0, assuming ideal charge transfer of
the electrons out of the GaAs layer; and (iv) a type-II lh
transition where n& ——n&h=0 and n, =0. Intermediate
cases will also be studied. The plasma states are chosen
to be delocalized within the layer spanned by the x,y
coordinates. The motion perpendicular to the layers (z
direction) is localized due to the potential barriers be-
tween the layers.

Concerning the plasma theory of the GaAs layer our
approach is to take into account only the lowest subband
of the quantum well. This leads to a description which is
formally almost identical to that of a bulk system, the
main difference being that the wave vectors of the parti-
cles are restricted to the in-plane wave vectors. The usu-
al approach to treat a nonexcited quantum well is to ap-
proximate the z dependence of the quantum-well poten-
tial as a square well. In the case of an excited system
with charge transfer this square-well potential is altered
by the resulting space-charge field, giving rise to shifts of
the energy levels of the layer, i.e., the in-plane energy
bands. These effects will be discussed in Sec. V.

An appropriate framework for the description of an
optically excited semiconductor system is the nonequili-
brium Green's-function approach. This is a generaliza-
tion of the equilibrium Green s-function technique, which
for a one-component plasma is comprehensively dis-
cussed, e.g, in Refs. 5 and 12. The Green's-function ap-
proach for highly excited bulk semiconductors in
quasiequilibrium is given, e.g. , in Ref. 1 and 13. The ex-
tension of the semiconductor theory to a general none-
quilibrium situation has mostly been based on the Kel-
dysh Green's-function technique' (see, e.g. , the contribu-
tions of both Haug and Schafer in Ref. 3, and Refs. 15
and 16; a general introduction to the Keldysh technique
can be found, e.g. , in Ref. 17).

In the Keldysh formalism the optical properties of a
two-band semiconductor are described by the two-point
Green's function G+ ( k, t, t2 ) (see, e.g. , Ref. 3, pp.
53—81, 133—157). The band indices denote the conduc-
tion (c) and valence (U) band, respectively, and the Kel-
dysh indices (+—) imply that the function is not time
ordered with respect to t, and t2. The Dyson equation
for this Green's function has been derived for bulk semi-
conductors and can be found, e.g. , as Eq. (3.11) in Ref.
15, or as Eq. (3.20) on p. 143 in Ref. 3. Although we are
interested in layered GaAs/A1As structures, we neverthe-
less start with a formally almost identical equation
describing only the GaAs layer where the absorption ac-
tually takes place. The wave vector k denotes the two-
dimensional in-plane wave vector. In principle, the two-
point Green's function G would get two more indices
specifying the subband indices of the quantum-well struc-
ture. We will, however, restrict ourselves to very thin
GaAs layers, where the subband energy separation is
larger than typical energies such as the exciton binding
energy and the Fermi energies of the excited carriers. We
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are therefore only dealing with Green's functions which
involve the lowest (I = 1}subband, and for simplicity of
notation we leave out the corresponding subband labels
1,1.

Since the hh-lh splitting in thin layers is large, we
neglect all Coulomb correlations which would lead to a
coupling of hh and lh bands. This gives rise to a consid-
erable simplification of the theory, as we are dealing now

I

with two independent interband transitions (lh and hh),
and we can adopt a simple two-band description for ei-
ther case. hh and lh transition are distinguished by the
effective masses and energy gaps, as well as by the hole
distributions and densities. With these interpretations in
mind, we can use Eq. (3.20) on p. 143 of Ref. 3. We start
here with an equivalent equation, where no Fourier trans-
formation with respect to time has been performed:

i]]'t —s, (k)+i' +s, (k) 6+ (k, t] ti )
8 . 8

r)t i Bt&

=Xf'(k, t])G~+ (k, t]tz) —G+ (k, t]tz)Xf (k]tz)+ Jdt3[X'„'(k, t]t3)G+ (k, t3ti)+X@ (kit]t3)6+ (kyt3ti)

+X+ (k, t, t, )G;"(k,t, t, )+X'+ (k, t, t, )G;"(k,t, t, )

G„"(—k, t, t, )X+ (k, t, t, )
—6„"(k,t, t, )X+ (k, t, t, )

—G+ (k, t, t, )X:"(k,t, t, ) —G+ (k, t, t, )X.""(k,t, t, )] .

E,(k)= +5, , m, (0 .(]]ik )

2mU
(3)

The masses are understood to be the appropriate in-plane
masses of the I point, which are listed in Table I. The
label v denotes either the hh or the lh band and E~
is the energy gap for the corresponding valence-
band —to —conduction-band (U-c) transition. The dipole
energy

TABLE I. Parameters used in the calculations. The in-plane
mass m

II
and the masses in the z direction m j are given in units

of the free-electron mass. The band-gap energies are given in
eV. The conduction-band- to valence-band-offset ratio used is
0.67.

m, q
—I

m, j
—X,

m„X„,
~hhl

mhhII
~1hl

mn
IIEr

Ex

GaAs

0.0666
0.0665
1.3
0.19
0.19
1.3
0.34
0.1

0.094
0.2
1.514
1.981

AlAs

0.15
0.15
1.1
0.19
0.19
1.1
0.752
0.1
0.16
0.2
3.110
2.240

Here, the band energies E„(k) (v=c, u) are solutions of
the Hartree-Hamiltonian, i.e., they describe the in-plane
GaAs energy bands, which in our model are merely shift-
ed by the amount 6 as a result of the induced electric field
(see Sec. V),

E,(k)= +Eg+5, , m, )0;(]]ik}i
2P72

Xf(k, t) = IJ, '],"Eo(t—)e (4)

and the microscopic time I;,

includes the optical field with central frequency coo [Eo(t)
is a slowly varying envelope] and the dipole matrix ele-
ment ]M". At this stage the light field in Eq. (4) includes
both the excitation and the probe field. Besides G+ and
the retarded and advanced Green's functions denoted by
G„and G„Eq. (1) contains the functions G~+ and 6+
which describe the carrier occupations of the bands c and
U, respectively. The corresponding self-energies X result
from the Coulomb interaction between the carriers. In
the screened-Hartree-Fock approximation (SHF) X(t t ])~
is essentially given by W'(t]t2)6(tit]), where W is the
dynamically screened Coulomb interaction. The exact
form of X used in the derivation of the generalized Wan-
nier equation will be given at the end of this section.

In a general nonequilibrium situation, one would have
to calculate the distribution functions of the carriers gen-
erated by the applied pump field under the influence of
the relevant scattering processes. The analysis in this pa-
per will, however, be restricted to the case of a thermal
quasiequilibrium, where the carriers are assumed to be
distributed according to Fermi functions normalized to
the given densities. As described in Ref. 18, the probe
spectrum is obtained from Eq. (1) by linearizing with
respect to the probe field. Neglecting coherent pump-
probe scattering effects, which are unimportant on the
nanosecond time scales considered here, Eq. (1) remains
formally unchanged in such a linearization process.
However, the one-particle energies and distribution func-
tions are now those of the excited system, whereas G+
is the response to the weak probe field.

The dependence of G(t, t2) on the two times t, and ti
is equivalent' to a dependence on the so-called macro-
scopic time T,

tI +f2T—
2



3034 R. BINDER, I. GALBRAITH, AND S. W. KOCH

In thermal equilibrium the Green's function can only de-
pend on the time difference t. In the simplest case of
noninteracting particles we have

X '+(k, co)

I

i%—Q f W+ (k' —k, co' —co)G"'+ (k', co') .
k' 2'

(10)
; e,(k)+e„(k)

Gg (k, t)=GQ (k, t =0)exp —— " t
2

ih'G„'"(k, t) =5 „e(t)exp ——e„(k)t (6)

The corresponding expression for X" is obtained by re-
placing 6 with 6". Here V denotes the Coulomb po-
tential between charge carriers in the limit of vanishing
plasma density, and 8' is the corresponding potential
dynamically screened by the excited hole and/or electron
plasma. Explicit expressions for V and 8'will be given in
the following section.

is the distribution function of carriers in band v, and

iAG+ (k, t =0)=P(k)
is the optical polarization function. If an external field is
applied that breaks the time invariance of the system, a11
functions depend also on the macroscopic time T. The
response to an optical field, i.e., the optical spectrum, is
obtained from the Fourier analysis of

iAG+ (k, t =0, T)=P(k, T)

with respect to T. As already mentioned, we are dealing
in this paper only with the situation of quasithermal equi-
librium, i.e., we assume that the T dependence of the po-
larization P is only due to the weak probe field. The dis-
tribution functions f are not altered by the probe field,
and hence are assumed to be simple Fermi functions
without any macroscopic time dependence. ' We
proceed as usual by transforming all functions H ( =G or
X) which are nondiagonal in the Bloch band indices into
the rotating frame

and Fourier transform Eq. (1) from t to co.
For completeness we give the explicit form of the SHF

self-energy'

X„(k,co)

I

i% g J— [ W, (k' —k, co' —co)G+ (k', co')
k' 7j

+5, + Vi,
k'

X+ (k, co)

+ W+ (k' —k, co' —co)G„(k',co')]

I

=ihip J W +(k' —k, co' —co)G+ fk', co'),
k' 7T

(9)

In particular, the retarded Cireen's function of free parti-
cles in band v oscillates as function of t with the energy of
the respective band states. This corresponds to a pole of
the Fourier transformed Green's function G (k, co) at the
particle energy s (k). We note that

III. DYNAMICAL SCREENING

i AW+ (qco) =nii(co)2' ImW„(qco),

ifiW +(qco)= —[ I+n (sc)o]2film W( q)co. (12)

Equations (11) and (12) show that W+ is the propagator
of Bosons with spectral peaks given by Im( W„) at the en-

ergies of the screening particles. Note, however, that in
the present theoretical framework no assumptions con-
cerning the commutator properties of screening particles
are made, since the screening particles are only defined by
the poles of the screened potential 8'„. Within the

In this section we brieAy describe our treatment of the
screened Coulomb potential 8 . Since screening is a
consequence of the intraband scattering of carriers as
well as the emission and absorption of plasmons, the co

dependence of 8 generally ensures the energy conserva-
tion in those scattering processes and describes the sta-
tistical occupation of the scattering particles (e.g. , the
plasmons). Accounting for those dynamical processes
leads to the problem associated with the Shindo approxi-
mation, as will be discussed in Sec. IV. Although a possi-
ble way to avoid this problem would be to treat the
screening quasistatically, ' we do not want to rely on the
quasistatic approximation since we want to describe
temperature-dependent damping mechanisms as realisti-
cally as possible.

In order to describe screening consistently for type-I
and type-II systems, one needs a scheme which allows
one to deal with cases where the electron and the hole
densities vary independently. Therefore we extend the
usual one-plasmon pole screening model, which approxi-
mates the contributions from the electron- and hole-pair-
excitation continua by a single plasmon pole with an
effective reduced mass, which is usually fitted in order to
stabilize the exciton energy for all densities. The exten-
sion is a double-plasmon-pole model which is free of ad-
justable mass parameters. '

As is well known in equilibrium theory, the thermal oc-
cupation of the screening particles like plasmons is de-
scribed by Bose functions nz. The Keldysh approach
contains the equilibrium formalism, and upon taking the
thermal-equilibrium limit of the SHF approximation the
(+ —) components of the screened potential include the
Bose function ns similar to the way the (+ —) com-
ponents of G include the Fermi functions f,
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random-phase approximation, the spectrum of 8'„ in-

cludes the interband pair excitation continua of the elec-
trons and holes at large wave vectors q and, in the case of
a quasi-two-dimensional system, also two acoustic
plasmon branches q=0. A thorough discussion of the
corresponding three-dimensional electron gas can be
found in Ref. 5.

In the corresponding double-plasmon-pole approxima-
tion we have'

Im W'„(qco) = ir —g g; [5(fico fico—, ) —5(iiico+ fico; ) ] V

the GaAs layers. For practical purposes, we thus use the
eigenfunctions of a quantum well of thickness L and
infinitely high barriers to write the unscreened Coulomb
interaction as

2 2

V = F(q). (21)

Here, the form factor F(q) accounts for the fact that the
Coulomb potential is the matrix element of the I =1 sub-
band eigenfunctions $1, i.e.,

i =1,2

(13)
F(q)= f dz f dz'~P, (z')~ e ~' ''(P, (z)~

with the plasmon weight functions

CO;CO&1+ Y

2co;(co1 co2)
(14)

8

(qL) +4'
3qL

8 qL

(1—e -")4~'
(qL) [(qL) +4ir2]

(22)

where "+"corresponds to i =1 and "—"to i =2. We
have used the abbreviations

~l/2 2 I~q+l(~', ,, ~q, h
)'+ ~pi. ~plh)'", ]

for the squared dispersions of the two branches and

~ 1, (~ 1, h ~,h )+~ 1,h(~ 1,

(15)

(16)

The square of the total plasmon dispersion (and analo-
gous of the total plasma frequency) is

2= 2 2
~q ~q, e+~q, h ~ (17)

with

(19)

Here j labels the bands in the electron-hole picture (as
opposed to the valence- and conduction-band picture),
i.e., it labels electrons in the conduction band and holes
in the valence band with m& = —m, . Furthermore, Kj is
the screening wave vector, which for equilibrium distri-
butions with chemical potential p is

Bn
K =Vq

Pj
(20)

Note that we use Gaussian units and incorporate the
background dielectric constant cp of GaAs in the electric
charge, i.e., e =e p /Ep with the free-electron charge ep.

For completeness, we wish to give the concrete expres-
sion of the Coulomb potential used in our numerical cal-
culations. Although at this point we could still use the
wave functions of the lowest subband, which we obtain
by solving the Schrodinger-Poisson equation for the
motion in z direction, we will show in Sec. V and in the
corresponding discussion in Sec. VI that for typical densi-
ties the wave functions of the I state are well localized in

where the individual plasmon dispersion for each band
j =e, h is

1+q +
2

~P&,J K. 2m.J J

IV. GENERAI. IZED WANNIER EQUATION

G+ (k, t, T)=g (k, t, T)G ~ (k, t =0, T) .

The prefactor has to normalized such that

g'(k, t =0, t)=1 .

(23)

(24)

The meaning of g becomes more clear if formulated for
the Fourier transformed quantity, i.e., given in terms of co

rather than t. The Shindo approximation is then derived
from Eq. (1) by setting X "=0 (see e.g. Ref. 15), yielding

We are now in a position to complete our discussion of
the time dependence of Eq. (1) and present the final steps
of the derivation of the generalized Wannier equation.
Since the so-called Shindo approximation ' "' can
lead to significant errors for a one-component plasma, we
introduce an alternative to this approximation, which in
bulk and type-I systems is usually used to describe the dy-
namic screening processes of the two-component plasma.

Although, concerning the macroscopic time scale the
usual approximation of neglecting gradient expansions of
G with respect to the macroscopic time T (see, e.g. , Refs.
3 and 15, and for a general presentation Ref. 12) allows us
to treat the screening as being instantaneous, the correla-
tion of one-particle states is still coupled in the self-
energy term to the correlation function of the interband
transition through the t or ~ dependence of X and G".
Hence the optical transition, although taking place at a
certain time T with t =0, couples the renormalized states
which would emit or absorb plasmons when propagating
for a finite time t. This is not a contradiction, since the
time scale of T is large in comparison with the lifetime of
a one-particle state. In order to avoid the extremely in-
volved task to solve two equations for G, one each for the
T and the t dependence, one usually proceeds by making
an ansatz for the t, or equivalently the co dependence of
G. For instance, the so-called Shindo approxima-
tion ' ' treats the t dependence of G as being that of
noninteracting particles in a steady-state light field with
frequency ~p. The t dependence of G is then chosen to be
a prefactor g of G(t =0), where G(t =0) is the co-

integrated G divided by 2~,
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ih'G + (kcoT)

f '(k)
2~66 Aco-f '(k) —f '(k)

f '(k)

f"(k)—f '(k)

AQ)p —E'( k)

i6COp
X5 %co+ —E'(k) P(k, T) .

2
(25)

i AG + (k, co, T) =2vrfi5 A'co — P(k, T) .

(26)

iAG+' (k, co)=2m.iri5(irico —s„(k))f (k) . (27)

In contrast to the Shindo approximation, this ansatz is
even consistent with the usual ansatz for the Green's
function which is diagonal in the Bloch indices, i.e.,

A systematic but numerically involved improvement of
this approximation which even includes the transition to
an exact treatment of the co dependence of G is discussed
in Ref. 15. Within the Shindo approximation, G exhibits
as a function of co two poles, which have as a function of
k the dispersions of the conduction and valence bands, re-
spectively, and which are centered roughly in the middle
of the energy gap (note: Acoo- EG). —The sum of the
weights of these two poles is 2m.A, so that indeed condi-
tion (24} is fulfilled, but each pole can have an infinite
weight if f"(k)—f'(k) vanishes. In a highly excited
type-I system this happens only at the Fermi vector kF.
Since the total polarization is the integral of P over k,
such a singular point does not have a large inhuence on
the final result. However, in highly excited type-II sys-
tems f ' f' is zero —for all states between 0 and kF, since
f'=0 due to the electron transfer out of the layer and
f"=1 f =0 du—e to the occupation of the hole states.
Therefore the Shindo approximation has to be avoided
for highly excited type-II systems. Instead, we introduce
an ansatz in the spirit of free particles, by using the t (or
equivalently co) dependence of Eq. (5). This yields only a
single pole in the middle of the gap with a dispersion
given by the average of the c and U bands,

Within the same approximation, we use

G„" (k, co)= 1

%co E—(k)+i y

and

(28)

G„"(k,co) =0 (29)

to evaluate the right-hand side of Eq. (1). Here y is a
small positive number that ensures the retardation prop-
erties of G„and may also phenomenologically account for
damping and dephasing processes in the limit of vanish-
ing excitation density. To attempt a self-consistent calcu-
lation of y at high densities within a calculation of opti-
cal spectra exceeds our computational possibilities. Note,
however, that the excitonic line broadening is due to the
dynamical screening of the Coulomb potential, which is
treated in the way discussed above.

Summarizing all our approximations, we obtain a
closed equation for P(k, T), including the distribution
functions for electrons, holes, and plasmons, which in the
following will be evaluated only for the case of a quasi-
thermal equilibrium seen by the probe light field. After
Fourier transforming from T or 0, the generalized Wan-
nier equation for P is then

s(k) E"(k) f—ico() fiA— iy—+ g—
[ Vi, i, [f'(k') —f'(k')] —

Vi, + Vi, i, [Xi, i,
—

Xi, i, ]J P(k, Q)
k'

—[f"(k)—f'(k)] g Vq i, P(k ', 0) QVi, i,. .[Xii—, Xii, ]P(k', Q)—=pi,'Eo(Q)[f"(k)—f'(k)], (30)

with

k' k'

X"(k,k')= g g;(k —k')
i =1,2

and

f"(k)+nii(co;(k —k')) 1 f '(k)+nii(co, —(k —k'))
E'(k) bi, +A'coo/2 A—'co;(k —k')+i—y s"(k) hi, +ficoo/2+—%co, (k —k')+iy (31)

1 f '(k)+ nil(co; (k——k') )

s'(k) hi, ficoo/2+fico; —(k —k') i y— —
f '(k)+ nil(co, (k —k') )

X'(k, k')= g g, (k —k')
E'( k ) —b t, .—A'coo/2 —fico; ( k k' ) iy—— (32)

where bi, =[8'(k)+E"(k)]/2 and the plasma dispersions
co,. and weight factors g, are defined in Eqs. (15) and (14).
The structure of Eq. (30) is formally identical to the well
known Bethe-Salpeter equation for excitons discussed,
e.g., in Ref. 13. The phenomenological dephasing or col-
lision broadening rate y models the scattering processes
in the limit of vanishing density. These rates determine
the finite spectral width of the exciton resonance ob-
served in linear optical spectra.

In the limit of zero excitation density all exchange and
screening contributions vanish and the remaining inho-
mogeneous equation yields a hydrogenlike exciton spec-
trum. At finite densities, Eq. (30) accounts for the effect
of Pauli blocking through the phase-space factors f ' f ', —
as well as for the screening of the Coulomb potential due
to the plasma which reduces the e-h attraction (off diago-
nal in k, k') and the band gap via the self-energy terms
(diagonal in k, k'}. Note, however, that the details of the
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screening function y are not the same as in the Shindo
approximation. At this point, we want to stress once
more that our alternative to the Shindo approximation is
still on the same general level as the Shindo approxima-
tion in that it is a simple factorized ansatz for the co

dependence of 6".
The approximation of quasistatic screening can be

recovered formally from Eqs. (31) and (32) by neglecting
all energies except the plasmon dispersions Ace; in
the energy denominators, i.e., by formally setting
s"(k)—6k +A'coo/2+iy=O in Eq. (31) and correspond-
ingly e'(k) Ak—. fico—o/2 iy —=0 in Eq. (32). This yields
the quasistatic approximation for a two-component plas-
ma, i.e., it contains two independent plasma densities and
plasmon dispersions. In the case of zero electron density
(the ideal type-II case), the correct quasistatic screening
of a one-component plasma is recovered, since in that
case the two plasmon weight functions g; reduce to 0 and
iricop, i, /2co~ i, , respectively.

V. SPACE-CHARGE EFFECTS

We now consider the effects of the space charge set up
by the spatially inhomogeneous plasma. To study the
inAuence of the space-charge field on the optical spectra,
we self-consistently solve the coupled Schrodinger and
Poisson equations for the confined carriers in the quan-
tum well. It has been shown that in type-I quantum-well
systems these effects are rather small. However, in
type-II systems the charge separation can be expected to
be much more significant, at least for some transitions.
Using the local-density approximation, the effects of ex-
change and correlation energies on the subband structure
have been studied for type-I heterostructures and doping
superlattices. ' Since in the preceding sections we have
calculated the absorption changes of the GaAs layers in-
cluding already the exchange and correlation effects using
the Hartree wave functions P(z) as basis set, we must not
include the exchange-correlation energy in the following
calculation of P(z) (otherwise we would count the
exchange-correlation energy twice).

In this section we have to use a much more complete
band-structure model than that used in the preceding sec-
tions in order to verify our assumption that the wave
functions for the I and the X states are indeed well local-
ized in the GaAs and the A1As layers, respectively, and
to calculate the band-gap shift of the I -I transition accu-
rately. Therefore we take into account the I and all
three X states for the conduction bands, and the hh and
lh states for the valence band. This allows us to deter-
mine the density regime in which the simple model em-
ployed in the preceding sections is indeed justified.

Our numerical study consists of a self-consistent solu-
tion of the one-particle Schrodinger equation for the
motion in z direction and of the corresponding Poisson
equation. The z dependent potential entering the
Schrodinger equation has contributions from (i) the po-
tential profile Uo caused by the different band gaps and
band offsets between the different layers, and (ii) the in-
duced potential U;„~ due to the spatial charge separation.
The induced potential is found by solving the Poisson

=&,i4,i(z» (33)

where I denotes the subband index and j indicates the I
and X state for electrons and hh and lh states for holes,
respectively. Note that throughout this section we use
the electron-hole picture rather than the valence-
conduction-band picture, so that all hole masses and en-
ergies are obtained from the corresponding valence-band
quantities by multiplying with —1. The masses in Eq.
(33) are the z masses listed in Table I. The plus sign
refers to holes and the minus sign to electrons, respective-
ly. The given density n of electrons and holes is distribut-
ed between the subbands according to Fermi statistics,
with the appropriate density of states (i.e., in-plane
masses) for each subband. Note that for the total struc-
ture the densities of electrons and holes are always equal,
only within the individual layers the electron and hole
densities can be different. For the electrons we have

with

I j=1,x,x
e
jl (34)

n,', =2+
k Ak

exp P + e'& —
p, ,

J

(35)

where the factor of 2 accounts for the Kramers degenera-
cy. p, is the chemical potential of the electrons and e'I
denotes the density-dependent energy of the bottom of
the (I,j) conduction band. The Fermi functions contain
the in-plane masses (Table I). Correspondingly, we have
for the holes

n=g g n,", , (36)
I j=hh, lh

with

n,", =2y
k /2k 2

exp P +e
&

—pz
2P7l j

(37)

The charge density at a given position is obtained by
summing the product of the square of the wave function
and the population over each subband. This is the source
term for the Poisson equation for the space-charge poten-
tial

d U;„~ =4~e
dz2 j =~»z»„y

I

j =hh, lh;
I

njI JI z (38)

equation, where the source term (i.e., the charge density)
is obtained by filling up the one-particle states determined
by the Schrodinger equation according to quasiequilibri-
um Fermi functions. In detail, the eigenstates of the
I,X,X, electrons and the heavy and light holes all have
to be found as solution of the Schrodinger equation

d 1 d
PJi(z)+ [ UoJ

(z)+ U;„&(z) )ctpzi (z)
2 dz IJ z 8z
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Since experimentally used heterostructures consist of
many layers, we employ periodic boundary conditions in
the solution of Eqs. (33) and (38). We look for solutions
at the reduced zone center, i.e., the wave functions repeat
every supercell period such that P(z +L)=P(z).

As mentioned above, our approach to treat the local
plasma effects separately within each layer is based on the
assumption that we can factorize the one-particle wave
functions into a part depending only on x,y and a z-
dependent part. Solving Eqs. (33) and (38), we can prove
at least a posteriori that such a factorization is piecewise
possible if the various wave functions are restricted to
certain regions, in our case the single layers. Since it
turns out that the I wave function, which in the struc-
tures under consideration are the relevant wave functions
inAuencing the optical absorption process, are indeed
well localized in the GaAs layer, our method to calculate
the absorption in the GaAs layer only is consistent.

We numerically solved the coupled Schrodinger and
Poisson equations (33) and (38) with the material parame-
ters given in Table I for a structure with an A1As layer
width of 80 A and a 29-A GaAs layer. In Fig. 2 we show
the resulting band-gap shift for the direct and indirect
transitions as functions of the excitation density. Since
the main voltage drop of the induced potential U;„d
occurs between adjacent layers, it affects mostly the I —X
transition which determines the indirect luminescence.
An example of U;„d and of the square of the wave func-
tions P(z) for the density n = 10' cm is shown in Fig.
3. The consequences for the luminescence spectra have
been discussed in Ref. 11. The induced potential has its
maxima and minima in the middle of the single layers
and therefore it does not lead to a pronounced difference
of the spatially direct transitions, as shown in Fig. 2. The
fact that we still find a slight shift for this transition, in
this case toward higher energies, is solely due to the
difference in z masses and potential barriers for the elec-
trons and the holes. These small differences may, howev-
er, strongly depend on the model for the zero-density po-
tential Uo which we take to be a square well. The general
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FIG. 3. Self-consistently calculated z dependence of the I-
and X-point energies in a type-II structure for a carrier density
of 10' crn . Also shown is the induced potential U;„d and the
squares of the lowest subband wave functions of the heavy and
light holes at I and electrons at I and X.

result, however, that for a given density the I -I" transi-
tion shift due to U;„d is much less than the exchange self-
energy shift is not sensitively dependent on the model for
Uo.

In addition to the shifts of the energy levels, we have to
consider the reduction of the excitonic oscillator strength
which is proportional to the square of the overlap matrix
element

f dz 01, (z)el, h(z)

20

)
15

10F
Q)

Q)

0 5

D

0
0.00 0.25 0.50 0.75

carrier density (1O'2 cm ~)
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where both wave functions belong to the I point. In the
conventional quantum confined Franz-Keldysh effect
(see, e.g., Refs. 1 and 4) an externally applied field leads
to a reduction of the e-h overlap integral and hence to a
reduction of the excitonic oscillator strength. The case
considered here is different in that the voltage drop
occurs mostly between adjacent layers and less so within
one layer. Furthermore, the fact that we are dealing with
extremely narrow GaAs layers also reduces possible
modifications caused by the electric fields. The numerical
evaluation of the overlap matrix elements shows that in
the relevant density regime the optical spectra are not
inAuenced by the small reduction of e-h overlap. For
carrier densities less than 10' cm the matrix element
changes less than 1%.

FIG. 2. Density-dependent increase of the optical I -I and
I -X transition as a consequence of the electric field which is in-
duced by the charge separation in a type-II structure. Shown is
only the transition from the lowest heavy-hole subband.

VI. ABSORPTION SPECTRA

In this section we discuss our numerical solutions of
the generalized Wannier equation (30) which yields the
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absorption spectra of a single GaAs layer. Since we can
neglect macroscopic electric field effects for the type-II
structures under consideration, the main difference be-
tween type-I and type-II systems in our model is the
amount of electrons in the GaAs layer compared to the
occupation of holes. In the following, we show results for
the situation of n, =nhh and n&h =0, i.e., a type-I system
in which the hh-lh splitting exceeds the chemical poten-
tial of the hole, so that the lh occupation can be neglect-
ed. Furthermore, we discuss the case where n, =0, i.e.,
an ideal type-II system with complete charge transfer.
We also analyze the situation where only a certain frac-
tion of electrons contributes to the screening and/or the
phase-space filling in the GaAs layer. The material pa-
rarneters used are the in-plane masses as given in Table I,
the bulk-exciton binding energy Ez =4.2 meV and the

0
corresponding bulk-exciton Bohr radius 140 A. The phe-
nomenological dephasing rate y is taken to be 0.6',
corresponding to a dephasing time T2 of 260 fs. This de-
phasing rate leads to a relatively broad but still well-
resolved exciton of the nonexcited structure. At the same
time the chosen rate takes into account the enhanced de-
phasing in type-II systems due to the rapid charge
transfer. This parameter choice allows us to compare
type-I and type-II results for exactly identical input pa-
rameters. A more realistic choice of y for the different
situations, i.e., a larger one for type-II systems and
room-temperature type-I systems and a smaller one for
low-temperature type-I systems, would only have a minor
effect on the homogeneous spectra as discussed in the fol-
lowing, and even less so on the inhornogeneously
broadened spectra. "

Figure 4 shows absorption spectra of a type-II system
(i.e., n, =0) for difFerent excitation densities and a tem-

3.0

perature of T=30 K. The relatively low density of
nhhaz =0.2 ( =10" cm ) shows essentially no shift of
the hh resonance. This corresponds to the fact, well
known for type-I and bulk systems, that at low densities
the reduction of the band gap cancels very well the reduc-
tion of the binding energy of the exciton. ' ' This can-
cellation is less exact in the case of the lh exciton. Here
we have no phase-space filling at all, leaving only the
screening caused by the hh plasma. Although this
reduces the binding energy of the lh exciton, this reduc-
tion is overcompensated by the so-called Debye shift or
Coulomb hole shift of the lh band gap. In a quasistatic
approximation this Debye shift would be the difference
between the screened and the bare Coulomb potential. '

Figure 4 shows this small redshift and saturation of the lh
exciton with increasing hh density. At the same time we
see in the hh region the transition to the case of the so-
called Burstein shift. In an ideal case of noninteracting
particles at T =0 this shift rejects the fact that for n, =0
the absorption vanishes in the energy range between the
band gap and the Fermi level of the holes. In our more
realistic calculation this situation is characterized by the
shrinkage of the band gap with increasing density, the
Coulomb enhancement in the absorption region, and the
additional damping or dephasing processes caused by the
hh plasma. The fact that the band-gap shrinkage is al-
ways sublinear with density ( = n '~ ), whereas the chemi-
cal potential approaches a linear increase at higher densi-
ties, leads to an effective blueshift of the absorption edge.
This is the Burstein shift for a type-II system, and the ab-
sorption peak above the chemical potential is generally
known as Coulomb enhancement peak or Mahan exci-
ton. ' 4

In Fig. 5 we investigate the effect of a higher hh plasma
temperature. We see that the increased temperature
causes different modifications of the hh and lh reso-
nances. In the case of the hh transition, the effects of
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FIG. 4. Excitonic absorption spectra of a highly excited
type-II structure for various densities n (in units of a& '): 0
(solid line), 0.2 (short-dashed line), 0.4 (long-dashed line), and
0.8 (dash-dotted line). The linear (n =0) spectrum shows two
exciton peaks which correspond to the lowest subband of the
heavy-hole and light-hole exciton, respectively. The plasma
temperature is 30 K.
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FIG. 5. Excitonic absorption spectra of a highly excited
type-II structure for various temperatures: 300 K (long-dashed
line) and 30 K (short-dashed line). The density is 0.4a& . The
solid shows the linear spectrum.
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Pauli blocking, which are responsible for the Burstein
shift in Fig. 4, are strongly reduced. The high-
temperature plasma yields only a broadened exciton,
which is slightly redshifted at low densities. This redshift
is again well known for the case of type-I or bulk systems
and it reflects the fact that in order to compute a con-
stant exciton energy, one needs strong phase-space filling
contributions. As a rule of thumb one might say that the
compensation of the band gap reduction and the reduc-
tion of the exciton binding energy is slightly incomplete if
regarded separately for the screening contributions to Eq.
(30) and the phase-space contributions. Whereas this in-
complete compensation leads to a redshift in the case of
screening only and to a blueshift for pure phase-space
filling effects, the combination of the two contributions
usually yields the constant exciton position. Only if the
balance of these contribution is altered or even destroyed,
which is the case in Fig. 5 for the lh exciton as well as for
the hh exciton, an exciton shift is to be expected. The
change of this balance in favor of the phase-space filling
effects has been discussed in the context of low-density
low-temperature exciton gases in narrow type-I struc-
tures. ' In general, the screening caused by an exciton
gas is weaker than the screening by a plasma. In addi-
tion, screening in a two-dimensional (2D) system is gen-
erally weaker than in a 3D system, so that indeed the bal-
ance between screening redshift and phase-space-filling
blueshift might be broken in a 2D exciton gas.

In order to investigate the effects of the dynamical
screening used in this paper, we show in Fig. 6 a compar-
ison of the hh spectra of Fig. 5 with corresponding re-
sults obtained within the quasistatic screening model.
The low-temperature spectra do not depend drastically

3.0

on the exact screening model. This is expected since the
phase-space filling, not the screening, is the strongest
plasma contribution. The high-temperature spectra are
more strongly inAuenced by details of the used model for
Coulomb screening. The comparison of the dynamically
screened spectrum with the quasistatically screened one
shows that the latter exhibit an appreciable redshift of
the exciton resonance. This redshift, well known from
bulk and type-I structure calculations, is usually assigned
to the overestimation of screening within the quasistatic
model. We should note, at this point, that in the present
case of a single-component plasma there is no ambiguity
of the asymptotic behavior of the plasmon dispersion at
large q since it has to approach the intraband pair contin-
uum of the holes, see Eq. (18). Thus, in contrast to the
two-component plasma case, we cannot easily amend the
quasistatic model to reduce the redshift. In comparison,
our dynamic calculation shows exciton bleaching but no
pronounced shift.

For the calculations of type-I systems we restrict our-
selves to densities above the Mott density, so that the
possibility of an exciton condensation is ruled out from
the beginning. The simple reason for such a restriction
lies in the extreme numerical complication associated
with the exact solution of Eq. (30) in the case of exciton
systems. These complications are a consequence of the
fact that the one-particle distribution functions can no
longer be chosen to be Fermi functions, but have to be
determined self-consistently from the solution of general-
ized semiconductor Bloch equations. ' A simple exam-
ple for this situation arises in a slightly different context,
namely in the optical Stark effect, where, upon neglecting
all screening contributions, it can be shown that in the
low density limit f (k) is given by ~P(k)

~
. In the context

of the two-level atoms this is nothing but the conserva-
tion of the Bloch vector.

Results for a type-I system are shown in Fig. 7, where
we have chosen the same parameters as in Fig. 4. Here,
the lowest density shown yields already a very small gain
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FIG. 6. Comparison of dynamical and quasistatic screening
for the hh contribution of Fig. 5. The long-dashed line is the hh
spectrum of Fig. 5 at T=300 K and the dashed-dotted line is
the corresponding spectrum obtained within the quasistatic ap-
proximation. The short-dashed line is the 30-K hh spectrum of
Fig. 5 and the dashed —double-dotted line is the corresponding
quasistatic spectrum. The solid line shows the linear hh spec-
trum. E~ is the exciton Rydberg in bulk GaAs (4.2 meV).
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FIG. 7. Same as in Fig. 4, but for a type-I structure.
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FIG. 8. Same as in Fig. 5, but for a type-I structure.

region for the hh transition, thus being clearly above
Mott density. The blueshift of the corresponding
Coulomb enhancement peak at the absorption onset orig-
inates from the same density dependence of the band-gap
shrinkage and chemical potential discussed above. As in
the case of the type-II system, even the highest density
shown exhibits a significant Coulomb enhancement peak.
In contrast to the type-II spectra, this peak cannot be
confused with a shifted exciton peak since it is accom-
panied by the gain region at lower densities. However,
the question if this argument still holds true in the more
realistic case of inhomogeneously broadened spectra still
has to be discussed. Concerning the lh exciton, we ob-
serve in Fig. 7 a constant peak position at low densities

and a strong blueshift at high densities. This behavior
has formally the same origin as the behavior of the hh
resonance in the type-II case. The only difference is that
now the electron states are occupied and the hole states,
in this case the light holes, are empty, whereas in the
type-II situation the heavy-hole states are occupied and
no electrons are present.

Figure 8 shows that a significant temperature increase
affects the type-I spectra quite similarly as the type-II
spectra. The gain region decreases or even vanishes since
the higher temperature significantly broadens the carrier
distributions. The lh exciton is now more bleached and
slightly redshifted.

In order to investigate the situation of a nonideal type-
I or type-II structure, we have plotted in Fig. 9 solutions
for the case where the electron density is half the hh den-
sity. We distinguish here two cases. First, we look at a
simple nonideal charge transfer where the electrons
remain in the I band of the GaAs layer, hence taking
part not only in the plasma screening but also in the
phase-space filling. As can be expected, the resulting
spectrum is halfway between the corresponding type-I
and type-II spectra. The second possibility of a nonideal
system is that the electrons contribute only to the screen-
ing but not to the phase-space filling. This models the
case when the X electrons are not completely localized in
the A1As layer, i.e., the wave function P(z) for the X elec-
trons has a tail into the GaAs layer. Figure 9 shows that
an additional electron screening without electronic phase
space filling has very little effect on the hh spectrum and
leads only to a slightly increased redshift of the light
hole.

VII. CONCLUSIONS
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FIG. 9. Excitonic absorption spectrum for n, =
~ n» with

nhh =0.4a~ (long-dashed line). Also shown for the same densi-
ties is the case, where the electrons contribute only to the
screening, not to the phase-space filling (short-dashed line) ~ For
comparison, the limiting case n, =n» (dashed-dotted line) and

n, =0 (solid line) are shown. The 'emperature is 30 K.

In summary, we presented a theoretical investigation
of the nonlinear absorption of highly excited type-I and
type-II quantum-well structures. Our analysis is based on
a plasma theory which accounts for dynamical charge-
carrier correlations, but which avoids the so-called Shin-
do approximation. We evaluated the theory numerically,
focusing on the parameter regions where the hh states are
occupied and the lh states are empty. In this parameter
regime, a type-I spectrum that shows gain in the vicinity
of the hh exciton corresponds to a type-II spectrum,
which exhibits a blueshifted Mahan exciton. The corre-
sponding lh exciton exhibits a blueshift in the type-I case
because the Fermi edge of the electrons shifts to higher
energies, whereas in the type-II case the lh exciton ex-
periences only a minor redshift and loss of oscillator
strength because of the plasma screening due to the hh
plasma.

To demonstrate our theoretical results we presented in
this paper exclusively homogeneously broadened spectra.
Realistic heterostructures with thin quantum wells, how-
ever, always exhibit well-width fluctuation leading to
quite pronounced inhomogeneous broadening of the opti-
cal spectra. For a comparison of our theoretical spectra
with experimental data it is therefore crucial to account
for this inhomogeneous broadening.
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