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Symmetry and strain-induced effects at the W paint of the Brillouin zone
of face-centered-cubic crystals
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The invariant expansions of the effective-mass Hamiltonian at the W point of fcc crystals including
strain interactions are presented for the space groups Fm3m (Oh), Fd3m (0„), and F43m (T„).
The intervalley and intravalley splittings induced by uniaxial stress along high-symmetry directions
are derived for both phonon and electron spectra. Relevant parameters for the electronic bands of
germanium near W are calculated with the ab initio linear-mu%n-tin-orbital method.

I. INTRODUCTION

The spectra of elementary excitations in solids exhibit
strong features corresponding to the critical points of
their dispersion relations. The crystal symmetry deter-
mines (almost completely) the location of critical points
and the shape of the bands in their vicinity, as well
as how they are modified in the presence of an ex-
ternal perturbation. ~ The effective-mass theory, com-
bined with group-theoretical symmetry considerations,
provides much guidance in the investigation of these
properties, especially when the application of a magnetic
field or uniaxial stress brings about qualitative changes
in the spectra. In face-centered-cubic crystals, critical
points are required to occur at the I', L, , X, and W points
of the Brillouin zone (see Fig. 1). Among those, the
W point is the less extensively investigated. W'-related
features are often experimentally elusive and sometimes
controversial.

In the following, the invariant expansions of the
effective-mass Hamiltonian at the W point for the most
common fcc space groups: Fm3m (e.g. , lead), Fd3m
(e.g. , germanium) and F43m (e.g. , zinc blende), are dis-
cussed including strain interactions for both the single-
group (i.e. , integer spin) and the double-group (i.e. ,
half-integer spin) cases. In particular, the intervalley
and intravalley splittings induced by a uniaxial stress
along the principal symmetry directions [001], [011],and
[ill] are derived. Finally, several material parameters
(masses and deformation potentials) appearing in those
phenomenological expansions are evaluated for germa-
nium by fitting the electronic bands near W as calcu-
lated with the ab initio linear-muon-tin-orbital (LMTO)
method in its fully relativistic form.

II. INVARIANT EX.PANSIONS AT THE W
POINT

FIG. 1. Brillouin zone of face-centered-cubic lat tice.
The full diamond indicates the representative W point at
(27r/a)(l, 2, 0) (the two empty diamonds correspond to equiv-
alent points, a third one being hidden). The star of W con-
tains five other points, chosen as indicated by the crosses; the
corresponding six valleys are numbered as shown in the figure.
The I' point and representative X and I points are marked
by full dots.

The expressions for the effective mass Hamiltonian
at R' presented here are derived by standard group-
theoretical techniques taking time-reversal symmetry
into account. ~'2 The (irreducible) star of W (see Fig.
1) contains six distinct points among which W
(2x/a)(1, 2, 0) is taken as representative. ~~ In the in-
variant expansions, terms up to second order in the
wave vector k (measured from the W point) and lin-

ear in the strain & are considered. For electrons, spin-
orbit coupling is included as a perturbation. For the
space groups Fm3m, , I"d3m, and E43m, the accept-
able irreducible representations (irreps) at the W point
are either one or two dimensional (for the integer spin
case, without counting the star degeneracy). ' The
effective-mass Hamiltonians for these nondegenerate or
doubly degenerate bands are one or two dimensional.
In the latter case, they are conveniently expressed in
terms of the "orbital" matrices po ——

(& ), p~
——( ),

p2 ——(~ o), and ps ——(,. o'), acting on the partners of
the single-group two-dimensional irreps. The usual no-
tations o~ = (z o), o&

——(, o'), and cr, = (o &) are re-
served for the spin matrices acting on the components of
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the two-dimensional spinors, which are used when spin-
orbit coupling is included. The size of the eAective-mass
Hamiltonian is then doubled; in which case, the notation
pro.&, for instance, represents the direct product of p~
and o&, i.e. , the four-dimensional matrix

(0 i-
i 0
0 0

(0 0

0 0
0 0
0
-t. 0)

H = APo+ pPi+7P&+PPs

Considering the symmorphic space group Fm3m (0&)
to begin with, there are four one-dimensional and one
two-dimensional single-group irreps at W. » For the
two-dimensional irrep of the single group (Ws in the nota-
tion of Ref. 14), the effective-mass Hamiltonian H (with
the inclusion of strain and spin-orbit coupling) has the
form~5

with

and

A = Aik„+ A2(k ~ k, ) + Aseyy + A4(E + E„),

P = Pro.y+ P2(a k —o, k, ),
y=Pgk k, +P2C, ,

P = P&ky + P2(kz kz) + Ps(~» Ezz) '

here (and in similar expressions in the following), the
real quantities A~, A2, . . . , p3 are material parameters
(masses, deformation potentials, spin-orbit gaps), the
y axis is singled out as a consequence of the choice
W = (2x/a)(1, 2, 0) and, when spin-orbit coupling is ne-
glected or phonons are considered, the terms involving
the spin matrices (such as Pray) are to be omitted. The
energy spectrum obtained diagonalizing H is given by

Ey = Aik„+ A2(k + k, ) + Aseyy + A4(e + E„)
+[Pi + Pg(kz + kz) + Piky + Pg(kz. —kz) + Pikzkz + 2P1P2ky(kz kz) + +2Ezz + PS(Ezz —Ezz)

+2 y172Ezz kz kz +

2(u&@sky�

(E» Ezz) + 2PgPS (kz —kz )(E'zz Ezz )]
1/2

E~ ~ Aseyy + A4(e + E'„)+ zz + PS(Ezz 6zz)2 2 2 2

in the presence of spin-orbit coupling H is a 4 x 4 matrix
and each eigenvalue E+ (E ) is twofold degenerate as
required by time reversal plus inversion symmetry; for
the spinless case, H is a 2 x 2 matrix and the eigenvalues
are nondegenerate when E+ g E as given by Eq. (2)
depending on k and &. For instance, the strain-induced
splittings at W in the case of phonons are obtained from
Eq. (2), setting Pi —P2 —0 and k = 0,
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which gives an intravalley splitting for c, g 0 or E

e„. For the integer spin case, Fig. 2 shows the interval-
ley and intravalley splittings induced by a uniaxial stress
along high-symmetry directions. ~ When spin-orbit cou-
pling is included, the intervalley splittings are the same
and no intravalley splitting occurs as the strain cannot
lift the double degeneracy required by time reversal plus
inversion symmetry. The strain-induced intervalley split-
tings are as in Fig. 2 for every case considered here be-
cause they depend on how the symmetry of the fcc Bra-
vais lattice is lowered and the star of W (possibly) be-
comes reducible. In particular, for uniaxial stress along
a cubic axis [001] the deformed Bravais lattice is body-
centered tetragonal, for stress along a dihedral axis [110]
is body-centered orthorhombic, and for stress along a cu-
bic diagonal [111]is rhombohedral. The intervalley split-
ting pattern at W corresponds to the following compact
expression for the strain-induced energy shift AE& of the
valley at K& (j = 1, 2, . . . , 6, as in Fig. 1) with respect to
the average shift of the six W valleys:

+ Y2SX
+ (x, -x, )x &

g
—
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+1.5N. 3 X

y
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FIG. 2. Intervalley and intravalley splittings at W for the
space group Em3m (integer spin case) induced by uniaxial
stress along high-symmetry directions. The corresponding
(traceless) strain tensors are shown, X being proportional to
the externally applied stress and 9 a combination of elastic
compliance constants [S = 2S44/(Si2 —Sii)]. The different
valleys are identified by numbers according to Fig. 1 and other
symbols are defined in the text [see Eq. (2)].
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where the sum (for given j) is over the corresponding four
equivalent wave vectors on the surface of the Brillouin
zone, for instance (see Fig. 1), when j = 1 the sum is over
K = (2x/a)(1, &~, 0), (2x/a)( —1, 2, 0), (2z/a)(0, —2, 1),
and (2x/a)(0, —2, —1). The above expression for b, E& is
analogous to those used for the intervalley splittings of
the conduction minima in Si (along the 4 line) and Ge
(at the L point), for which cases though the summation
over equivalent points is not required. For any one of
the four one-dimensional (without counting spin) irreps
at W (Wq, W2, W&, W& in the notation of Ref. 14), the
effective mass Hamiltonian is simply

H = Agk„+ Ag(k + k, ) + Asm„„+ A4(e~~ + c„),
in particular, spin-orbit coupling does not split the dou-
ble degeneracy, just as above; the strain-induced inter-
valley splittings are the same as above and, again, no
intravalley splitting occurs.

Considering the nonsymmorphic space group Fd3m
(0&) next, there are only two two-dimensional single-
group irreps at W.~s'~3 ~s For either one of them (W1,
W2 in the notation of Ref. 18), the Hamiltonian invari-
ant expansion is
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FIG. 3. Same as Fig. 2 for the space group Ed3m [see Eq.

H = Apo+ Ppg + bp2 ~ b'p3,

with

and

A: Ag ky + A2(k~ + kg ) + A3&vv + A4(&xx + &gs)

P = Pgcr„+ P2(o. k —o.,k, ),
b = beak + b2ky k + b3~y

b' = —bg k, + b2k„k, + b3~y, ,

the corresponding energy spectrum is

Ey =
Asks + Ag(k~ + k, ) + A3&„v + A4(&~~ + &„)
+[p~ + p2(k + k, ) + (b~ + b2k„)(k + k, )

+2bgbgkv(k~ —k, ) + 2bgb3(k~e„~ —k, e„,)
~2b2bsk„(k~c„~ + k, ey, ) + b3(ay~ + c„,)]'

(3)

(4)

Considering the symmorphic space group F43m (Td2)
at last, there are four one-dimensional single-group irreps
at W. ~3 ~s 2s For any one of them (W&, W2, W3, W4 in the
notation of Ref. 20), the Hamiltonian invariant expansion
is

H = Ark„+ Ag(k~ + k, ) + A3~„„+A4(~~~ + &„)
+P, o „+Pg(k o —k, cr, ), (5)

with eigenvalues

Ey = A1k„+ Ag(k~ + k, ) + Ase„„+A4(e~~ + ~„)
P'+ P'(k'+ k,') .

in particular, the spin-orbit interaction removes the
twofold degeneracy as a consequence of the lack of in-
version symmetry in this group. The strain-induced
intervalley splittings are the same as in Figs. 2 and 3.

as for I" rn3rn, when spin-orbit coupling is considered,
each eigenvalue E+ (E ) is twofold degenerate; for the
spinless case, the eigenvalues can be nondegenerate. In
particular, for the case of phonons, the strain-induced
splittings are obtained by setting P1

—P2 ——0 and k = 0
in Eq. (4),

A3&yy + A4(&~~ + egg) + ~b3~ Ev~ + Ev~

therefore, while the intervalley splittings are the same as
in Fig. 2, the intravalley splitting pattern is different, as
shown in Fig. 3. When spin-orbit coupling is included,
the strain-induced splittings are analogous to those of
I"rn3rn discussed above.

III. NUMERICAL RESULTS FOR GERMANIUM

In the following, the case of germanium (space group
Fd3m) is studied to illustrate the use and range of valid-
ity of the invariant expansions presented above. The ma-
terial parameters appearing in the effective-mass Hamil-
tonian at W [Eqs. (3) and (4), including spin-orbit terms]
are varied in order to reproduce the electronic bands near
W as calculated (with and without strain) by means of
the fully relativistic LMTO method. s ~o 2~

The IMTO method is based on the local-density ap-
proximation and thus suffers from the mell-known "band-
gap problem, " i.e., the conduction state energies are no-
toriously underestimated. This deficiency is cured by in-
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eluding ad hoc potentials in the self-consistent iteration
scheme and by adjusting them to obtain good agreement
with experimental excitation energies. Spin-orbit inter-
action is treated as a perturbative term in the I MTO
H amiltonian.

In the unstrained crystal, the uppermost valence levels
at W occur at Vj ———4.752 eV and V~ ———4.670 eV,
U~ and U~ are each doubly degenerate and correspond to
the same single-group two-dimensional irrep; the differ-
ence V~ —V~ is the valence-band spin-orbit splitting at
W, from which the value IPz I

41 meV is obtained.(v)

The case of the conduction band is analogous with lev-
els at Cq ——+3.700 eV and C2——+3.847 eV, which gives

IP I
73 meV. The dispersion relations in the vicinity1

of W along the directions IVX from 8' to X and WI
from W to I (see Fig. 1) are shown in Figs 4(.a) and
4(b) for the valence and conduction bands, respectively.
The solid lines represent Eq. (4) with parameters var-
ied to reproduce the LMTO results (dots) in a range of
about 1% of the Brillouin zone around W (indicated by

2arrows in Fig. 4). Setting Aq
——h /2mI~, A2 ——h /2m&

and (2a/a)/6&2 + P22
——A, this fit gives for the valence

band ~n +0.82mo m& +0.71mo, A 3.0 eV,(v) (v) (v)
II

and for the conduct&on band I —0.037mo, tn&
(~) (~)

—0.22rno, A( ) 4.3 eV. The masses as calculated with
the LMTO method typically agree within 20%%uo with ex-
perimental results, usualty overestimating them. 2 With
the same parameters, Eq. (4) reproduces the LMTO
bands over a range of at least 5%%uo of the Brillouin zone
around W, as shown in I"ig. 4. The masses are electron-
like (i.e. , positive) for the valence band and holelike (i.e. , (7)

negative) for the conduction band (for the latter case,
they are strongly anisotropic). Along the WI direction,
the dispersion is dominated by the term proportional to
A. This term, in the case of phonons or when spin-orbit
coupling is neglected, is responsible for a slope discon-
tinuity at W, accompanied by a dispersion linear in k
along the plane perpendicular to the 8 X direction.
The quoted parameter values are to be used in conjunc-
tion with Eq. (4), with vanishing e; in particular, along
the R'I direction a simple parabolic expression neglect-
ing the A term would not be appropriate.

The effects induced by a uniaxial stress along the z
cubic axis [001] are considered next T. he corresponding
intervalley splittings [i.e., the difFerence between energies
at (2x/a)(1, &, 0) and at (2x/a)(0, 1, z); see Fig. 3] are
shown in Figs. 5(a) and 5(b) for the valence (Vj, open
dots; V2, closed dots) and conduction (Cq, open dots; C2,
closed dots) bands, respectively. The solid lines represent
Eq. (4) with %=0 and (As —A4) varied to reproduce the
average valence- or conduction-band splittings for strain
values up to about 0.2%%uo (range indicated by arrows in
Fig. 5); this fit gives for the valence band (As —A& )

(v) (v

—0.51 eV and for the conduction band (A3 A4 ) =(~) (~)
—15 eV. The intervalley splittings are well described by
this linear expression at least for strains up to IFo in the
conduction-band case, whereas deviations from linearity
due to higher-order terms not included in Eq. (3) appear
in the valence-band case.

When a uniaxial strain is applied along the main cubic
diagonal [111], the spin-orbit splittings at W increase
according to Eq. (4):

2P~2 + b2( 2 + 2 ))1j2
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FIG. 4. Germanium (a) valence- and (b) conduction-ba. nd
dispersion relations [E(k)] near the W point along the Wl
(at the right) and WX' (at the left) directions, see text for
deta. ils.

FIG. 5. Germanium (a) valence and (b) conduction W-
point intervalley splittings (AE) for uniaxial stress along the
z cubic axis [001], see text for details.
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In this case, the atomic positions in the trigonally dis-
torted crystal are not simply given by the aKne trans-
formation describing the distortion of the unit cell be-
cause the second atom in the basis [at (a/4)(l, 1, 1)] can
also be displaced as in a longitudinal-optic phonon along
[ill]. This additional degree of freedom is described
by the internal strain parameter ( that varies between
0, corresponding to the a%ne deformation only, and 1,
corresponding to keeping the distance between the two
nearest neighbors along [ill] equal to that in the un-
strained crystal. The LMTO bands can be calculated
for any given value of the internal strain parameter.
As above, the parameter ~bs~ is obtained by fitting Eq.
(7) to the calculated bands, which gives for the valence

band ~bs [ 2.0 eV with (=0 and ~bs [ = 1.5 eV with

g=l, and for the conduction band ~bs ~
16 eV with

/=0 and ~bs ( 19 eV with (=I; intermediate values of
g have also been considered. The corresponding values of
~bs~ are well described by a linear interpolation between
(=0 and 1 for the conduction band. For the valence
band, instead, the values of ~bs~ for intermediate values
of t, are considerably smaller than those for either (=0
or 1; in particular, for ( 0.58 (which is most appropri-
ate for Ge, see Ref. 27), the strain-induced variation of

the valence-band spin-orbit splitting is very small and no
longer described by Eq. (7) [i.e. )6 )(( 0.58)~ 0].
In fact, b3 contains both the contribution of the aKne
deformation [bs(af)] and of the optical phonon [bs(ph)):
63 —63(af) —-(bs(ph); in the case of the valence band,
bs as a function of ( changes sign for g 0.58.

Finally, it is worth mentioning that the invariant ex-
pansions presented here are by no means limited to the
phonon or electron case, but can be used to describe the
dispersion around the W point of any (integer or half-
integer) excitation, including strain-induced effects, as
long as the underlying crystal space-group symmetry and
time-reversal invariance are not broken.
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