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Relaxation of hot-electron distributions in GaAs
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The field-free equilibration of optically excited nonequilibrium hot electrons is studied theoretically
with use of the Boltzmann kinetic equation. The analysis is limited to the situation where the
longitudinal-optical-phonon scattering mechanism is dominant. The relaxation of the electron-energy-
distribution function and of the average electron energy are investigated numerically for pulsed initial

conditions with account taken of the exact collision integral within a single-parabolic-band model. It is

shown that the energy dependence of the relevant scattering rate plays an important role in determining

the relaxation of the hot-electron distribution.

I. INTRODUCTION

There has recently been considerable experimental and
theoretical interest in the relaxation of nonequilibrium
distributions of hot carriers in semiconductors. ' Ex-
perimental studies have been carried out for optically ex-
cited or electrically injected hot carriers in GaAs as well
as quantum-well structures such as GaAs/Al Ga, ,As.
With the development of subpicosecond resolution spec-
troscopy, the relaxation phenomena in semiconduc-
tors can now be studied experimentally on a very short
time regime. The development of such experimental
techniques provides further motivation for research on
more exact theoretical treatments of relaxation dynamics.
It has long been recognized that semiconductor device
characteristics depend on the relaxation rates of none-
quilibrium distributions. ' A detailed understanding of
the relaxation to a steady state in terms of the various in-
teractions of electrons in a semiconductor and the details
of the time variation of the distribution functions is clear-
ly an important endeavor.

The purpose of the present paper is the theoretical
study of the field-free relaxation to equilibrium of the
nonequilibrium energy distribution of hot electrons in-
jected into GaAs. The importance of this problem has
been discussed by Shah" and Ulbrich' in recent reviews
of hot-electron transport. We assume that the dominant
scattering process for energetic electrons in CxaAs is the
longitudinal-polar-optical-phonon interaction and that
electron-electron collisions can be neglected as discussed
by Collins and Yu. ' For temperatures above 25 K,
acoustic phonon scattering does not play an important
role. ' The main objective is to obtain the time depen-
dence of the electron-energy-distribution function,
f (E, t), from a solution of the Boltzmann equation for
this interaction without approximating the collision
operator. We also calculate the relaxation of the average
electron energy and the relaxation time for the approach
to equilibrium. A common approximation used in the
solution of the Boltzmann equation for this initial-value
problem as well as for the steady-state problem in the
presence of an electric field is to replace the exact col-

lision operator with an average relaxation time generally
assumed to be constant, ' ' although an energy depen-
dence is sometimes included. '

Since electron-electron collisions are neglected, the
Boltzmann equation is linear in the electron distribution
function. The relaxation is therefore completely specified
by the linear Boltzmann collision operator and the initial
condition. If the initial distribution function is expanded
in the eigenfunctions of the collision operator and the
spectrum of the collision operator is discrete, then the
time dependence of the average electron energy (and oth-
er electron properties) can be represented as a sum of ex-
ponential terms of the form g„" oc„e "', where A,„are
the eigen values of the collision operator and the
coefficients c„ fit the initial condition. If the spectrum of
the operator is continuous, then the sum over n is re-
placed by an integral over the continuous eigenvalue X.
These aspects of the approach to equilibrium are well
known in their application to gaseous systems' ' and in
neutron thermalization processes. ' The representa-
tion in terms of the eigenvalues is useful since if the spec-
trum is discrete, then the reciprocal of the smallest
nonzero eigenvalue is the relaxation time for small depar-
tures from equilibrium. This would correspond to the
usual relaxation-time approximation often used in
dynamical studies in semiconductor physics, ' ' but with
the identification of the relaxation time with an eigenval-
ue of the collision operator. The representation of the re-
laxation in terms of the eigenvalue spectrum of the linear
collision operator is not possible with Monte Carlo simu-
lations which have become a common theoretical metho-
dology in recent years. If the spectrum of the operator
is continuous, then the approach to equilibrium may have
a very nonexponential dependence on the time. Such a
situation was calculated by Corngold and co-workers in
the study of energy relaxation in plasmas.

The present work is an extension of the previous treat-
ment of this problem by Canright and Mahan. These
authors considered a constant relaxation rate indepen-
dent of the electron energy. Also, Canright and Mahan
employed a discrete model for the electron-energy-
distribution function which corresponds to electron ve-
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locities confined to two dimensions. In the present paper
we treat the collision integral exactly for the chosen
scattering mechanism, and the energy dependence of the
scattering rate is taken into account. The importance of
the energy-dependent scattering rate in determining hot-
electron transport has been discussed recently by Ber-
nasconi et al. Canright and Mahan obtained an analyt-
ic solution to the discrete Boltzmann equation with a
constant scattering rate. The spectrum of the infinite-
ordering scattering matrix was found to be completely
continuous. Although they showed that the energy
dependence of the (discrete) time-varying electron-
energy-distribution function, they did not calculate the
relaxation of the average electron energy and the charac-
teristic energy relaxation times for the approach to equi-
librium, as is done in the present work.

For a detailed quantitative analysis we restrict the
physical situation as follows. First, we treat the electrons
as nondegenerate for simplicity. The longitudinal-polar-
optical-phonon interaction is considered to be the dom-
inant scattering mechanism for energetic carriers in polar
semiconductors like GaAs, '" so that the relaxation of
injected hot electrons occurs only via emission and ab-
sorption of longitudinal-optical phonons. This
simplification may be achieved in a real situation by
confining injected electrons within certain energy and
concentration ranges at certain background tempera-
tures. Furthermore, we restrict the energy of carriers to
be less than 0.3 eV so that intervalley scattering can be
neglected and only intraband transitions are considered
within a single-parabolic-band model. ' Although both
electrons and holes are excited in principle in the pho-
toexcitation process, we assume that most of the photon
energy is assigned to the electrons because the electron
effective mass is much smaller than the hole effective
mass. Finally, the phonons are assumed to be in
thermal equilibrium at the lattice temperature so that the
distribution function is specified a priori as obeying Bose-
Einstein statistics, and the phonon energy dispersion is
constant. Thus we neglect the possible generation of
nonequilibrium phonons.

With these assumptions, we solve the time-dependent
Boltzmann equation for a pulsed initial energy distribu-
tion, with the rigorous collision operator which includes
the exact energy dependence of the scattering rates. Be-
cause the phonon energy is assumed to be constant, elec-
trons can be scattered into discrete energy levels equally
spaced with one phonon energy %coo. Accordingly, the
Boltzmann equation itself can be written in a discretized
form in energy space, that is, the linear inelastic collision
operator is reduced to a finite dimensional matrix. The
problem is thus reduced to the determination of the ei-
genvalues and eigenvectors of the resulting matrix
defined in the discretized energy space. The dimensional-
ity of the matrix representative of the linear collision
operator is increased until convergence is achieved. The
nature of the approach to equilibrium in terms of the ei-
genvalue spectrum of the inelastic collision operator is
discussed briefly. The characteristic energy relaxation
times are calculated for lattice temperatures of 77 and
300 K for various initial electron energies.

II. THEORY

The Boltzmann equation appropriate for the descrip-
tion of the evolution of a nondegenerate electron distribu-
tion, homogeneous in space and in the absence of external
fields, is given by

8 k, t
y

dk'
( (k k, )f(k, )(2'/L)3

—S(k', k)f (k, r)],

where S(k, k') is the transition probability of an electron
being scattered from the energy state E& to Ek per time
and I. is the size of the semiconductor. The energy-
wave-vector relationship Ek is assumed to be A k /2m*,
where m * is the isotropic electron effective mass within a
single-parabolic-band model. The transition rate is
specified from the Fermi golden rule:

S (k, k') =
i
(k'i U k ) i 5(E E+fico ), —(2)

where +A'coo represents emission (+) and absorption ( —)

of a phonon in the scattering process. For polar-optical-
phonon scattering the matrix element of the interaction
strength U is given by the Frohlich formula'

(k'/ Ufk) =
1/2

e %coo

2 Veo

1/2

+no (absorption)
X '

+no+ l (emission),

where e is the electric charge, V is the volume of the crys-
tal, K and Ko are the high- and low-frequency dielectric

Canright and Mahan obtained an exact analytic solu-
tion for the distribution function for a two-dimensional
gas model with a constant scattering rate. We have com-
pared our results with those obtained for this model. Our
primary result shows that the energy-dependent scatter-
ing rate has a significant effect on the dynamics of the in-
jected electron distribution function, the electron-energy
relaxation, and the corresponding relaxation time. Col-
lins and Yu' also obtained an analytic solution for the
Boltzmann equation with the restriction that
(Bf/BE)A'co ((f(E).

The paper is organized as follows. In Sec. II the
Boltzmann equation for the longitudinal-polar-optical-
phonon scattering mechanism is briefly discussed. In Sec.
III the calculation of the relaxation of the distribution
function based a discretized solution of the Boltzmann
equation is outlined. The results and their discussion are
given in Sec. IV. A summary of the results is presented
in Sec. V.
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constants of the medium, and E'0 is the permitivity of free
space. Also, the thermal average phonon occupancy n0
is specified as

no = 1/[exp(irtcoo/kii To) —1],

where T0 is the equilibrium lattice temperature.
With Eqs. (2) and (3) in Eq. (1) and after performing

the integration in the Boltzmann equation within the
single-parabolic-band model, we find that the collision in-
tegral on the right-hand side of Eq. (1) reduces to

QE + fico()+ VE
J(f(E, t)) =a- —(no+1)ln f (E+ficoo, t)

QE +ficoo —&E

v'E +QE —%coo+a —noln f (E ficoo, t—)6(E ficoo) —v(E)f—(E,t),
E v'E QE——A'coo

(4)

where

a=e coo't/m *(1/K —1/ICO)/4&2irheo .

In the above, the scattering rate v(E) is given by'

v(E) = f — S(k', k)
dk'

(2m/I ).
gE +Acoo+&E

noln + (no+ 1)6(E—%coo)ln
QE +neo, &E—

&E +QE —A'coo

&E QE —Rc—oo

which is the total number of collisions being experienced by an electron in an energy state Ek per unit time. The Heavi-

side step function 6 in Eqs. (4) and (5) ensures that only electrons with energy larger than one phonon energy can lose

energy Am0.

Since for this scattering mechanism the electrons lose or gain energy in integer multiples of Aco0 by emitting or ab-

sorbing phonons, we choose the electrons to have the discrete energies

E1 =Eo+lkcu0, l =0, 1,2, . . . ,

where E0 is the excess of the energy of an injected electron measured from the conduction band edge such that

0 E0 (Aco0. This discretization follows in part from the choice of an initial 5 function distribution discussed later.
With this choice of discretization, Eq. (1) with the collision integral as in Eq. (4) can be written in the matrix form

1+1
Gi f (t),

m=1 —1

where f&(t)=f (E&, t) and th—e G& is given by

v(EO) g+(Eo) 0 0 0 0

g (E, ) v(E, ) g+(E, ) 0 0 0

0 g {E,) v{E,) g+(E, ) 0 0
6=

0 0 g (E ) v(E ) g+(E3) 0

In Eq. (8), g+(E&) and g (Ei) are the negative of the
coefficients of f (E&+„t)and f (E& „t) in Eq. (4), respec-
tively.

The number of electrons and the nonequilibrium aver-

age energy are given in terms of the distribution function
by

%—= g D(Ei)fi(t)
1=0

and

E(t)= g D(Ei)Eifi(t)
1=0

g D(Ei)fi(t),
1=0

(V/2ir )(2m*/iri )3~~+Ei .

where D (E& ) is the factor from the density of states that
1s
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In the work by Canright and Mahan, D (E() is taken to
be independent of El. This restricts the electron veloci-
ties to two dimensions in velocity space whereas the
treatment in this paper corresponds to the three-
dirnensional case.

Equation (7) satisfies three basic characteristics of a
transport equation that include (a) the detailed balance
condition, (b) a Boltzmann distribution at equilibrium,
and (c) electron conservation. The detailed balance con-
dition at equilibrium states that

+ 1 &l)(.+ l + 1+&5+1
Gl I+1 ln

VX+ 1 VX+1+ 1 —&5+ l

G Q
II

np+1 np
GI*I 1+ Gl*l +1

no np+1

no
1

e~+1+ab+l —1
l 1

&b, + I v'lI), + l —V'b, + I —1

(16)

z(p)I I —fico/kT=e 0

fl —1
(p) (12)

Since the electron energies are not continuous, Eq. (12)
states that the ratio of the distribution function at the
chosen energies is given by the Boltzrnann factor. This
implies that the determinant of the matrix G, Eq. (8),
vanishes; accordingly, there must exist a zero eigenvalue
for the matrix whose corresponding eigenvector is the
Boltzmann distribution function. Since the total number
of injected electrons is preserved in the model considered,
we have that

(13)

This is clearly seen by multiplying Eq. (7) by the weight
factor D (E() and performing the sum over El, that is,

QD(E()J(f (E(,t))=0,
I

where the definition Eq. (9) has been used.

")/E(G(mf (Em ) =)/'Em Gmlf ' '(El ), m&l

where f' '(E() is the equilibrium distribution function
and To is the background temperature of the phonon
bath. The equilibrium solution to Eq. (7) is given by

,G( F' '=0 and is the Boltzmann distribution
function, that is,

Hereafter we omit the asterisk for the dimensionless vari-
ables. It is useful to symmetrize the nonsymmetric ma-
trix G, Eq. (16), by defining

—E —)/4+f (0)h

such that Eq. (7) becomes

Bhl

Bt

I+1
Ml h

m=l —1

where

(17)

(18)

G E(m 1/4 (0) lm m J m
El fl

(19)

One can show that MI =M I using the detailed balance
condition, Eq. (11).

We consider a solution to Eq. (18) and hence of Eq. (15)
for which the distribution function is expanded in the
eigenfunctions of M defined by

(20)

where g'") denotes the mth component of the pth eigen-
vector and X„ is the corresponding eigenvalue. The
transformation from Eq. (15) to Eq. (18) which sym-
metrizes the relaxation matrix guarantees that the eigen-
values are real. The solution for the time-dependent dis-
tribution function is then given in the form

III. CALCULATIONS

f((t)=E( ' Qf( ' g b exp( A,„t)pi"', —
p=0

(21)

El* —=EI/Acop=h+l, t*—=vpt, (14)

where 5:—EA/%coo and the characteristic scattering time
v0 '= a/")//fico0. Then in—dimensionless form Eq. (7) be-
comes

In this section we describe the numerical solution of
Eq. (7) for a pulsed initial distribution function and the
study of the relaxation of the nonequilibrium average
electron energy. It is useful to introduce a dimensionless
energy El* and dimensionless time t* by

fl (0)=N05 (22)

so that the expansion coefficients b„are given by
l)l0E„'/ g'„"'/Q f ( ). Thus the distribution function is
completely specified by

f10)
' 1/2 ' ' 1/4

fl(t)=%0,
)

where the constants b„are specified from the initial con-
dition. For a pulsed initial condition, when the electrons
are injected into a particular energy state E„,we have the
initial distribution

&f((t*)
Bt*

I+1
G(* f (t*),

m=1 —1

(15) X g exp( —A,„t)p'("'alt'„(' .
p=p

(23)

where the distribution function is normalized as in Eq.
(9). The tridiagonal matrix elements in Eq. (15) are from
Eq. (8)

The initial condition, Eq. (22), is satisfied since at t= 0 the
completeness relation +„0)t/I(') g'„")=5(„gives f((0) in
Eq. (23).
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The calculation of the distribution function given by
Eq. (23) reduces to the solution of the eigenvalue prob-
lem, Eq. (20), and from practical considerations the order
of matrix must be set to some finite value Q. For the
present model, an increase in 0 represents the addition of
energy grid points to the end of the energy interval.
Since the contributions from the very high energy tail of
the distribution function are expected to be negligible,
rapid convergence of the solution is anticipated at some
finite order for the initial energies considered. We in-
crease the order of matrix 0 until the relative difference
of the average energy, calculated from Eq. (10), in two
successive time steps approaches arbitrarily close to zero
(within 10 ) at each time. The order of the matrix re-
quired for convergence with this criterion increases with
an increase in the initial energy, and is in the range
15~0~30 for the initial energies considered. The nu-
merical accuracy was also monitored by checking the
conservation of number of particles, Eq. (13).

IV. RESULTS AND DISCUSSION

We have solved the Boltzmann equation with the
method described in Sec. III for initial electron energies
less than 0.3 eV for temperatures To=77 and 300 K.
Since we emphasize the importance of taking into ac-
count the exact energy dependence of the collision opera-
tor, the scattering rate v(E) given by Eq. (5) is shown in
Fig. 1. As is seen in Eq. (5), the contribution from ab-
sorbing phonons is proportional to the thermal average
phonon occupancy n o. The value of n o is about
0.38 X 10 at 77 K so that only the emission of phonons
is important at this temperature. On the other hand, at
300 K the occupancy is about 0.31 and the contribution
from absorption is not negligible. Thus, at these higher
temperatures the relaxation of electrons occurs via both
phonon emission and absorption.

To show the relaxation of the distribution functions to-
ward equilibrium, we find it useful to consider the ratio of
f (E&, t) with respect to the equilibrium distribution func-
tion, that is,

@(&I,&) =f(&—I, &)lf (&I, ~ ), (24)

which tends to unity at long times. In the numerical cal-
culations that were carried out, it was confirmed that

E(t)=E + g c„exp( —
A,„t),

p=i

where E is the equilibrium average energy and

(25)

f (E&, t) ~exp( E& Ik—~ To )

as t ~~, consistent with Eq. (12). Figure 2 shows the re
laxation of the distribution function C&(E&, t) for several
temperatures and initial conditions. The times shown are
in units of vo

' equal to 0.26 picosecond for GaAs. ' Fig-
ures 2(a) and 2(b) are for To=77 K and initial energies
E3 =3.1Acoo and E6 =6. 1Acoo, respectively, where the-
choice b. =0.1 has been made in Eq. (14). Figures 2(c)
and 2(d) are for To300 K and initial energies E6 =6. 1A'coo

and E8 =8. 1%coo, respectively. A smooth line has been
drawn through the data points, although the distribution
function is evaluated at the previously defined discrete
energy points given by Eq. (14). The initially sharply
peaked distribution function at the injected energy
broadens with time and approaches the equilibrium
Maxwell-Boltzmann distribution at infinite time. The
negative portion of the curves indicates an underpopula-
tion of electrons with respect to the equilibrium distribu-
tion and the positive part at higher energies represents an
overpopulation.

The time dependence of the average electron energy is
with Eqs. (10) and (23) given by

2.5 n D(/I) f(
c =We,( D(/ ) f(o)

1/4

q(p)y(p) (26)

2.0

1.5 — I
I

0.5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.0 0
I

12
I

16 20

FIG. 1. Scattering rate v(E) (in units of v0=0. 38X10"
sec ') vs E (in units of %coo=0.037 eV); the dashed (dotted) line
represents the contribution from emitting (absorbing) phonons
for 300 K, respectively. At 77 K, the contribution from absorp-
tion is negligible and only the total scattering rate is shown.

and use has been made of the normalization 1V—:1. The
relaxation of the average energy corresponding to the dis-
tribution functions in Fig. 2 is shown in Fig. 3 which in-
cludes several additional initial energies. For TO=77 K
the average energy after 10t is within approximately 8%%uo

of its equilibrium value 0.11k'coo for n=3 and about 50%
for n=6. For TO=300 K, the average energy has de-
cayed to within 9% of the equilibrium value 0.87%coo and
within 1% for n =6 and 3, respectively, after 10t. A com-
parison of Figs. 2(a) and 2(b) or 2(c) and 2(d) shows that
for the larger initial energies, the distribution functions
relax to equilibrium slower at both 77 and 300 K as ex-
pected than for the smaller initial energies. Also, the dis-
tribution function relaxes much faster toward equilibrium
at the high temperature for the same initial conditions
n=6. This is because, as seen in Fig. 1, the electron
scattering rate at 300 K is larger than the one at 77 K
and the quilibration is faster. Even after 10t, it is evident
from Fig. 2 that there still remains a nonequilibrium hot
energy tail in the electron distributions.
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as t —woo

where the coefficient C(A, ) corresponds to the discrete C„

lations show that at 77 K the spectrum of the relaxation
matrix consists of a single nonzero discrete eigenvalue A, ,
plus a continuum, whereas at 300 K the spectrum is en-
tirely continuous. This conclusion is based on the con-
vergence with increasing Q of the discrete eigenvalue A, ,
at 77 K but the nonconvergence of the eigenvalues which
belong to the continuum.

At the lower temperature it is expected that the energy
relaxation in the long-time limit is characterized by the
single discrete eigenvalue A, This is seen more clearly in
Table II where the values A&r(t) are shown versus time to
illustrate the asymptotic behavior of the relaxation time
r(t). The results in the table show that w(t)~1/A, as
t~ ~ for both n=6 and 8 at 77 K. For this case, the
long-time limit, Eq. (28), can be rewritten in the form

J dAC(A, , )exp( —At)
~(t) — + (29)Id A, C(A, )A, exp( —A, t)

5
10
15
20
25
30

5
10
15
20
25
30

Arp

0.7068 [—11]'
0.6357[—17]
0.6357[—17]

0.3269[—2]
0.3216[—5]
0.2809[—8]
0.2354[—11]
0.1710[—14]

—0.2457[—15]

Tp =77 K
0.5972
0.5972

Tp=300 K
0.8017
0.5044
0.4300
0.3914
0.3632
0.3408

1.193
1.149
1.034
0.9473
0.8823
0.8313

1.501
0.7533
0.5437
0.4598
0.4149
0.3839

A3

1.448
1.186
1.076
0.9812
0.9103
0.8551

2.571
1.087
0.7134
0.5547
0.4752
0.4287

'[ —n] —= 10

8.0

TABLE I. Convergence of the lower-order eigenvalues vs the
order of the matrix Q.

10.0 '

8.0
6.0

6.0 4.0

I~ 40 2.0

2.0

0.0 8 10

0.0

8.0

10

10.0 '

6.0

8.0

6.0
4.0

ILLJ 4.0 2.0

2.0
0.0

0.0 10

FIG. 3. Decay of the average electron energy E(t) at temper-
atures 77 and 300 K for initial conditions n =3, 6, 8, and 10.

FIG. 4. Time-dependent relaxation time for initial conditions

(a) n=6 and (b) n=8. The solid line is the result from exact
energy-dependent theory at 77 K, the dashed line is the same re-

sult at 300 K, and the dotted line is the result from the constant

scattering rate model at 300 K.
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TABLE II. A, &v(t) vs t (in units of vo '=0.26 picosecond).

t 77 K, n=6 300 K, n=6 77 K, n=8 300 K, n=8

1

2
3
4
5
6

8
9

10
11
12
13
14
15

2.1997
1.7299
1.4442
1.2751
1 ~ 1726
1.1089
1.0686
1.0430
1.0267
1.0164
1.0099
1.0060
1.0035
1.0021
1.0012

1.3419
1.0893
0.9601
0.8888
0.8458
0.8179
0.7984
0.7842
0.7733
0.7645
0.7571
0.7508
0.7452
0.7401
0.7354

3.2770
3.6247
2.1272
2.7710
1.5326
1.3706
1.2606
1.1804
1.1301
1.0917
1.0643
1.0448
1.0310
1.0212
1.0144

1.0775
1.5774
1.3091
1.1410
1.0337
0.9621
0.9121
0.8757
0.8481
0.8266
0.8092
0.7950
0.7830
0.7727
0.7637

TABLE III. The effective relaxation time.

3
6
8

10

(77 K)'

0.504
0.842
1.113
1.409

&, (300 K)'

0.435
0.790
1.067
1.363

~, (300 K, constv)

0.551
1.040
1.363
1.687

(~, in picoseconds).
'Results obtained with the three-dimensional energy-dependent
scattering operator.
Results obtained with the two-dimensiona1 energy-independent

scattering operator by Canright and Mahan.

in Eq. (28) and A.
&

is the lowest discrete nonzero eigenval-
ue. On the other hand, at 300 K the spectrum is entirely
continuous and the second integral term contributes so
that the time dependence is no longer a pure exponential.
The functional form of C(k) versus A, determines the
time dependence. It is interesting to speculate as to
whether the different time dependence at 77 and 300 K
can be observed experimentally. The difFerences in the
results at these two temperatures demonstrates the im-
portant role of the energy dependence of the collision
operator. The model studied by Canright and Mahan
yields a spectrum that is entirely continuous and the en-
ergy relaxation is not exponential.

It is useful to characterize the relaxation with a time-
independent relaxation time which can be defined in a
variety of ways as discussed elsewhere in connection with
gaseous systems. ' ' We choose to define a relaxation
time r, after which the difference E(r, ) Ehas de-—
creased by the factor e of its initial value, that is,

E(r, ) E„=e '[E(—0)—E„].

In Table III we show the relaxation time ~, for various
initial conditions and for temperatures 77 and 300 K.
The relaxation times at the higher temperature are small-
er for the same initial condition as anticipated.

Also shown in Table III, and in Fig. 4, are the results
for the model of Canright and Mahan. Canright and

Mahan employed a two-dimensional model with a con-
stant scattering rate for which the relaxation matrix Eq.
(16) is given by

Gi I+ i
= ("o+1)

G&&, = —noe(l —1),
Gl&

= [(n o+1)e(l —1)+no] .

(30)

They showed that, in addition to the zero eigenvalue cor-
responding to the equilibrium solution, the eigenvalues of
the matrix in Eq. (30) form a continuous spectrum A,(8)
parametrized by an angle 0, which varies from 0=0 to
0=m. . Because of the two-dimensional nature of their
model, the particle number density and energy, Eqs. (9)
and (10), are given by

N= g f(—(t),
I=p

E(t)= g EIfI(t) g f&(&) .
I=p 1=p

(31)

A direct comparison of the relaxation of the average en-
ergy between the energy-dependent case in this paper and
the constant scattering rate model by Canright and
Mahan is consequently somewhat inappropriate. In the
latter, the average energy at equilibrium is given as

Acop
E( ~ ) =Eo+

exp(rimo~ka ro )
(32)

In the high-temperature limit A'coo((k&To, Eq. (32) ap-
proaches its equipartition value kgTp appropriate to a
system with two translational degrees of freedom,
whereas Eq. (10) gives the value of —', k~ To consistent with
three translational degrees of freedom. The discrepancy
stems from the different weight factors in the definitions
for the average energy, Eqs. (31) and (10), constant for
the former and QEI for the latter. The different weight
factors are also important in determining the form of the
collision operator in connection with the conservation of
particle number. However, a comparison of the two
models is still appropriate. For example, the phonon
modes interacting with two-dimensional carriers such as
electrons confined in GaAs/Al„Ga& As heterojunctions
are considered to be the same as those of bulk GaAs.

The relaxation equation, Eq. (15), is solved with the
matrix elements given by Eq. (30) with the methodology
described in Sec. III. In Table IV, we show the conver-
gence of the largest and smallest eigenvalues from the nu-
merical diagonalization of the relaxation matrix, Eq. (19),
in comparison with the analytic values from Canright
and Mahan at the extreme boundaries of the continuous
spectrum. The numerical results are in almost complete
agreement with the analytic results for this model.

The relaxation of the electron distribution function for
n=6 at 300 K obtained with the constant relaxation rate
is shown in Fig. 5. The corresponding relaxation of the
average electron energy is shown in Fig. 6. A compar-
ison of these results with those in Fig. 2 for our three-
dimensional energy-dependent model shows that the re-
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TABLE IV. Convergence of the eigenvalues for the constant
scattering rate model.

'10.0 '

20 40 60 80 100 A(0)'
8.00=m. 0.3607 0.3475 0.3451 0.3443 0.3439 0.3433

8=m 2.8977 2.9091 2.9113 2.9120 2.9124 2.9130

'Analytic values from Canright and Mahan, Ref. 26. 6.0

V. SUMMARY

We have obtained the time-dependent hot-electron dis-
tributions in GaAs from solutions of the Boltzmann
equation for an initial 5-function distribution function at
77 and 300 K, and studied the relaxation to equilibrium

5.0

2.5

LLJ

0.0
C)

cn0
2%5

v=const

—5.0 10

laxation is somewhat slower for the constant scattering
model. Also, the relaxation is slower for the higher ini-
tial energies. The average energy is more than 50% off
from its equilibrium value for n =6, and about 5% for
n=3 after 10t. The constant scattering rate model un-
derestimates the number of collisions experienced by elec-
trons, since the collision rate has been approximated by
2no+1 [the diagonal element in Eq. (30)] and the energy
dependence has been neglected [see Eq. (16)]. The value
of 2nD+1 is approximately 1.6 at 300 K and 1.0 at 77 K,
respectively. Thus, comparing the results in Fig. 4 with
the results in Fig. 2 and in view of the comparisons of ~,
in Table III, this model gives a larger nonequilibrium
electron population at higher energies, and the slower re-
laxation of the distribution functions and of the average
electron energy. These results suggest that the energy
dependence of the collision operator is important for a
quantitative description of the relaxation of hot-electron
distributions. In addition, the two-dimensional constant

. scattering rate model considered by Canright and Mahan
does not represent the relaxation mechanism in the bulk
material. It might be an appropriate approximation for a
two-dimensional electron gas in a homogeneous system.

2.0

0.0 10

FIG. 6. Decay of the average energy at 300 K for n=3, 6, 8,
and 10.

of the average electron energy. The single-longitudinal-
optical-phonon scattering mechanism was assumed and
the energy dependence of the scattering rates was
rigorously included in the calculations. The solution was
expanded in the eigenfunctions of the collision operator
determined by the numerical diagonalization of the ma-
trix representative of the collision operator in a discre-
tized energy space.

The nature of the approach of the average energy to
equilibrium has been discussed in terms of the eigenvalue
spectrum of the collision operator. We find that at 77 K
there exists a single discrete nonzero eigenvalue plus a
continuum and the asymptotic behavior of the energy re-
laxation is determined by this discrete eigenvalue. The
electron average energy in this case relaxes to equilibrium
exponentially with the reciprocal of the discrete nonzero
eigenvalue as the asymptotic relaxation time after an ini-
tial transient. On the other hand, at 300 K the eigenval-
ue spectrum is continuous and the approach to equilibri-
um is some nonexponential function of time.

We have also introduced an effective energy relaxation
time in order to characterize the time scale of the energy
relaxation for various initial energies and lattice tempera-
tures. The result shows that the average electron energy
relaxes faster at the higher temperature than at the lower
temperature, and that electrons with high initial energy
relax slower for both temperatures. The energy depen-
dence of the scattering rate plays a significant role in the
relaxation of injected hot electrons. For the two-
dimensional constant scattering rate model by Canright
and Mahan, the relaxation of the distribution function
and of the average energy is somewhat slower. This is be-
cause the constant scattering rate model underestimates
the number of collisions of electrons in the range of ener-
gies considered and yields an incorrect overpopulation of
high-energy electrons.
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