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XH defects in nonmetallic solids: Isotope effects and anharmonicities as probes
of the defect environment
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We have developed a technique to analyze the ir stretch modes of XH defects in nonmetallic solids,
where X is an atom or ion heavier than hydrogen. This technique draws heavily upon molecular theory:
The XH defect is treated by a Morse potential modified by coupling of X to the lattice with use of a one-
dimensional model. The electrical anharmonicity of the dipole moment is included in obtaining transi-
tion strengths. The importance of overtone data as well as deuteration is demonstrated. A number of
systems involving OH in insulating solids are analyzed. These include (1) OH, OD, and OT in
Ti02 [J. B. Bates and R. A. Perkins, Phys. Rev. B 16, 3713 (1977)]; (2) OH and OD in Mg-doped LiF
and NaF [R. Capelletti et al. , Cryst. Latt. Defects Arnorph. Mater. 16, 189 (1987)]; (3) OH and OD in
LiNb03 [A. Forster et al. , Phys. Status Solidi B 143, 755 (1987)]; and (4) OH and OD in CsC1 and
CsBr [M. Krantz and F. Luty, Phys. Rev. B 37, 7038 (1988)]. The defects in TiOz exhibit a surprisingly
large mechanical anharmonicity. The data on Mg-doped Auorides indicate electrical anharmonicities
which in some cases are considerably different from that of molecular OH

I. INTRODUCTION

Study of the infrared properties of hydrogen-related
defects in semiconductors and insulators has been a
significant tool in obtaining information about the struc-
tures and properties of such defects. ' Hydrogen is a
particularly important defect constituent because of its
frequent occurrence, its small size and mass, the existence
of several isotopes, and its ability to form several types of
chemical bonds. In most nonmetallic solids, hydrogen-
related stretching bands and their combination and over-
tone bands lie well above the vibrational bands of the
host, thus making them amenable to conventional ir spec-
troscopic techniques.

In this paper we investigate some of the theoretical as-
pects of the ir spectra of hydrogen-related defects, using
OH in insulating crystals as an example. We show that
it is possible to extract considerable information from ir
stretching bands if one can vary the isotope and the tem-
perature and if the positions and strengths of both funda-
mental and overtone bands can be measured. Electrical
anharmonicity is found to be significant, as it is indeed
known to be in other hydrogen-related systems.

An important early example of this type of analysis is
contained in the paper of Bates and Perkins (BP) on
OH in Ti02. BP measured the ir spectra of OH
OD, and OT at temperatures ranging from 8 to 300
K. They analyzed their measured isotopic frequency
shifts and intensities on the basis of two models, a di-
atomic anharmonic oscillator model and a harmonic
hydrogen-bonded model. Based on this analysis, they
concluded that the hydrogen-bonded model was incon-
sistent with experiment.

We extended the BP model and applied our version to
data obtained for Ti- and Mg-related OH and OD
centers in LiF. Here, too, the anharmonic oscillator
model seems basically correct. However, there is striking
evidence for electrical anharmonicity (nonlinearity of the
electric dipole moment with O-H separation), in addition
to mechanical anharmonicity, in certain of the complex
defects studied in LiF. This electrical anharmonicity and
its temperature dependence may indicate defect-host in-
teractions not previously considered.

In this paper the theoretical aspects of the approach
used to analyze the data of Ref. 6 are discussed. The im-
portance of the coupling of the defect molecule to the lat-
tice through the O atom, and its effect on isotope shifts, is
demonstrated. Further analysis of the data of BP sug-
gests an anomalously large anharmonic contribution to
the internal OH stretching mode, which, at the present
time, cannot be explained. The effects of the electrical
anharmonicity are considered in detail and are applied to
defects in LiF and NaF. Published data on OH and
OD in LiNb03 and in cesium halides are brieQy con-
sidered.

II. THEORY

A. Model for analysis

We treat OH as an anharmonic diatomic molecule
coupled harmonically through 0 to the lattice. This is
similar to a number of successful treatments of XH in
molecules (where in many cases X is carbon). ' This
type of approach works well for molecules, even for high-
ly excited local modes. One may understand why this is
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B. The Morse oscillator

The Morse potential' may be written as

U(r —r, ) =D, I 1 —exp[ —P(r —r, )] I (3)

the case by considering a model problem, namely, a light
atom (m) at the end of a semi-infinite chain coupled har-
monically to heavier atoms. In the simplest version, all
atoms but the light one are identical (M) and all force
constants are identical (k). As shown in the Appendix,
one may then use a recursion method to demonstrate
that, in the expression for the local-mode frequency

co=(k/p)'i (1)
the reduced mass p is given exactly by

p=m (1—m/M) . (2)

It is important to note that the exact reduced mass agrees
to first order with the reduced mass of the free diatomic
oscillator. For example, if I =1 and M =16, the exact
reduced mass [Eq. (2)] equals 0.9375, while the diatomic
reduced mass equals 0 9412. This is only a 0 4%
difference. A similar correspondence between the exact
result and a diatomic result may be noted in a detailed vi-
brational calculation of H attached to Si which is at-
tached to a silicon Bethe lattice. "

One may modify the one-dimensional chain by intro-
ducing different masses and force constants, and, indeed,
we have done so in the calculations discussed below. But
it is important to emphasize the basic result: to an excel-
lent first approximation, one may treat the stretching vi-
bration of XH attached through X to other atoms as the
vibration of a free diatomic XH molecule.

There are several possible ways to include refinements
to the free diatomic model. Newman and co-workers' '
have modified the diatomic reduced mass by multiplying
the heavier mass by a factor. Very recently Dumas, Cha-
bal, and Higashi' have reported an extensive study and
analysis of H attached to a Si atom at a silicon (111)sur-
face. They find evidence of anharmonic coupling to sil-
icon phonons. Hutchinson, Reinhardt, and Hynes ana-
lyzed energy transfer in a H—C—C—C—. . chain by
using a Morse potential' for H—C and harmonic poten-
tials for C—C. They used the normal modes for the har-
monic problem to construct the potential for the actual
vibration. In this way, their potential energy included all
the "springs" in the system (although only the Morse po-
tential and the nearest-neighbor spring participate in a
non-negligible way).

We have chosen a correction somewhat different from
that of Hutchinson, Reinhardt, and Hynes. Namely, we
treat the XH system as a Morse oscillator, but with a re-
duced mass appropriate to the harmonic system X-H plus
linear chain. [In the simplest case, then, the mass would
be that given in Eq. (2).] Neither our approach nor that
of Hutchinson, Reinhardt, and Hynes is exact, but as
small corrections to the Morse problem, they are likely to
be equally useful in a data-fitting sense. For example, the
small harmonic energy associated with the nearest-
neighbor spring in the approach of Hutchinson,
Reinhardt, and Hynes would be included in the Morse
oscillator in our approach.

where r, is the equilibrium separation and D, and p are
constants. The exact solution of the Schrodinger equa-
tion' yields term values G(n) given by

G(n) =~, (n + —,
'

) —co,x, (n + —,
'

)

where

(4)

co, =p(AD, /me@)'i

co,x, =Pip /4rlcp,

so measurements of both the fundamental and first over-
tone allow a determination of both cu, and x, .

Furthermore, measurements of these wave numbers for
difFerent isotopes yield ratios of the reduced masses for
those isotopes which can then be analyzed by force-
constant models. For example, defining p as the ratio be-
tween reduced mass for the XH system to that for the XD
system,

AG„/b G"„=p'"(1—2p'"x")/(1 —2x")

C. Transition probabilities

For a purely harmonic potential and an electric-dipole
moment proportional to the X-H separation, there will be
no overtone absorption. Thus, the intensity I from 0 to 2,
I02 will be zero. However, for a Morse potential (or for
other anharmonic corrections to the harmonic potential)
there can be absorption to the overtones. For a Morse
potential and an electric-dipole moment proportional to
the X-H separation, the ratio of the overtone to the fun-
damental absorption strength is given by'

IO2/Ioi =x, (1—5x, )/(1 —3x, ) =x, . (10)

Thus, one would expect the ratio of transition strengths
to be of order a few hundredths in most cases. It has
been recognized, however, that in free diatomic systems
such ratios often differ greatly from the value x, because
the assumption that the dipole moment is proportional to
the X-H separation is often seriously Aawed.

The nonlinearity of the electric-dipole moment with
separation is called electrical anharmonicity and has been
extensively studied. Detailed ab initio calculations of di-
pole moments confirm such nonlinearities. ' ' These
nonlinearities may be included in analyses such as ours in
several ways. First, one may compute the electric-dipole
matrix elements using the Morse wave functions and the
computed dipole moment variation. Second, one may ex-
pand the computed dipole moment in a power series
about the equilibrium position and include the higher-
order terms in computing the transition-matrix ele-

and p is the reduced mass of the system. We note that
G (n) depends on both potential and kinetic energies.

The transition wave number is given by

b G„o=G (n) —G (0)= neo, [1 x,—(n + 1)] .

We consider the fundamental and the first overtone, and
define a ratio R„by

R,„=b,G2O/26G, 0 =(1—3x, )/(1 —2x, ),
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ments. ' Third, one may use an analytical fit to the di-
pole moment expression M(r) of the form

M(r)=kr exp( r—/r*),
where the constants k and r* are chosen to fit the corn-
puted dipole moment. This expression allows for co-
valency in the bond and approaches reasonable limits for
small and large r (to within an unimportant constant).
Furthermore, it has the practical advantage that matrix
elements of Eq. (11) with respect to Morse potential
eigenfunctions may be evaluated analytically, as demon-
strated by Sage.

300 77

OH
OD
OT

H

~H

koL

3276
2437
2065
3537.3

0.0370
0.15

3286
2445
2071
3556.2

0.0380
0.05

3286.5
2445
2070.5
3557.0

0.0379
0.01

TABLE I. Wave numbers {in cm ') for OH, OD, and
OT bands in Ti02, determined experimentally by Bates and
Perkins {Ref. 5), and calculated values of co, {in cm '), x, , and
the 0-lattice force constant k«(as a fraction of the 0-H value),
which provide best fits to the data.

D. Further theoretical considerations

The preceding sections outlined major theoretical con-
cepts which are utilized in analyzing ir data on various
OH examples in the remainder of this paper. As the
data are presented, other notions will be considered.
These include possible anharmonicities associated with
the interaction of 0 with its nonhydrogen neighbors.

As for a second possibility, hydrogen bonding, while
we have considered this to some degree, we will discuss it
only brieAy. There simply seems to be little evidence for
"conventional" hydrogen bonding to be a significant fac-
tor in the defects which we consider in this paper. This
contrasts with certain hydrogen-related defects in other
systems; for example, interstitial H in silicon has an equi-
librium bond-centered position, where it interacts strong-
ly with two silicons. ' The E4 center in a-quartz is a
hydrogen substituted for an oxygen: again, the hydrogen
interacts strongly with two silicons. In both of these ex-
amples the hydrogen-silicon distances are close and the
potentials are double well. The defects considered herein
are quite different.

III. EXAMPLES

A. Bates and Perkins data on OH
OD, OT in Ti02

b G,a=co, (1—2x, ) (12)

with co, and x, each proportional to p ' . Table I gives
wave number data taken from Table I of BP.

With the reduced-mass ratios for isolated OH, the ra-
tio EG /AG yields a value x, =0.038 for OH
The same procedure with hG also yields the same
value for x, . This value persists for the data at all three
temperatures to within 2%%uo.

Bates and Perkins measured the stretching bands of
OH, OD, and OT in Ti02 at 300, 77, and 8 K. They
analyzed their data successfully using a two-term anhar-
monic oscillator model. An analysis using a harmonic
hydrogen-bonded model did not. agree with results based
on known H-bonded systems.

Their data were restricted to the fundamental bands;
they measured no overtones. Therefore, the determina-
tion of cu, and x, requires the isotope data and a force-
constant model. We use

Repeating the calculation but using the reduced-mass
ratios for coupling through oxygen [the simplest version,
Eq. (2)], we find that b, G /b, G yields x, =0.029,
while b, G /b, G yields x, =0.020. Since these do not
agree, we conclude that the coupling through the oxygen
is weak and that x, =0.038. We have tested this con-
clusion with many different simulations of oxygen cou-
plings to the lattice and find that the best fit to the data
occurs with an 0-to-lattice spring constant of order
1 —10% that of O—H. Table I includes the results of
such a fit.

This value of x, seems anomalously large. In nearly
every example for which we have found data for OH in
solids, x, is found to equal 0.02, to within 10—15%%uo. In
no other case does it exceed 0.03. We have considered
the possible effect of anharmonic coupling between 0 and
the lattice. We conclude that this cannot be the source of
the large anharmonicity; such a correction will be of or-
der x, times ( m ~ /Mo ), orders of magnitude too
small. It is unfortunate that BP did not measure the
overtone absorption, since this would give an alternative
(and more direct) determination of x, . Their value of x,
would predict b, G20 to lie at 6303 cm [Eq. (8)], while, if
x, were 0.020, EG20 would be predicted to lie at 6436
cm

B. OH and OD in LiF:Mg
and NaF:Mg: Positions

Capelletti and co-workers have carried out extensive ir
measurements on OH and OD in Mg- and Ti-doped
LiF and NaF. Some of their results have been pub-
lished, and more detailed results will follow in subse-
quent publications. Many OH lines are found; for ex-
ample, in LiF:Mg, some 15 bands are observed. Detailed
defect models have yet to be extracted from these data.
One would imagine that two fundamental defects exist:
Fig. 1 shows two possible nearest-neighbor configurations
of Mg +, OH, and an alkali vacancy (Li+ in the case
shown). It is also clear that there could exist many non-
nearest-neighbor configurations of these three defects,
each perturbing the OH stretching mode in a slightly
different way. Experiments involving different Mg con-
centrations provide evidence of Mg-vacancy clustering
near the OH
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FIG. 1. Two possible configurations for an OH defect in
LiF:Mg. (a) and (b) dift'er in the relative location of the Li+ va-
cancy.

Table II contains some recent data and our analysis.
(It should be noted that similar data in Ref. 6 were un-
corrected for wavelength calibration. ) The 3575-cm
band is dominant and may involve Mg-vacancy cluster-
ing. Shown are the positions AG, p arid AG2p for OH
and hG &z for OD measured at 9 K. The parameters co,
and x, are calculated from Eqs. (7) and (8) and the OH
to OD -reduced-mass ratio p from Eq. (9).

We note from Table II that, for the seven defects con-
sidered, the average value of x, is 0.022, with a maximum
variation less than 10%. The average value of p is 0.531,
with a maximum variation less than 0.2%. For free dia-
tomic OH and OD, p=0. 529, while for the simplest
linear coupling [Eq. (2)],p=0. 536. A variant of the mod-
el leading to Eq. (2), in which the mass nearest the oxygen
is that of Mg, yields p=0. 535. If the mass nearest the
oxygen is that of Mg and the O-Mg spring constant is

3

that of O-H, we obtain p=0. 531, a value close to those
obtained from experiment. Such a value of the 0-Mg
spring constant is approximately consistent with data on
diatomic MgO. If we consider each band in Table II

and fit it to the linear chain model which includes a Mg
next-neighbor and a variable Mg-0 force constant, we
can fit with high accuracy the values of p, x„and co, with
the Mg-0 force constants shown which range from 17%
to 45% that of 0-H. It should be noted that the 0-H vi-
brational parameters are not very sensitive to small
changes in the Mg-0 force constant. It should also be
noted that there is no certainty that, in each case, the
OH is a nearest neighbor of Mg + and, in fact, the wide
variation in force constants may reAect substantial
differences in the detailed defect structure. The linear
chain model may be particularly appropriate for those
OH defects involving an adjacent vacancy.

Table III contains data on four of many bands studied
in NaF:Mg:OH. These bands, labeled 3, C, D, and F,
have been measured at a range of temperatures from 9 K
to room temperature. The 3 band, like the 3575-cm
band in LiF:Mg:OH, is dominant and there is evidence
that it involves Mg-vacancy clustering. Many of the
comments made above with regard to the bands observed
in LiF are also appropriate here. It may be noted, how-
ever, that the range of 0-lattice couplings seen in NaF is
somewhat greater than deduced for the defects in LiF. In
particular, we note that line D is weakly coupled to the
lattice while line F is rather strongly coupled, with 3 and
C intermediate. Different Mg-0 force constants in LiF
and NaF should not be surprising; in NaF the Mg + ion
is smaller than the Na+ which it replaces and may bond
more weakly to its neighbors than in LiF.

C. OH and OD in LiF:Mg and NaF:Mg:
Transition strengths

As noted in Sec. II, electrical anharmonicity is expect-
ed to be of significance in many XH systems. To investi-
gate this, we have measured room-temperature transition
strengths, particularly the ratio of overtone to fundamen-
tal which is expected to be most sensitive to electrical
anharmonicity. Measurements of transition strengths at
lower temperatures are underway and will be discussed in
a subsequent publication. We note that, for most of the
defects which we have studied in LiF:Mg and NaF:Mg,
the anharmonicity parameter x, for OH is approxi-
mately 0.02, and since the overtone-to-fundamental tran-
sition strength ratio Ip2/Ip& is approximately equal to x,

TABLE II. Wave numbers (in cm ') for the OH fundamental AGIo and harmonic AG2o and the
OD fundamental AG&z, determined experimentally, and calculated values of co, (in cm ') from Eq.
(7), x, from Eq. (8), and p from Eq. (9), for several ir bands in LiF:Mg. Also listed are values of k«,
the 0-lattice force constant (as a fraction of the 0-H value), which provide best fits to the data.

~Glo

3575
3586
3596
3618
3627.5
3635
3640

AG2o

6976.4
7002.8
7032
7085.1

7093.2
7106.3
7115.4

~Gio

2637.6
2645. 1

2653.1

2668.1

2676.1

2680.1

2683.6

H

3749
3755
3756
3769
3789
3799
3805

100x,

2.316
2.253
2.130
2.002
2.135
2.155
2.163

0.5302
0.5304
0.5314
0.5318
0.5313
0.5306
0.5304

0.17
0.20
0.40
0.45
0.37
0.23
0.21
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TABLE III. Wave numbers (in cm ') for the OH fundamental AG&o and harmonic AG2o and the
OD fundamental AG&z, determined experimentally, and calculated values of cu, (in cm ') from Eq.
(7), x, from Eq. (8), and p from Eq. (9), for several ir bands in NaF:Mg. Also listed are values of kQL,
the 0-lattice force constant (as a fraction of the 0-H value), which provide best Ats to the data.

Band
(K)

A (9)
A (300)
C (9)
C (300)
D (9)
D (300)
F (9)
F (300)

~Glo

3592.7
3592.7
3609.2
3606.9
3625.3
3621.3
3635.3
3630.3

~G2o

7018.8
7018.6
7055.9
7051.3
7070.6
7065.1

7089.7
7082.7

hG

2651.2
2651.2
2664.2
2661.3
2675.2
2672.2
2691.6
2685.7

H

3759.3
3759.5
3771.7
3769.4
3805.3
3798.8
3816.2
3808.2

100x,

2.216
2.218
2.154
2.156
2.365
2.336
2.370
2.336

0.5311
0.5311
0.5318
0.5313
0.5301
0.5303
0.5338
0.5331

kQL

0.336
0.336
0.468
0.378
0.147
0.180
0.784
0.678

TABLE IV. Experimental (at 300 K) and theoretical
overtone-to-fundamental intensity ratios for several bands in
NaF:Mg. Theoretical values have been obtained with both a
"linear" dipole moment [Eq. (10)] and a "Werner" computed di-

pole moment (Ref. 17).

Band Experimental
Theoretical

Linear Werner

C
D
F

0.050
0.015
0.014
0.083

0.0226
0.0220
0.0239
0.0239

0.001 38
0.001 61
0.000 84
0.000 84

for a Morse potential with an electric-dipole moment
proportional to separation [Eq. (10)], we look for
significant deviations in Io2 /Io, from 0.02. (For OD
x, would be approximately 0.014, and one would look
for deviations from that value. )

As shown elsewhere, we have studied several bands in
LiF:Mg. Deviations in absolute values of Ip2/Ip& from
x, are found to be as large as a factor of 2. Similar re-
sults measured at room temperature for bands 2, C, D,
and F in NaF:Mg are shown in Table IV. These results
are striking: the ratio Ip2/Ip, for band A is more than
twice as large x, , for band F the ratio is more than three
times as large as x, , and for bands C and D, the ratio is
slightly smaller than x, .

We have analyzed the transition strengths in two ways.
First, we have used the computed dipole moment versus
the separation of Werner, Rosmus, and Reinsch' and
have numerically obtained the dipole matrix elements
with respect to eigenfunctions of Morse potentials whose
parameters are consistent with the term values and re-
duced masses used to fit the positions of the various
bands. This is a model, then, in which different defects
are taken to have slightly different potentials and wave
functions, but the same dipole moment operators. As we
shall see, this is not an adequate approximation in some
cases.

Second, we have used the results of Sage in two ways.
First, we have fitted his expression [Eq. (11)] for the di-

pole moment to that computed by Werner, Rosmus, and
Reinsch and then used his formalism to obtain dipole ma-
trix elements. This was done primarily as a consistency
check. Second, we have explored just what variations in
Sage's parameters might be required to achieve agree-
ment with experiment.

The Sage expression [Eq. (11)]does not fit the comput-
ed dipole moment particularly well over a large range of
separation. One must therefore make some judgments as
to which region is most important. It turns out, as we
shall see, that the dipole moment of Werner, Rosmus,
and Reinsch is such that the predicted ratio Ip2/Ip& is
small and is very sensitive to small changes in the dipole
moment. Thus, the fitting of the Sage expression is not
likely to yield excellent quantitative agreement with the
ratio predicted with the moment of Werner, Rosmus, and
Reinsch, but, in fact, small changes in the Sage pararne-
ters do yield agreement with the "better" theory.

Of greater significance, the intensity ratios predicted
with the dipole moment of Werner, Rosmus, and Reinsch
do not agree well with experiment in many of the cases
considered here. The predicted values are less than the
experimental values for bands 3 —F in NaF:Mg by from
1 —2 orders of magnitude. In order to achieve agreement,
we may use the Sage expression and vary the parameter
r*. Whereas a value of r* in the region 0.65 —0.7 A
yields a fair fit to the dipole moment of Werner, Rosmus,
and Reinsch (agreement with their computed intensity
ratio for free OH is found for r =0.703 A), we find
that a value of r * in the region 0.8 —0.9 A is needed to ob-
tain intensity ratios consistent with experiment for bands
3 —F in NaF:Mg.

Table IV summarizes some of these results. We note,
for example, that band F in NaF:Mg has an intensity ra-
tio of 0.083 at 300 K. This value is considerably larger
than obtained either with a linear dipole moment or with
that of Werner, Rosmus, and Reinsch. In this case we
find that agreement with experimental intensity ratios us-

ing the Sage expression [Eq. (11)] obtains if r*=0.858 A
is used. Here we are in a situation where the transition
strength of the fundamental is small and is decreasing
with increasing r *, while that of the overtone is relatively
large and is increasing with increasing r*. Thus, a small
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FIG. 2. Two "Sage functions" (Ref. 20), kre " " +const.
Curve (a) is chosen to fit the computed dipole moment of
Werner, Rosmus, and Reinsch (Ref. 17), while curve (b) yields
the experimental intensity ratio for band F in NaF:Mg at 300 K.

O

b,r equals r —r„where r, =0.973 A.

I

0.6

D. Other OH data

Forster, Kapphan, and Wohlecke have measured the
fundamental and the overtone of OH and OD in

change in r * can yield a large change in the ratio.
Figure 2 illustrates two "Sage functions" [Eq. (11)].

Shown is such a function chosen to fit the dipole moment
of Werner, Rosmus, and Reinsch and another function
which yields the experimental ratio for band F at 300 K.

Figure 3(a) gives the computed log, p(Ip2/Ipi ) versus r*
for some typical values of input parameters. This clearly
shows how, in the region r* around 0.7 A, the intensity
ratio is small and, in fact, becomes zero, and how a large
value of r* is required for the ratio to exceed that pre-
dicted by a linear dipole moment variation (shown by the
horizontal line). Figure 3(b) shows how Ip, varies with
r * by a plot of log, p(Ip, ) versus r *, normalized to 1 at
r*=0.6 A.

At this point we can only speculate as to why the elec-
trical anharmonicity is so different from that predicted
(and observed) for free OH . We note that, for the free
molecule, the dipole moment curves are very different for
different charge states. ' If OH in the crystal is slightly
less ionic than free OH, the dipole moment is likely to
be rather different as well, in a way which would tend to
increase r* as needed to improve agreement with experi-
rnent.

We note as well that, in the crystal, the OH defects
which we are analyzing are generally in regions of large
electric fields, and that neighboring halogen ions are very
polarizable. Both of these features would be expected to
affect the OH dipole moment variation with separation.

-7
0.6

I

0.7
I

0.8 0.9

(a)

oC[

CO

O
n

+

O -0.4-

O -0.8-

O

O

-1.2
0.6

I

0.7
I

0.8 0.9

Cb)

FIG. 3. (a) The computed intensity ratio Io2/Io, vs r*, on a
logip scale, using the Sage dipole moment function (Ref. 20) and
Morse potential eigenfunctions with the 0-H separation
r, =0.963 A, x, =0.023 53, and P=2.24295 A . The horizon-
tal dashed line is the value obtained for a dipole moment pro-
portional to separation [Eq. (10)]. (b) Computed fundamental
intensity Io& vs r*, on a log&o scale, with Io& normalized to 1 at
r*=0.6 A. The same Sage function and parameters are used as
in (a) ~

LiNb03. They analyzed three bands, labeled 3, B, and
C, on the basis of a free diatomic anharmonic oscillator.
This analysis was generally successful, although it pre-
dicts somewhat different values of the spectroscopic pa-
rameters depending on whether they were obtained from
isotope shifts or overtones.

We have reanalyzed the data of Forster, Kapphan, and
Wohlecke using the techniques of Sec. II B. Namely, we
use Eqs. (7) and (8) to obtain cP, and x, and Eq. (9) to ob-
tain the reduced-mass ratio p. We then use a linear
spring model with Nb adjacent to 0 and a variable Nb-0
force constant to calculate p, which, in turn, yields the
0-D overtone wave number in agreement with experi-
ment (to within the stated uncertainties in measurement).
The results are shown in Table V. We note that the O-

TABLE V. Wave numbers (in cm ') for the OH fundamental AG ]p and harmonic EG2p and the
OD fundamental hG&p and harmonic EG2o, determined experimentally (Ref. 26), and calculated
values of co, (in cm ') from Eq. (7), x, from Eq. (8), and p from Eq. (9), for several ir bands in LiNb03.
Also listed are values of kQL, the 0-lattice force constant (as a fraction of the 0-H value), which pro-
vide best fits to the data.

Band

B
C

EG lo

3483
3529
3501

Gzo

6778
6881
6829

AG

2575
2606
2589

~G2o

5050
5121
5081

H
e

3671.0
3706.0
3674.0

100x,

2.561
2.388
2.354

0.5309
0.5308
0.5326

kQL

0.305
0.276
0.612
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TABLE VI. Wave numbers (in cm ') for the OH fundamental EG&o and harmonic AG&o and the
OD fundamental AG&z, determined experimentally (Ref. 27), and calculated values of co, (in cm ')

from Eq. (7), x, from Eq. (8), and p from Eq. (9), for ir bands in CsCl and CsBr. Also listed are values
of koL, the 0-lattice force constant (as a fraction of the 0-H value) which provide best fits to the data.

Band

CsCl
CsBr

~Gio

3601.5
3580.4

AG20

7032
6987

hG

2656
2643

H

3772.5
3754.2

100x,

2.267
2.315

0.5301
0.5308

koi

0.140
0.293

Nb force constants are of order 0.3—0.6 that of O-H,
similar to values obtained for other cases.

Krantz and Luty, as part of an extensive series of
measurements on vibrational and rotational dynamics of
OH and OD in cesium halides, have presented funda-
mental and overtone wave numbers for OH and funda-
mental wave numbers for OD in CsC1 and CsBr. Un-
like some cases discussed above, these defects are simple
substitutional ions, presumably without divalent cations
or vacancies nearby. Krantz and Luty have also mea-
sured the transition strength ratios Ioz/Io& for the OH
defects. They have noted the existence of both mechani-
cal and electrical anharmonicity in these defects and have
obtained spectroscopic parameters.

Table VI gives the results of our analysis of the
Krantz-Luty data, using the methods of Sec. III B. Equa-
tions (7)—(9) are used to obtain co„x„and p, and a linear
spring model with variable Cs-0 force constant is used to
calculate p. The computed Cs-0 force constants are
again found to be a few tenths of the 0-H force constant.

Krantz and Luty found the transition strength ratio
I02/Io, to equal 0.00045 for CsC1 and 0.0033 for CsBr.
Both of these are substantially smaller than x„indicating
significant electrical anharmonicity. Our calculations us-
ing the dipole moment expression for OH of Werner,
Rosmus, and Reinsch' predict a ratio of 0.0011 for CsC1
and 0.0010 for CsBr. Varying the Sage parameter r*, we
find agreement with experiment for r =0.693 or 0.735 A
for CsC1, and r =0.651 or 0.762 A for CsBr. These Sage
parameters are not substantially different from that ap-
propriate for free OH . Again, the ratio I02/Io, is sensi-
tive to small changes in this range, as shown in Fig. 3.
These small changes may be associated with the
presumed off-centeredness of the OH ion.

are very sensitive to the nature of the defect. As noted, in
particular, in the case of OH in insulating crystals, mea-
surements of fundamental and overtone positions and
strengths, and isotope shifts, reveal some surprising re-
sults.

An analytical technique based on a Morse potential for
the diatomic system, modified to account for coupling of
0 to the environment, may be used to treat such data.
The fundamental and overtone transition strengths reveal
the existence of large electrical anharmonicities. While
in some cases (e.g. , the simple substitutional OH in
CsC1 and CsBr) an electric-dipole moment expression
close to that obtained by Werner, Rosmus, and Reinsch'
for diatomic OH seems appropriate, in other cases (e.g. ,
OH associated with one or more Mg + ions and cation
vacancies in LiF and NaF), the required dipole moment
expression is substantially different from that obtained
for diatomic OH, apparently as a result of environmen-
tal effects associated with these complex defects.
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APPENDIX

IV. SUMMARY

The spectroscopy of XH-containing defects is capable
of yielding a rich variety of phenomena, some of which

We consider a semi-infinite linear array of masses and
springs. All the springs are identical (k), and all the
masses are the same (M) except for that on the end (m).
The normal modes are the solutions of the determinant
equation

Det

UlCO +k

0

—Mcu +2k

0

—Mm +2k
—Mco +2k ~ ~ ~

=Det& =0 . (Al)
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Suppose there are N heavy masses, where X will become
large. We call Det&W the N XN portion of Eq. (Al) cor-
responding to those heavy masses. We likewise define
Det& iJg to be the (N —1)X (N —1) determinant of
N —1 of the heavy masses, etc. Then Eq. (Al) may be
written as

Det~At =( —Mco +2k)Det~, JR —k Det~ 2lhf, , (A4)

Det~, JR=( —Mco +2k)Det~ 2%, —k Det~ 3At, (A5)

etc. These relations may be used to write the right-hand
side of Eq. (A3) in recursive form, and in the limit, as N
goes to infinity, the right-hand side %& may be expressed
as

(
—rnco +k)Det&Af —k Det& iJM=O (A2)

Q~ =k I( Mc—o +2k —%~ ) . (A6)
or

mco—+k =k l( Det~Af /Det~, JR ) . (A3)

We then note that the heavy-mass determinant may be
written

We may then solve for %~, substitute the expression into
Eq. (A3), and find the expression for co given in Eqs. (1)
and (2). Similar logic may be used to treat extensions of
this model in which force constants or heavy masses are
not all the same.
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