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The plasmon dispersion in silicon has been determined along the A and A axis of the first Brillouin
zone, taking local-field effects fully into account. The empirical pseudopotential method has been used
to obtain the electron band structure. A very effective method of analytic continuation is employed to
obtain the singular integrals involved in the calculation of the random-phase-approximation polarization
matrix. Using the analytic continuation of the dielectric matrix across its branch cut, we investigate the
plasmon energies and lifetimes. It is shown that the experimental observability of the theoretically ob-
tained plasmon band gap at the L point is questionable due to an unexpectedly large lifetime of plasmons
in the second band as compared with those in the first band. The obtained plasmon energies are typical-
ly 10% larger than the reported experimental values. The calculated plasmon energies display a stronger
dispersion than the experimental values. Moreover, the experimentally observed anisotropy in the
dispersion along the A and A axis is not reproduced by our calculations.

I. INTRODUCTION

In the quantum-mechanical many-body theory of in-
teracting particles an important role is played by the so-
called dielectric function € and its inverse € !; these are
functions of position and time, or, alternatively, of
momentum and energy, as will be the case in this work.
The inverse dielectric function can, for example, be used
to give an exact expression for the ground-state energy of
a many-particle system including correlations (see Refs. 1
and 2). Also for the understanding of the excitation
properties, which can be divided in collective and single-
particle excitations, € is an important quantity. In case of
collective excitations € is of direct importance as
€ !q,w) is the proportionality factor between an exter-
nal field ®,,,(q,w) and the internal field ®;,,, which is set
up in the many-particle system in response to ®.,,,

®,.(q0)=€e (q0)P,(q) . (1)

In this equation q is the wave vector of the fields and o
their frequency. According to Eq. (1) if at a given q the
function e(q,w) vanishes for a certain frequency w(q), or
alternatively if € !(q,w) has a pole at this frequency, an
internal field with wave vector q and frequency w(q) can
exist without a driving field. This means that the system
has an excitation with wave vector q and frequency w(q)
whenever e€(q,w(q))=0. In the case of a free-electron gas
this excitation corresponds to a charge oscillation with
respect to the positive background, a so-called plasmon.

For the understanding of the single-particle excitations
of semiconductors or insulators the dielectric properties
have also turned out to be of great importance. The most
successful band-structure calculations for these systems
are those according to the so-called GW scheme of
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Hedin.? In these calculations the electron-electron in-
teraction is taken into account to first order in a screened
interaction W, which is obtained by screening the
electron-electron Coulomb interaction ¥V, according to
the following (symbolic) equation:

w=e"lv, . ()

Examples of this kind of calculation can be found in Refs.
4-7. Essential in these calculations is the use of a
sufficiently accurate dielectric function €, either by using
a model*>7 or by calculating it.

In a solid, as in the above-mentioned band-structure
calculations, the dielectric properties are actually de-
scribed by a dielectric matrix instead of a single function.
This is so because the full translational symmetry, present
in a homogeneous system, is reduced to a discrete sym-
metry under translations over lattice vectors. Due to this
lack of translational symmetry the momentum q (actually
we should use #fiq when speaking of momentum) is no
longer a conserved quantity and the dielectric function
€(q,®) becomes a dielectric matrix €k x,(k,®) in which k

is a vector in the first Brillouin zone (1BZ) and in which
the matrix indices K; and K, are reciprocal-lattice vec-
tors. The inverse dielectric function becomes the inverse
dielectric matrix. This gives rise to the so-called local-
field effect (LFE), expressed in the generalization of Eq.
(1) to

P (k+K,0)=3 eElle(k,w)d)m(k—FKz,w) , (3
K2

meaning that the internal field has Fourier components at
wave vectors that differ reciprocal-lattice vectors from
the external-field wave vector. Plasmon excitations can
also exist in a solid and their energies are now given, at
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each k, by solutions w(k) of (Ref. 8)
det[e(k,w)]=0 . (4)

Calculations of the dielectric matrix € for a solid have
been performed in various degrees of sophistication. In
Ref. 9 an analytic calculation of € is presented in which
the lattice potential is treated as a perturbation on the
free-electron-gas results. Calculations which take the lat-
tice potential into full account, i.e., which use a real band
structure to calculate €, can be found in Refs. 10-12. Of
these calculations Refs. 10 and 11 both neglect the LFE
and Ref. 11 only considers the static ® =0 case. Refer-
ence 12 takes the LFE into account but the calculations
have been restricted to k=0.

In this paper we consider the random-phase approxi-
mation (RPA) dielectric matrix of the semiconductor Si
at nonzero k values and at energies in the neighborhood
of plasmon energies. First we present a method to calcu-
late in a convenient way the singular 1BZ integrals ap-
pearing in the expression for the dielectric matrix. Then
we show how this method enables us to solve Eq. (4) ex-
plicitly and thus to study the plasmon excitations of the
system. We discuss both the energies and the lifetimes of
the plasmons in the A and A directions. In spite of our
rigorous treatment there are apparent discrepancies with
the experimental data.

II. FORMULATION

The dielectric matrix is defined by the following equa-
tion:

GKle(kvw)=5K]K2_ Vc(k+K,)PK]K2(k,a)) . ()
The momentum representation of the Coulomb interac-

tion is given by
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FIG. 1. Feynman diagram representing the RPA polariza-
tion matrix lexz(k,ﬂ)) of a solid. The internal lines of the dia-
gram are the electron propagators; the wiggly lines represent
the interaction with the lattice, which changes the electrons
momentum by a reciprocal-lattice vector. /; and /, are band in-
dices, q and k are 1BZ vectors, and the capital letters denote
reciprocal-lattice vectors.

2
1
V.(k+K )———* . (6)
e [k+K[?
The polarization matrix PKlKZ(k,a)) appearing in Eq. (5)

is taken in the RPA. The Feynman diagram representing
it is shown in Fig. 1 and it is given by the following two
expressions:

PKIKZ(k’w)z%I%IKZ(k’w) > (7)

v

in which I Kle(k’w) is the dimensionless integral

1

Ik, ko)=[ d4|3 3-3 3

Il €clyEV Levlec

X QE d; o(Q)d 41 (Q—K;) Q2d12q~k(Q1 -
2 1

The factor 2 in Eq (7) arises from the summation over
the two possible spin values of the electron and the hole
in Fig. 1; a=5.43 A is the Si lattice constant and E, is a
unit of energy defined by E, =(2#*7?)/(ma?)=0.375 Ry
in which m is the electron mass. The d;(K) and €,(k)
are a plane-wave coefficient and band energy, respective-
ly. Wave vectors are in units of (27)/a and energies in
units of E,; ] Ec /v means that the summation is to be
done over conduction and/or valence bands only. In the
energy denominator +in applies if /, €Ec and I, Ev and
—i7 applies if I, €Ev and I, Ec, where 7 is positive and
infinitesimally small. Because we have chosen the origin
of our coordinate system in a bond center between two Si
atoms, the plane-wave coefficients in Eq. (8) are real.
We can apply the relation

w—e,l(q)+6,2(q—k)i1"q

Kl)d,lq(Ql) . (8)
[
1 _ 1 .
xtin =P Fimd(x) 9)

to split I
part then becomes a principal-value integral over the 1BZ
of an integrand which has singularities if || exceeds the
energy gap because for these w values the energy denomi-
nator €, (q)—e,z(q—k) vanishes for certain q values.

K, (k,®) in a real and imaginary part. The real

The imaginary part is an integral of an integrand contain-
ing a 6 function. This integral can be written as an in-
tegral over the surface in q space on which the argument
of the & function, which is the energy denominator, van-
ishes. These integrals are difficult to calculate. A
method to obtain the imaginary part of this kind of in-
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FIG. 2. Analytic structure of exlxz(k,Z) as a function of the

complex variable z. z; is a point around which a Taylor expan-
sion can be made in order to obtain the dielectric matrix at real
energies or to obtain its analytic continuation across the branch
cut. The imaginary part of z, has to be chosen in accordance
with the i7 prescription.

tegrals can be found in Ref. 13. Once the imaginary part
has been calculated the Kramers-Kronig relation can be
used to obtain the real part.

If we replace the real energy variable w in Eq. (8) by a
complex variable z, the resulting function I K K, (k,z) can

be shown to be an analytic function of z with branch cuts
on the real axis. One of these cuts extends from the ener-
gy gap to the highest possible one-electron—one-hole ex-
citation energy of the system that is taken into account in
Eq. (8); the other cut is obtained from the first one by
reflection in z =0. This structure is depicted in Fig. 2.
We have made use of the analyticity properties to calcu-
late the integral in Eq. (8) in an efficient way, which we
will describe in Sec. III.

First we want to discuss in more detail Eq. (4), the
solutions of which were said to be the plasmon energies.
In general Eq. (4) will not have real solutions, which
would correspond to plasmons with an infinite lifetime.
This is in contrast to what happens in a RPA calculation
for the free-electron gas where e(k,w) has real zeros for
|k| values below a certain threshold. The corresponding
infinite lifetime of the plasmon arises because in a uni-
form system it is impossible for the plasmon to decay into
an electron-hole pair, the only particlelike excitation tak-
en into account in the RPA, while at the same time obey-
ing energy and momentum conservation. In a periodic
solid the plasmon can always decay, even in the RPA,
since in that case momentum has only to be conserved up
to a reciprocal-lattice vector. This implies that Eq. (4)
will have solutions w(k) with a finite imaginary part.
These solutions, however, cannot be found by searching
for the zeros of det[e(k,z)] in which Egs. (5)-(8) are used
to evaluate the matrix elements eKlKZ(k,z). Instead we

have to use the analytic continuation of these elements
across the above-mentioned branch cut. This can be seen
by the following argument. The elements GE:KZ(k,z) of

the inverse dielectric matrix can be written in a Lehmann
representation (Ref. 14), which explicitly shows that they
are analytic functions of z with branch cuts on the real
axis. This analyticity means that if EIEI’KZ(k,z) has poles
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they will necessarily be situated on the Riemann sheets
that can be reached by making the analytic continuation
of GE,IKZ(k’Z) across the branch cut. Similar discussions

concerning the location of the quasiparticle singularities
in the one-particle Green’s function can be found in
books on many-particle theory (Refs. 15 and 16). Since
singularities in e;llxz(k,z) go together with zeros in
det[e(k,z)] we conclude that we have to look for these
zeros in the determinant of the analytically continued
dielectric matrix.

We recall that the imaginary part of the diagonal ele-
ments of the inverse dielectric matrix can be measured in
electron energy-loss experiments (Refs. 8 and 17). The
probability that a fast electron exchanges momentum q
and energy o (actually energy #iw) when passing through
a material is, in the Born approximation, proportional to
the so-called energy-loss function —Im[egxg(k,w)] in
which k is the unique 1BZ vector and K the unique
reciprocal-lattice vector such that k+K=q. A plasmon
with momentum q=k+K will manifest itself as a reso-
nance in —Im[egg(k,»)]; however, because of the ab-
sence of translational symmetry the momentum of a
plasmon is not a good quantum number and it is there-
fore possible that this plasmon with momentum k+K is
also observed in —Im[eg'(k,w)] as a second plasmon
band. This is of course in complete analogy with electron
band-structure theory, in which the various band energies
€,(k) at a given k follow from the zeros of
det[wdg x,—Hg x,(k)], or alteratively from the poles of

[a)SKlKZ—HKIKZ(k)]'l, the one-electron Green’s func-

tion.

Whether plasmon bands in a certain direction in the
1BZ are coupled or not is purely determined by symme-
try and therefore there will be no plasmon band gap
above the energetically lowest-lying plasmon band in the
X point of the 1BZ, whereas there will in principle be one
at the L point of the 1BZ. The experimental observabili-
ty of such a plasmon band gap depends on the magnitude
of the coupling and on the lifetimes of the involved
plasmons. We will address this problem by solving Eq.
(4) explicitly.

III. METHOD OF CALCULATION

Because of the analytic structure of I ?(]Kz(k,z) it is
possible to use a Taylor series to represent I (1)(11(2(1(,2) in

the neighborhood of an arbitrary complex energy z,
which is not on a branch cut. Thus, if we want to calcu-
late 1 ?(1Kz(k’w) for real values of w we can choose a point

z, with a finite imaginary part in the neighborhood of the
real axis and calculate the coefficients of the Taylor series
around this point. These coefficients can then be used to
calculate 7 %lxz(k,w) for real values w not too far from

zy. We must keep in mind that the sign of w determines
the sign of the imaginary part of z,, in order that the lim-
it to the branch cut is taken from the appropriate side ac-
cording to Eq. (8) and the discussion following it. For
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positive (negative) values this means that the imaginary
part of z, must be positive (negative) (see Fig. 2). The
Taylor series of 1 %le(k,z) around a point z; has the fol-

lowing form:

I(I)(le(k,Z)= Iﬁlxz(k,zo)(z _Zo)n >
=0

n

(10)
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in which the Taylor coefficients are given by
Ik (kzo) =192 13 o (k,2)| (11)
KK, K20/ =" ") dzn KK, 92 lz=z,

and can be obtained by differentiating the right-hand
side (rhs) of Eq. (8) under the integral sign with respect to
2z,

(="

2 3-32 3

_ 3
Iﬁle(k,zo)—leZd q
I €clyev Il evi,Ec

X3d; Q)1 g1 (Q—K3) T d) g1 (Q—K)d) o(Q) .
Q, Q

In an actual calculation the Taylor series in Eq. (10) will
be truncated after a finite number (N, ) of terms.
For real w values the representation of I (‘](le(k’w) by

Eqgs. (10)-(12) has numerical advantages over the expres-
sion given in Eq. (8). In the first place use of the Taylor
series yields both the real and the imaginary part of
I (I)(le(k’w) in one calculation. Second, the integrand of

Eq. (12) does not have singularities because z, has a finite
imaginary part, this as opposed to the singular integrand
of Eq. (8). The third advantage of Egs. (10)—(12) is that it
is possible to evaluate the Taylor series for arguments z
which lie on the other side of the branch cut as z,; this
yields the analytic continuation of ?(le(k,z) across the

branch cut and thus the analytic continuation of the
dielectric matrix. As was argued in the preceding sec-
tion, it is the analytic continuation of the dielectric ma-
trix which we have to use in Eq. (4). The method which
we have introduced here will of course work best if we
apply it in a range of energy values where the functions
eKle(k"U) are smoothly varying. In the neighborhood of

plasmon energies this is certainly the case.

IV. RESULTS

In this section we present results of calculations that
we have done according to the scheme explained above.
We have calculated 15X 15 dielectric matrices of Si for k
vectors along the A and A directions in the 1BZ. In all
calculations we have used 59 plane waves. The wave
functions (plane-wave coefficients) and band energies
have been obtained in the empirical pseudopotential
scheme of which the parameters, as given in Ref. 18, are
displayed in Table I. The momentum integrals in Eq. (12)
have been done using the Monte Carlo method, for which
the quasirandom points were generated according to the
scheme described in Ref. 19.

TABLE 1. Empirical pseudopotential parameters in Ry.
Vepm(K)=cos(K-t)$(IK|); t=(a/8)(X+J+2).
$(V3) #(VB) H(V11)
-0.21 0.04 0.08

[Zo_611(‘1)‘*'612(‘1_1()]"+1

(12)

[

This section is divided into two parts. In Sec. IV A we
discuss the convergence of our calculations with respect
to parameters such as the number of integration points
(N;,:) used to calculate the integrals in Eq. (12), the num-
ber of terms N, used in the Taylor series Eq. (10), and
finally the value z, around which the Taylor expansion is
made. In Sec. IV B we present results for the energy-loss
function at various k values. In Sec. V we will discuss the
plasmon resonances.

A. Numerical results

Figure 3 illustrates the usefulness of our method to cir-
cumvent the difficulties associated with the numerical
evaluation of the principal-value integral needed to ob-
tain the real part of Eq. (8). In this figure a comparison is
made between the convergence of a numerical integration
in which Eq. (8) is evaluated directly at a real energy w
and the convergence of our method to obtain the integral.
In the former case the integrand has singularities in the
1BZ giving rise to the wildly fluctuating behavior of the
numerical estimate as a function of the number of in-
tegration points (solid curve and dotted curve); in the

n

0 2500 5000

Nint

7500 10000

FIG. 3. Numerical estimate for the real part of Iopo(k,») [Eq.
(8)] as a function of the number of (random) integration points
Nin; ©=17.85 eV, k=(0,0.3,0.3). Dashed curve, tenth-order
Taylor expansion around z,=(20.4+10.2i) eV according to Eq.
(10); dotted curve, direct evaluation of Eq. (8) using the same
random point set as was used in the calculation of the Taylor
coefficient leading to the dashed curve; solid curve, same as dot-
ted curve, but with another random point set.
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FIG. 4. Convergence of results for Im[eﬁl’xz(k,w)] at

k=(0,0.3,0.3) for three K;,K, combinations. The solid lines
are the results of calculations in which Im[eﬁllxz(k,w)] at
k=(0,0.3,0.3) for three K;,K, combinations. The solid lines
are the results of calculations in which z;=(20.4+10.2i) eV,
N;, =500, and N, =10 have been used. The symbols O and A
are the result of a calculation with z,=(20.4+5.1i) eV,
N;,,=1000, and N,=S5.

latter case these singularities are not present and the con-
vergence is very much faster (dashed curve).

Figure 4 gives an idea of the numerical accuracy with
which matrix elements of the inverse dielectric matrix
can be obtained with our method. Of course, apart from
calculating a number of integrals of the type as in Eq.
(12), this also asks for an inversion of the obtained dielec-
tric matrix. The figure shows the results of two calcula-
tions which differ in the point z, around which the Tay-
lor expansion Eq. (10) is made as well as in the number of
terms (V,) taken into account in the Taylor series and in
the number of integration points (N;,,) used to evaluate
the integrals. The results for the larger two elements (left
scale in Fig. 4) agree over a large energy range. The ener-
gy range over which the results for a small element (right
scale in Fig. 4) agree is smaller. The real parts which are
not shown in Fig. 4 are obtained with a similar degree of
accuracy as the imaginary parts.

Concerning the choice of the parameters in our calcu-
lations we can make the following general remark. Sup-
pose we choose two complex energies z, and z,, around
which we make the Taylor expansion Eq. (10), such that
z, has a smaller imaginary part than z,. A smaller imagi-
nary part causes the integrands appearing in Eq. (12) to
vary more rapidly. Due to this the numerically evaluated
Taylor coefficients for the expansion around z; are less
accurate than the coefficients for the expansion around z,
(if the same value for N, is used in both calculations), an
effect which will be larger for the higher-order
coefficients because of the increasing power of the energy
denominator. On the other hand, to obtain a reliable rep-
resentation for the energy dependence of the dielectric
matrix on the real axis an expansion around z, requires
fewer terms than the expansion around z, because z, is
closer to the real axis.

B. The energy-loss function

In this section we present the outcomes of calculations
for q values along the A and A axis, corresponding to

w(eV)

FIG. 5. Im[egi(k,w)] for qg=k+K=(0,t,¢) on the A axis.
As explained in the main text, the curves with ¢ < % correspond
to Im[eyp'(q,w)] and those with ¢>1 correspond to
Im[eﬁ}‘(xx(k,cu)] in which Ky =(0,—1,—1) and k= —q—Kj.

q=(0,t,t) and (t,t,¢), respectively. In Fig. 5
Im[egn(k,)] is shown as a function of the energy w for
different values of q on the A axis. The curves with <]
correspond to Im[ey'(q,w)]. For ¢ >1 we actually

should have calculated Im[e:}(x -k, (a+Ky,0)]
with K,=(0,—1,—1). However, since exg(k,o)
=e_g_g(—k,®) we can equally well calculate

Im[eE;KX(k,co)] with k=—q—Ky, so that one calcula-

tion at k=(0,¢,¢) is sufficient to obtain the energy-loss
functions at both q=(0,¢,7) and q=(=0,1—1¢,1—1¢). The
resonance which is seen at each q value corresponds to a
plasmon with momentum q.

The complex zeros of det[e(k,z)] corresponding to
these resonances are given in Table II together with the
residues of the corresponding poles in the elements
€xx(k,®) with K=0 and K=K. Corresponding to the
fact that the plasmon bands in this direction are not cou-
pled, ie., ex o(k,0)=¢g (k,0)=0, the zero with the

TABLE II. Zeros of the determinant of the analytically con-
tinued dielectric matrix e(k,z) for k=(0,t,¢t). A zero of
det[e(k,z)] gives rise to a pole in the elements eﬁllxz(k,z) of the

inverse-dielectric matrix. Ry, and R, are the residues of these
poles in the elements K,=K,=0 and K,=K,=Kjy
=[0, —1—1], respectively. The pole positions and residues are
given in eV. The values for the zeros and residues in the first
two rows at k=(0,0.3,0.3) have been obtained using the same
two sets of parameters that were used in Fig. 4. The other zeros
were calculated using a tenth-order Taylor series in Eq. (10).

Zero of
t determinant Ry Ry,

0.3 19.72—2.20i 6.22+0.69i 0
19.75—2.02i 5.36+0.60i 0
29.60—5.60i 0 2.09+2.65¢

0.5 24.70—3.62i 3.82+4.28i 0
24.50—2.70i 0 3.32+3.21;
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FIG. 6. Im[exk(k,w)] for q=k+K=(t,t,¢) on the A axis.
The curves with tS% correspond to Im[ex'(q,®)] and those
with ¢>4 correspond to Im[e{lKL(k,w)] in which
K,=(—1,—1,—1)and k=—q—K,.

larger real part does not lead to a pole in €' (k,w) and
conversely the zero with the smaller real part does not
give a pole in e,Z;’KX(k,w). If we compare the pole pa-

rameters obtained by using two different parameter sets
we find larger relative differences between them than be-
tween the functions obtained by the same two calcula-
tions. This can be seen by comparing Fig. 4 and Table II
in which the two sets of pole parameters corresponding
to the low-energy plasmon at ¢t =0.3 (the first two rows)
have been calculated with the same sets of parameters
used in Fig. 4. Whereas the functions Im[eg'(k,w)] are
virtually the same, the imaginary parts of the pole posi-
tions and the real parts of the residues obtained by these
two calculations differ about 10% and 20%, respectively.
This difference in accuracy can be understood by the sim-
ple fact that the real axis is closer to the point z, around
which the Taylor expansion is made than the zero of
det[e(k,z)]. Figure 6 shows Im[egk(k,w)] for different
values of g=k +K along the A axis.

The complex zeros of det[e(k,z)] are shown in Table
III for three k values. In general the real parts of the
pole positions are reasonably well determined as can be
seen by comparing the results of the two calculations in
which a fifth-order Taylor series and a tenth-order Taylor
series were used. The imaginary parts and the residues,
however, are more problematical. In agreement with the
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general analytic properties of the inverse dielectric matrix
outlined in Sec. II all zeros of det[e(k,z)] shown in
Tables II and III have a negative imaginary part; this is
also the case for the zeros of det[e(k,z)] at other k values
which are not given in Tables II and III.

V. PLASMON-DISPERSION RELATIONS

A. Theoretical results

From a purely theoretical point of view we should
define the plasmon energies at a given k as the real part
of the solutions of Eq. (4) (with @ replaced by the com-
plex variable z),

det[e(k,z)]=0 . (13)

Another possibility to obtain plasmon energies is to cal-
culate —Im[eﬁll((k,(o)], and to define a clearly visible res-
onant structure such as a maximum or a shoulder in this
quantity as a plasmon with momentum q=k+K. We
will call this latter definition the experimental definition
and the former one the theoretical definition. In Fig. 7(a)
we show the plasmon-dispersion relations along the A
axis calculated without the LFE according to the experi-
mental definition and with the LFE according to both the
experimental and theoretical definitions. Neglecting the
LFE means that the following approximation is made:

1

_, 14
GKK(k,CD) 14)

exn(k,0)=
and that the theoretical plasmon energy at qg=k+K is
the real part of the solution of

EKK(k,Z)=0 . (15)

The differences in plasmon energies as obtained by calcu-
lations with and without the LFE are very small for q
values along the A axis; this can be made plausible by
considering a 2 X2 dielectric matrix involving K=0 and
K=K;=(0,—1,—1) only, in which case there is no
influence of the local field at all since the nondiagonal ele-
ments of the 2 X2 matrix are zero due to symmetry, mak-
ing Eq. (14) exact. Apparently the use of a larger 15X 15
matrix does not make much difference.

For k values along the A axis inclusion of the LFE
gives rise to essential differences between the plasmon-

TABLE III. Zeros of the determinant of the analytically continued dielectric matrix e(k,z) for k=(t,¢,¢). A zero of det[e(k,z)]
gives rise to a pole in the elements eillxz(k,z) of the inverse dielectric matrix. Ry and R, are the residues of these poles in the ele-

ments K, =K,=0and K, =K,=K; =(—1,—1, —1), respectively. The pole positions and residues are given in eV.

Zero of Zero of
t determinant Ry Ry, determinant Ry R,
Fifth-order Taylor € Tenth-order Taylor €

0.3 (19.4,—1.28) (5.41,1.12) (—0.38,—0.036) (19.8,—1.89) (5.41,2.24) (—0.138,—0.439)
(26.8,—4.54) (—0.152,0.061) (5.87,4.28) (28.7,—4.41) (—0.024,0.133) (1.32,—5.20)

0.48 (22.0,—2.86) (2.75,1.17) (1.84,2.09) (22.0,—3.42) (2.50,0.143) (2.04,5.87)
(23.0—1.02) (2.30,1.17) (3.26,—0.31) (22.8,—1.94) (3.47,1.73) (5.46—1.22)

0.5 (22.0,—2.81) (2.14,1.94) (2.40,1.33) (21.8,—3.21) (2.14,2.40) (2.75,1.22)
(23.0,—0.97) (2.75,0.449) (2.75,1.07) (22.8,—1.73) (3.98,—0.128) (3.83,1.07)
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dispersion relation according to the experimental and
theoretical definition. If we do not include local-field
effects in our calculation of plasmon energies according
to the theoretical definition, that is, if we simply solve Eq.
(15), we obtain complex energies as a function of
q=k+K=(1,1,t) as displayed in Fig. 8. The solutions
fall on a continuous curve. Apparently the lifetime of the
“no-LFE” plasmon decreases if its energy increases. This
can simply be understood by the argument that a
plasmon has more possibilities to decay the larger its en-
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FIG. 7. Plasmon-dispersion relations. The plasmon energy
at g=k+K has either been defined as the position of the max-
imum in —Im[exk(k,w)] (experimental definition) or as the real
part of the zero of det[e(k,z)] (theoretical definition). The
edges of the 1BZ in the A and A directions are marked by 1%
and 1% (a) q on the A axis. +, no LFE’s, experimental
definition; O, with LFE’s, experimental definition; solid curve,
with LFE’s, theoretical definition. (b) Same as (a), but with q on
the A axis. (c) Comparison with experiment. LFE’s were in-
cluded in the calculation and the plasmon energies were defined
according to the experimental definition. O, q on the A axis,
calculated; Q, q on the A axis, experiment (Ref. 20). +, q on
the A axis, calculated; A, q on the A axis, experiment (Ref. 20);
O, q on the A axis, experiment (Ref. 21).
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ergy. If we include the LFE by solving Eq. (13) the com-
plex plasmon-dispersion curve is expected to split into
two separate bands. In this case it is appropriate to label
the complex plasmon energies with the value of k. At
each considered k value we have indeed found two solu-
tions of Eq. (13), which fall on the left and right part of
the two-branched dotted curve in Fig. 8, respectively. As
can be seen in Table III both solutions give rise to poles
in €g0'(k,z) as well as in EELIKL( k,z). Obviously there are

two coupled plasmon bands and the theoretical definition
of the plasmon energies leads to two distinct plasmon
bands with a band gap of about 1 eV in the real part.

The real parts of the two complex plasmon bands of
Fig. 8 are plotted in Fig. 7(b) as the solid line. Whether
these two plasmon bands can be resolved experimentally
or not will depend on the ratio of their lifetimes and on
the relative strength of the poles. It turns out that if we
use the experimental definition these plasmon bands can-
not be resolved for k values near the 1BZ edge. In this
connection it is important to realize that Fig. 8 shows a
very remarkable feature for k values in the neighborhood
of the 1BZ edge in that the lifetime of the second-band
plasmon is much larger than the lifetime of the first-band
plasmon. This is against the expectation one could have
on the basis of the above-mentioned argument that a
plasmon with larger energy has more possibilities to de-
cay. Apparently this phase-space argument is not valid
due to the local-field effects. We come back to this point
further on, but the result of this peculiar difference in life-
times is that Im[€gg! (K, )] with k near the L point of the
1BZ is dominated by the second-band plasmon [the solu-
tion of Eq. (13) on the right branch of the dotted curve in
Fig. 8], which manifests itself as a clear maximum in
Im[€y'(k,@)]. The first-band plasmon disappears in the
low-energy tail of the second-band plasmon. This is illus-
trated in Fig. 9 in which Im[ep!(k,,0)] with
k; =(4,%,41) is analyzed in its two (theoretical) plasmon
contributions according to

Im(z) (eV) -2

4 L L 1 1 L fl

19 20 21 22 23 24
Re(z) (eV)

FIG. 8. Complex plasmon energies along the A axis. The
solid curve marked with the + symbols has been obtained by
disregarding the LFE; that is, by solving exx(k,z)=0. The
numbers along the curve denote the value of q=k+K=(t,t,1).
The two-branched dotted curve has been obtained by including
the LFE, that is, by solving det[e(k,z)]=0. For each k=(¢,t,t)
there are two solutions, which lie on the right and left branch of
the dotted curve, respectively.
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FIG. 9. Plasmon contributions to Im[exp!(k,w)] at

k=(1,1,1) according to Eq. (16). The pole parameters follow
from a calculation in which a tenth-order Taylor series was used
and read z;=(21.9—3.2i) eV, Ryp=(2.14+2.4i) eV;
2,=(22.95—1.73i) eV, R} =(3.98+0.13i) eV. Solid curve,
Im[ex'(k,w)]; dotted curve, contribution of first-band plasmon;
long-short dashed curve, contribution of second-band plasmon;
dashed curve, sum of both plasmon contributions, i.e., rhs of

Eq. (16).

R/ R2
00 + 00

o—z, ’

€00 (K ,0)~ (16)

0w—z;
in which z, and z, are the two solutions of Eq. (13) and
R})O and R(Z)O are the residues of the corresponding poles
in €' (k).

Also for other k values neither Im[eg!(k,w)] nor
Im[eELIKL(k,(o)] shows a clear double structure, which

makes the experimental identification of the two, theoret-
ically present, coupled plasmon bands difficult if not im-
possible.

A consequence of the large difference in lifetime is that
if the experimental definition is used to define the
plasmon energies it is found that these energies move
continuously through the theoretical plasmon band gap
as is shown in Fig. 7(b). The only remaining feature in
the (experimentally defined) plasmon-dispersion relation
along the A axis in Fig. 7(b) is a small structure at q
values near the 1BZ edge. This structure is not present in
the plasmon dispersion along the A axis and therefore,
according to this empirical pseudopotential method
(EPM) calculation, it is possible to observe experimental-
ly the presence of two coupled plasmon bands indirectly,
in spite of the above-mentioned difficulty to disentangle
the energy-loss spectrum at a given q in its two plasmon
contributions.

To show that the unexpected influence of the LFE on
the lifetimes of the two plasmons near the L point of the
1BZ is not due to a too small dielectric matrix, we ana-
lyze the 2 X2 dielectric matrix in this point and show that
the lifetime-effect can quantitatively be understood in this
2X2 system. As before let K;=(—1,—1,—1) and
k; =(4,1,5). At k; the following properties hold:
€oolkp,z)=e€g x,(kp,z) and e€pg, (kp,z)=€g olk,2).
Let the zero of €p(k;,z) be z,,, thus Re(z,,) is the
theoretically defined plasmon energy if local-field effects
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are neglected. The effect of the local field can be estimat-
ed by expanding the matrix elements around z,,;,,

eoo(kL,z)ZGKLKL(kL,z)za(z —Zyr), (17)
GOKL(kL’Z):GKLO(kL’Z)zb . (18)

The complex plasmon energies are then approximately
given by the solutions of

a(z —zn,f) b
b a(z —z,;) =0, 19
which are
z,f=z,,lfi-z- . (20)

The value of b/a turns out to be b/a=(—0.66—0.7i)
eV. Using z,,=(22.0—2.24i) eV which can be read
from Fig. 8 we find the two zeros z;, =(21.34—2.94i) eV
and z;,=(22.66—1.54i) eV. Indeed we see that the solu-
tion with the larger real part is closest to the real axis.
These approximate plasmon energies compare very well
with the plasmon energies z,=(21.83—3.21/) eV and
z,=(22.85—1.73i) eV, obtained by solving Eq. (13) using
a 15X 15 dielectric matrix. This shows that the plasmon
energies have nearly converged with respect to the di-
mension of the dielectric matrix and therefore the effect
of the local field on the lifetimes of the plasmons is not an
artifact of a too small dielectric matrix.

B. Comparison with experiment

In Fig. 7(c) a comparison is made between the experi-
mentally determined plasmon energies’”?! and the calcu-
lated plasmon energies. The experimental values are
defined as the position of the maximum in the measured
energy-loss spectrum at a given q and likewise the calcu-
lated values are according to the experimental definition
given in Sec. V A. Our results disagree with the experi-
mental value at three points. First, at low-q values the
calculated plasmon energies are about 10% larger than
the experimental values. Second, the calculated disper-
sion is stronger than the dispersion in the experimental
data, which means that the discrepancy between theory
and experiment becomes larger at higher-q values. The
third point of discrepancy between our calculations and
experiment is the anisotropy between the plasmon ener-
gies along the A and the A axes. Whereas in our calcula-
tions the experimentally defined plasmon energy at the L
point of the 1BZ is higher than the plasmon energy at the
same q value on the A axis due to the dominance of the
second-band plasmon, the opposite behavior is observed
in the experimental data. The first two points of
disagreement are also observed in the results of Sturm.’
However, Sturm finds the correct anisotropic behavior in
the plasmon dispersion, although in his calculation the Si
lattice potential has been treated perturbatively in con-
trast to the use of an “exact” band structure in our calcu-
lations.

The fact that the calculated plasmon dispersion is too
strong must probably be ascribed to the RPA. Calcula-
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tions for uniform systems which go beyond the RPA by
including so-called exchange-correlation corrections in
the dielectric response show that these exchange-
correlation corrections do indeed flatten the plasmon
dispersion.”?”?*  Another cause for the observed
discrepancies could be the use of the simple EPM band
structure. We are presently recalculating the results
presented in this paper within a local-density-
approximation scheme (LDA). In this framework we will
be able to incorporate static (i.e., energy independent)
exchange-correlation corrections in a natural way. A fur-
ther source of error in our results might be the fact that
our calculations are done at zero temperature in contrast
to the experimental determination of the plasmon ener-
gies which are done at room temperature.

As was argued in Sec. V A by means of the 2 X2 dielec-
tric matrix, the observed discrepancies cannot be attri-
buted to a possibly too small dielectric matrix. In the
same way the small difference between the plasmon ener-
gies along the A axis obtained with and without the LFE,
respectively, shows that the difference in dispersion be-
tween theory and experiment at high-q values cannot be
ascribed to the dimension of the dielectric matrix. As
can be seen in Fig. 7(b), the same reasoning holds for q
values on the A axis which are not close to the 1BZ edge.

VI. SUMMARY AND CONCLUSIONS

In the first part of this paper we have introduced a very
effective method to calculate the type of singular integrals
that often appear in the perturbation theoretic treatment
of many-particle systems. These integrals have in com-
mon that the integrand contains an energy denominator
which depends on an energy variable w. For o values
exceeding some threshold value, which is zero for metal-
lic systems but nonzero for semiconductors and insula-
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tors, these denominators may vanish for certain values of
the integration variable, which makes the integrand a
singular function. In our method we avoid evaluating
these singular integrals by making a Taylor series around
a complex energy. The calculation of the Taylor
coefficients at this complex energy requires only the nu-
merical integration of regular functions, which is much
easier than the direct evaluation of the singular integrals.
The method yields the real and imaginary parts of the in-
tegral in one calculation with good numerical accuracy.
Moreover, it opens the possibility to investigate the ana-
lytic continuation of the integrals across the branch cuts,
which they generally possess.

An example of the above-mentioned type of integrals is
encountered in the calculation of the polarization matrix
of a semiconductor. We have calculated the Si polariza-
tion matrix in the RPA and have used it to calculate the
inverse dielectric matrix at several k values in the 1BZ.
Using the above-mentioned possibility to obtain the ana-
lytic continuation of the dielectric matrix we have been
able to investigate the k-dependent complex plasmon en-
ergies defined as the zeros det[e(k,z)] [Eq. (13)]. The
plasmon-dispersion relations along the A and A direction,
calculated according to the experimental definition,
which defines a plasmon energy as the location of the
maximum in the energy-loss function, turn out to be in
disagreement with the experimentally determined
plasmon relations, although both band-structure effects
and local-field effects were fully included. We have ar-
gued that this disagreement cannot be ascribed to the
small 15X 15 dielectric matrix which we have used, but is
probably due to the RPA.
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