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Coherent-potential approximation with the continued-fraction formalism
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We present a general approach to perform coherent-potential electronic-structure calculations of
semiconductor alloys within the coherent-potential approximation, using continued fractions for the rep-
resentation of the relevant Green s-function matrix elements. Starting from a tight-binding representa-
tion of the constituent-semiconductor Hamiltonian, it is shown how to evaluate self-consistently a large
number of continued-fraction coefficients by means of the construction of an appropriate biorthonormal
basis set. A simplified procedure for situations in which groups of energy bands can be treated indepen-
dently is also proposed. With respect to other approaches in the literature, our procedure presents some
special formal and technical advantages that should allow much more manageable treatment of semicon-
ductor alloys.

I. INTRODUCTION

The subject of this paper is the application of the
continued-fraction apparatus to determine the electronic
spectra of substitutional semiconductor alloys within the
coherent-potential approximation (CPA). The conven-
tional calculation procedures presented in the literature
are very laborious indeed, as they require appropriate
summations over the Brillouin zone at each iteration to
self-consistency and for each energy E. The investigation
of alternative procedures and the development of tech-
niques with reduced computational complexity to per-
form CPA calculations is also important for possible per-
spectives opened beyond the CPA itself.

It is well known that the CPA basic strategy' is to
mimic all the configurations accessible to the alloy by
means of an e6'ective self-consistent energy-dependent po-
tential to be added to the physical Hamiltonian. The
CPA has been widely used in literature, especially in con-
nection with the Korringa-Kohn-Ro stoker method
(KKR-CPA formalism), with the tight-binding linear-
muffin-tin-orbital method (LMTP-CPA) and with the
tight-binding approach ' (TB-CPA). In this latter case
the conventional approach is to start from a tight-binding
description of the constituent semiconductors, then the
virtual-crystal alloy Hamiltonian is constructed, and its
Green's-function matrix elements are evaluated by direct
diagonalization in k space and appropriate summations
in the Brillouin zone, and finally an energy-dependent
self-energy for each orbital per unit cell is calculated and
the procedure is iterated until self-consistency is
achieved.

In this paper we systematically analyze the possible ad-
vantages of implementing the coherent-potential approxi-
mation with the recursion method and the continued-
fraction formalism, ' which has been proved so valu-
able in the calculation of the electronic spectra of
solids. ' To achieve this purpose, several problems,
both formal and technical, have been encountered. First

of all, the continued-fraction procedure and the recursion
method are to be considered in their generalized form be-
cause the eftective Hamiltonian is non-Hermitian; the
solution of this difficulty requires the two-sided recursion
method procedure. Second, the self-consistent condi-
tions of the CPA are also expressed using continued frac-
tions; an elegant operative solution is provided within the
general concepts of the augmented-space formalism. ' '
In this paper the augmented-space formalism is adopted
in an appropriate form to the CPA, but we also notice
that more sophisticated analytic theories, such as the
traveling cluster approximation, ' could benefit from con-
tinued fractions and renormalization procedures. Final-
ly, a sufficiently large number of steps in the continued
fractions has to be obtained; for this we use recent
symmetry-based results that have produced high accura-
cy in the Green's-function calculation' ' for perfect
crystals.

In Sec. II we provide the general formulation of the
CPA continued-fraction procedure. Our formulation
uses a biorthonormal basis set and some concepts of the
augmented-space formalism. In Sec. III we consider a
simplified version of the method and discuss the case in
which groups of conduction or valence bands can be
treated independently. This way each group of bands can
be mapped on a one-dimensional system perfectly
equivalent to the three-dimensional original one for the
evaluation of the CPA Green's-function matrix elements.
Section IV contains the conclusions.

II. THEORY OF THE COHERENT-POTENTIAL
APPROXIMATION IN THE FRAMEWORK

OF THE CONTINUED FRACTIONS

A. Genera1 considerations

The system under consideration is a homogeneously
disordered substitutional alloy; the geometrical periodici-
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ty is preserved, but the sites of the lattice (or of a sublat-
tice) may be occupied by two or more different types of
atoms which are labeled as A or 8 in the case of a binary
alloy. The one-electron Hamiltonian of the crystal in the
localized basis approximation can be written in the form

tegrations over the Brillouin zone.
The presence of the complex self-energy cr (E) makes

the Hamiltonian (4) non-Hermitian, so we have to use the
general biorthonormal recurrence relations:

mp, nv
pWv if m =n

In Eq. (1), IP „& are orthonormal independent localized
orbitals in the positions d„within the cell ~ . The orbit-
al energies e„~z z~ depend on the type of atom occupying
the lattice site; the off-diagonal matrix elements T „„
between atomic orbitals on different sites are assumed to
be unaffected by the disorder. The diagonal energy
e„~z ~& has the following probability distribution:

P (e„)=c5(e„—e„„)+(1—c)5(e„—e„~),
where c and (1—c) are the concentrations of the atomic
species A and B, respectively. Our treatment is also
applicable to the more general distribution

N

P(e„)= g W, 5(e„—e„, )

s =1

with g+, 8', = 1, or also to the case of a continuous dis-
tribution P(e„). Moreover, it includes the possibility
that some orbitals in the unit cell do not Auctuate, as may
occur in III-V compounds when only the anion or cation
sublattice fluctuates.

Instead of considering the Hamiltonian (1) for all possi-
ble alloy configurations, in agreement with the CPA con-
cepts we consider a translationally invariant Hamiltoni-
an, the diagonal part of which inc1udes appropriate
orbital-dependent self-energies cr„(E):

We explicitly note that the coeKcients a„and b„are en-
ergy dependent due to the quantities a„(E). The two-
sided recursion method, summarized by Eqs. (7), leads to
the following continued-fraction representation of the
Green's function [ao(E) —=o „(E)j:

G„„(E)=
E o„(E)— b, (E)

b2(E)
E —a, (E)—

E —a2(E) —.

It is convenient to write Eq. (8) in the form

G (E)= 1

E cr (E) M—„„(E;[cr—(E)I )

This defines the memory function M„„(E;[o (E) I )
which, of course, depends parametrically on the whole set
[cr (E)I of the self-energies of the independent orbitals;
notice that the self-energies o (E), as we shall see, satisfy,
by construction, the Herglotz properties and, namely, are
analytic in the upper complex energy plane.

mp, nv
pWv if m =n

(4) B. Augmented-space formalism
for averaging continued fractions

At the very first step of the method, cr„(E) is simply the
average orbital energy

cr„(E)=e„=IP(e„)e„de„

and the Hamiltonian (4) corresponds to the virtual-
crystal approximation (VCA).

We now consider how to obtain the orbital-dependent
self-energies o„(E) by an iterative procedure. Let us in-
dicate with IP„& the orbitals within the reference unit cell
and with G „(E) the site diagonal Crreen's-function ma-
trix elements:

At this stage we exploit the continued-fraction procedure
to evaluate G„„(E),avoiding both the explicit diagonali-
zation of the Hamiltonian (4) and the time-consuming in-

The standard CPA formalism requires that the self-
energies cr„(E) for each orbital are such that the weighted
mean of the Green's function on the orbital p satisfies the
system of coupled equations:

s=1
' E —e„,—M„„(E;[o„(E)I).

1

E o„(E) M„~(E;—[o . (E) ])—(10)

This complicated system of coupled self-consistent equa-
tions can be solved iteratively even in the case of a con-
tinuous distribution with the help of the augmented-space
formalism.

The basic idea of the augmented-space formalism' is
to replace a probability distribution function with a per-
fectly deterministic effective operator in an extended
space. In the case of a binary alloy where the site energy
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can assume the values e„and ez with probability c and
(1—c), it is well known' that the disorder space is two
dimensional and the operator describing the site Auctuat-
ing energy is represented by the 2 X 2 matrix:

r

ao p,
(1 la)

pi Ai

1 1——lim Im fo foa~0 @+i~—r
gives the distribution probability P(e; ). By applying the
standard recursion relations with initial state (13) and
Hamiltonian (12), we arrive at the tridiagonal representa-
tion of the given distribution function of the type

where

ao = ce„+( 1 —c)ei) =e,
a, =ce~+(I —c)e„,
P, =~e„—e~~Vc(l —c) .

(1 lb)

ao p, 0 0

p, a, p2 0

0 p2 a2

O O
0 ~

(14)

N
I = g ~u, &e, (u, ~, (12)

whose eigenvalues are the possible site energies e, . Then
we consider the initial state

(13)

It is evident that

We can extend this procedure to the case in which the
diagonal energies may assume N possible values e; with
probabilities 8'; (i =1,2, . . . , N). The first step is the
formal definition of the operator I:

In the case of a continuous distribution P(e), the matrix
3 can be of infinite rank.

Let us consider now the chain representation of
G„„(E;[o (E) ) ) with the augmented-space formalism to
treat the energy fluctuation of the state ~fo&. The di-
agrammatic representation of the operators of interest in
the direct product space is schematically indicated in Fig.
1. Because of the structure of the interactions among the
chains, we can easily eliminate by renormalization all the
chains but the first one, on the first site of which we
evaluate the Green's function. For a multivalued distri-
bution of the energy, we thus obtain, for the self-energy
of the orbital p at step i+ 1 of the iterative procedure

(l + 1)(E)
P 0

E —a, —M„„(E;( o"(E)j )— p2

E —a2 —M„„(E;f o"(E)J ) —'

(15)

The continued-fraction expression o„'+" derived by us
constitutes a convenient operative solution of the CPA
set of equations (10). In fact, the to"+"}obtained by
Eqs. (15) can be inserted into Eq. (4) and a new iteration
is then started until self-consistency is achieved. A fur-
ther bonus of Eq. (15) is to explicitly show the Herglotz
properties of the self-energies at any stage of the iterative
process and thus the definite positiveness of the generated
density of state in the coherent-potential approximation.

bl

b1

a$

b2 a2

b2 a2

bl b2

III. SIMPLIFIED VERSION OF THE GENERAL
CPA CONTINUED-FRACTION EQUATIONS

The general equations (4), (7), and (15) in Sec. II allow
us to perform the CPA calculation using a continued-
fraction representation both for the Green's function and
the self-energy. Such a general procedure, in a number of
physical situations, can be further simplified.

Consider the case of a binary alloy; Eq. (15), with the
use of Eq. (9), then becomes

FIG. 1. Graphical representation of the tridiagonal operator
corresponding to the Green's function G»(E) (first horizontal
chain), of the disorder operator (vertical chain), and of the
direct-product augmented space.
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(i+1)(E)
P 0 —a, +a„"(E)+ 1

G„„(E;Io"(E)])

(16)

The self-consistent solution of Eqs. (4), (7), and (16) is still
a complicated problem. A remarkable simplification
occurs if we consider only one fluctuating orbital for each
site so that G„„(E;Icr„(E)]) is simply G„„[E—o.„(E)]
and the Green's function has to be evaluated only once.
At the self-consistency

using Eq. (11b), we can rearrange Eq. (16) in the familiar
form'

e cr„(E)—= [e„o„(E)—][e~—o„(E)]

XG„„IE—o„(E)] . (17)

Since, in this case, the Green's function must be calculat-
ed only once, the continued-fraction expansion entails a
very simple procedure indeed.

To evaluate the Green's function with high accuracy, it
has been recently proposed and discussed how to perform
recursions in reciproca1 space, ' and how to separately
treat different parts of the Brillouin zone. ' We briefly
reconsider this point in connection with CPA calcula-
tions.

Relations (7) are written in a very general way; to be
more precise, one can work equally well in real or in re-
ciprocal space. We can write the crystal Hamiltonian in
the reciprocal space by introducing the Bloch functions
i%i,„)defined by

T„(k)being the Fourier transform of T „„.
An initial state lP„), localized in real space, is extend-

ed in k space and it then takes the expression

N
(20)

It is convenient to start the iterative procedure with the
initial state (20) and the Hamiltonian (19). It is now pos-
sible' to exploit the separability in k space and perform
recurrences successively in separated small subzones of
the Brillouin zone. This technique allows us to overcome

where X is the total number of unit cells of the crystal.
The crystal Hamiltonian in Eq. (4) can be written as

H =g o „(E)4i,„)( 4q„l
k, p

limitations due to the finite size of computer storage and
to obtain a large number (100 or more) of continued-
fraction coefficients whenever needed. This high number
of continued-fraction coefficients, obtained by the recur-
sion method in k space, and the possibility to merge in
the asymptotic region are of great utility for an accurate
control and termination of the continued fractions.

The continued-fraction expansion also appears to be
very useful for a description of separated groups of bands
(for instance, valence bands or conduction bands). We
have, in fact, generalized the above procedure as follows.
We start with the virtual crystal Hamiltonian in the
Bloch sums representation, and diagonalize it at the vari-
ous k vectors to have the energy bands. Among them we
can isolate, for instance, the block of valence bands. We
then tridiagonalize the va1ence part of the total Hamil-
tonian in order to put it in a suitable form for an iterative
chain scheme. The continued-fraction coefficients rela-
tive to this new Hamiltonian will exhibit damped oscillat-
ing behavior if the valence bands are connected; usually
the asymptotic region can soon be reached in 30—50
iterations, and then the single-band terminator can be ap-
plied. In other situations double- or multiple-band termi-
nators can be used in the presence of energy gaps.

For several systems of physical relevance and, in par-
ticular, for group-IV elemental and III-V compound and
other semiconductors, one can separately treat the Auc-
tuations in each set of valence and conduction bands fol-
lowing the basic simplification introduced by Chen and
Sher. In the Chen-Sher model, the use of continued
fractions becomes particularly rewarding; it can be car-
ried out along the following steps.

(i) The first to be constructed is the virtual-crystal
Hamiltonian from the tight-binding representation of the
constituent semiconductors. Conduction and valence
electronic energy bands of the VCA crystal are separated
into groups of connected bands and tridiagonalized in-
dependently with the recursion method. This way each
group of bands is mapped on a one-dimensional solid-
state chain, perfectly equivalent to the three-dimensional
original system as far as CPA calculations are concerned.

(ii) The CPA calculations are now easily performed on
the one-dimensional models so obtained in the framework
of the augmented-space formalism. It is worthwhile to
emphasize that the recursion procedure for the deter-
mination of the continued-fraction coefficients is done
only once. CPA calculations now become trivial due to
the peculiar way in which energy appears in the contin-
ued fractions. On the contrary, in the traditional treat-
ments provided in the literature, where tridiagonalization
is not performed, the self-consistent CPA procedure can
only be achieved with laborious summations throughout
the Brillouin zone for every trial energy.

The simplifications of our procedure are thus evident.
In the traditional approach to CPA calculations, the
most laborious part is the sum throughout selected k vec-
tors in the Brillouin zone of appropriate functions with
poles at the Harniltonian eigenvalues; this time-
consuming procedure has to be repeated at every energy
several times in order to achieve self-consistency. Typi-
cally one needs about 100 energy values to span the
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