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Ground-state properties of Fe, Co, Ni, and their monoxides:
Results of the generalized gradient approximation
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The lattice parameter, bulk modulus, cohesive energy, and magnetization of Fe, Co, and Ni are calcu-
lated using the generalized gradient approximation (GGA) of Perdew and co-workers. The GGA results
agree better with experimental data than the corresponding results calculated with the local-spin-density
approximation (LSDA). In particular, the overestimation of the cohesive energies are reduced and the
GGA correctly predicts the bcc ferromagnetic phase to be the ground state of Fe, while the LSDA fails
to do so. We have also studied the electronic and magnetic properties of the insulating antiferromagnet-
ic transition-metal compounds FeO, CoO, and NiO with the GGA. For these oxides it is found that the
results are very similar to the results calculated with use of the LSDA.

I. INTRODUCTION

Many calculations in the past decade have demonstrat-
ed that the local-spin-density functional approximation
(LSDA) gives a good description of ground-state proper-
ties of many moderately correlated systems. ' The LSDA
has become the de facto tool of first-principles calcula-
tions in solid-state physics, and has contributed
significantly to the understanding of material properties
at the microscopic level. However, there are some sys-
tematic errors which have been observed when using the
LSDA, such as the overestimation of cohesive energies
for almost all elemental solids, and the underestimation
of lattice parameters in many cases. The LSDA also fails
to give a correct prediction of the ground state of Fe.
For strongly correlated systems, the LSDA often fails.
For example, the LSDA gives the wrong ground states
for La2Cu04 (Refs. 3 —5) and transition-metal monox-
ides. Better exchange-correlation functional forms with
gradient corrections incorporated have been suggested re-
cently by various authors. These new functionals
have been tested recently and it is quite encouraging that
the results obtained are generally better than those ob-
tained with the LSDA. For example, the "generalized
gradient approximation (CONGA)" of Perdew and co-
workers has yielded better results for the total energy of
atoms, the binding energies of the first-row diatomic
molecules, ' the ground-state properties of third-row ele-
ments, " ' and the cohesive properties of Al, C, and
Si.' The purpose of the present paper is to further test
the GGA by evaluating the ground-state properties of
some transition metals and their monoxides. To this end
we have used the GGA with a first-principles linear-
combination-of-atomic-orbitals (LCAO) method to study
the lattice parameters, the bulk moduli, the cohesive en-
ergies, and the magnetization of Fe, Co, and Ni. We
have also studied the electronic and magnetic properties
of their monoxides. We will show that the GGA gives
better ground-state properties of the 3d elements con-

sidered than does the LSDA, but still does not give the
correct ground states for the monoxides.

II. METHOD

The self-consistent calculations were performed with
an accurate first-principles LCAO method. ' The radial
part of the atomic basis functions, potentials, charge den-
sities, and spin densities are expanded about atomic sites
in a series of Gaussian functions, so that most integra-
tions and the gradient of the charge and spin density
(needed for the gradient correction) are handled analyti-
cally. For the spin-dependent local-density approxima-
tion to the exchange-correction potential, we have used
the Ceperley-Alder form' for the LSDA calculations.
Gradient corrections are implemented as prescribed by
the generalized gradient approximation GGA of Perdew
and co-workers. Besides the core states, the atomic basis
consisted of 4s, 4p, and 3d functions on Fe, Co, and Ni,
and for the monoxides 2s, 2p, 3s, and 3p functions on 0
sites. To include even more variational freedom, we also
included the 5s and 5p functions on the transition-metal
atoms when we studied the monoxides. The orbitals have
been obtained from converged self-consistent atomic cal-
culations. In both the LDSA and GGA calculations in
bulk environments, we use the same radial functions
(composed of Cxaussians) from converged self-consistent
atomic calculations performed with the LSDA. This
means that we neglect the relaxation of the core charge
densities when we include the gradient correction in the
exchange-correlation potential. We will comment on the
validity of this approximation later. The self-consistent
charge densities were evaluated on a uniform sampling of
112, 110, 45, 84, 280, and 30 irreducible k points for the
bcc Fe, fcc Fe, antiferromagnetic (AFM) fcc Fe, hcp Co,
fcc Ni, and the monoxides in the rhombohedral phase, re-
spectively. The energy of each eigenvalue was broadened
by 2 mRy so that the k-space summation near the Fermi
level would converge more quickly.
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The total energies of the systems (Fe in the bcc and fcc
phase, Co in the hcp phase with c/a equal to 1.622, and
Ni in the fcc phase) are calculated as a function of
volume. The results are then fitted to universal binding
curves' which give the lattice parameters, bulk moduli,
and total energies at equilibrium. The cohesive energies
are then calculated by subtracting ofF the zero-point ener-
gies of the solids and the reference energies of the isolated
spin-polarized atoms in their ground-state configurations.
For the monoxides we are primarily interested to see if
GGA gives the correct magnetization and band gaps. To
this end, we have calculated the electronic structure for
the monoxoides with the lattice parameters listed in
Table I of Ref. 18. All the calculations reported here are
fully self consistent. In the atomic calculations, the radi-
al part of the wave functions, potentials, charge, and spin
densities are also expanded in Gaussian functions, so as
to achieve the best cancelation of errors due to basis in-
completeness in the determination of cohesive energies.

III. RESULTS
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A. Fe, Co, and Ni

It has been known for some time that while the LSDA
gives the correct ground state for most elemental solids,
it fails to do so for Fe. For this reason, it is of interest to
compare GGA results with LSDA results for the
structural energies of Fe and its neighbors Co and Ni.
The total energies per atom for various phases of Fe are
calculated as a function of volume and fitted to "univer-
sal binding curves. " They are plotted in Fig. 1. The
GGA results are shown as solid lines while the LSDA re-
sults are shown as dotted lines. In the figure, we have
used the minimum energy for the ferromagnetic bcc (I'
bcc) phase as the reference energy for both the GGA and
LSDA results. From the fits to the universal binding
curves, we determine the Wigner-Seitz radii, bulk moduli,
and cohesive energies for various phases, and they are
listed in Table I. It should be mentioned that the experi-

FIG. 1. Total energy of paramagnetic (P) bcc and fcc, fer-
romagnetic (F) bcc, and antiferromagnetic (AF) fcc Fe as a
function of volume. The solid curves correspond to the GGA
and dotted curves correspond to the LSDA. The curves are dis-
placed in energy so that the minimum for the Fbcc curves coin-
cide, and this reference energy is labeled as zero.

mental magnetic moment in Table I includes the orbital
contribution, while the calculated magnetic moment does
not. We find that for the fcc structure, the paramagnetic,
ferromagnetic, and antiferromagnetic phases are almost
degenerate in energy within the LSDA with volumes up
to 78.6 a.u. , and hence only the energy versus volume
curve for the paramagnetic phase is shown in the figure.
For the GGA results, the paramagnetic fcc and fer-
romagnetic fcc phases are also nearly degenerate up to
78.6 a.u. , and only the curve for the paramagnetic phase
is shown. Unlike the LSDA results however, the antifer-

TABLE I. Ground-state properties of Fe, Co, and Ni calculated with the LSDA and the GGA, com-
pared with experimental values. All experimental values are quoted from Ref. 23.

Wigner-
Seitz

radius
(a.u. )

Bulk
modulus
(Mba r)

Cohesive
energy

(eV)

Magnetic
moment

(p~)

Fe LSDA
GGA
Expt.

2.59
2.68
2.67

2.64
1.74
1.68

7.32
6.31
4.28

2.08'
2.20

2.22

2.14
2.17

Co LSDA
GGA
Expt.

2.54
2.63
2.62

2.68
2.14
1.91

5.98
4.52
4.39

1.50
1.63

1.72

1.62
1.63

Ni LSDA
GGA
Expt.

2.53
2.63
2.60

2.50
2.08
1.86

5.45
4.18
4.44

0.59
0.65

0.61

0.61
0.63

'Magnetic moment calculated at calculated equilibrium lattice parameter.
Magnetic moment calculated at the experimental parameters.
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romagnetic phase in the fcc structure, consisting of alter-
nating layers of up and down spins normal to the [001]
direction, becomes lower in energy for volumes exceeding
about 72 a.u. We see from Fig. 1, in agreement with pre-
vious results, that the LSDA gives erroneously the
paramagnetic fcc phase as the ground state of Fe. How-
ever, the ferromagnetic (FM) bcc phase is correctly pre-
dicted to be the ground state by GGA, which is also con-
sistent with the results of recent linear muffin-tin orbital
(LMTO) and linear augmented-plane-wave method
(LAPW) calculations. " ' The GGA Wigner-Seitz ra-
dius, the cohesive energy, and the bulk modulus agree
better with experimental values than the results calculat-
ed with LSDA. There are small increases of the magnetic

moment using the GGA, which is consistent with the
previous LMTO calculations. The structural and mag-
netic properties for Co and Ni are also calculated with
both the LSDA and GGA, and they are shown in Table
I. For Co and Ni, the LSDA predicts the correct ground
state. Nevertheless, results calculated with the GGA are
in better agreement with experiments. We observe from
Table I that the GGA consistently gives softer lattices
(larger lattice constants and smaller bulk moduli) for the
elements we have considered here. This can be rational-
ized in the following way. The GGA is formulated so
that exchange energy is lower (more negative) than that
of the LSDA, while the correlation energy is higher.
Since the exchange energy is the dominant term, the gra-
dient correction in the GGA makes the exchange-
correlation energy lower than the LSDA for the same
charge density. We further notice that the self-consistent
charge densities obtained using the GGA is very similar
to those obtained with the LSDA. So, we expect that
each point on the energy versus volume curve is lowered
by taking the gradient correction into account. This
lowering in energy is not uniform though. For the same
material, we found that that there is in general a higher
charge-density gradient (and lower charge density) at
larger volumes, so that gradient correction terms lower
the energy of the system at larger volumes more than
smaller volumes. This leads to a larger equilibrium
volume and smaller bulk modulus. The larger equilibri-
um volumes obtained by the GGA also partly explain the
slightly larger moments obtained with the GGA, since
larger volumes usually favor stronger magnetization. We
note that while our LSDA and GGA results have the
same trend and the same relative energy ordering of vari-
ous phases of Fe as the LMTO (Ref. 11) and LAPW (Ref.
12) results, there are some discrepancies in the value of
the energy differences among the three calculations,
which are possibly caused by different basis and k-point
convergences in different techniques.

To test the validity of neglecting the changes in the
core change, we studied the Fe bcc phase in the GGA
with orbitals calculated from a converged self-consistent
atomic calculation using the GGA. The lattice parame-
ter is found to be 5.47 a.u. , and the bulk modulus is found
to be 1.76 Mbar, compared with the values 5.46 a.u. and
1.74 Mbar calculated by neglecting the relaxation of the
core charge. It is therefore a reasonable approximation.

Self-consistent LSDA and GGA band structures at the
experimental lattice parameter of ferromagnetic Fe are
shown in Fig. 2. The LSDA bands agree with numerous
others reported. ' ' There are only slight differences be-
tween the LSDA bands and the GGA bands, caused
mainly by the slightly different moments between them.

B. FeO, CDO, and NiO

FIG. 2. Band structures for bcc Fe calculated with (a) the
LSDA and (b) the GGA at the experimental lattice parameter.
The solid curves are the minority spin bands while the dotted
curves are the majority spin bands. The Fermi level EF=O is
marked by a horizontal line.

We find an antiferrornagnetic ground state for FeO,
CoO, and NiO at the experimental lattice parameter for
both the LSDA and the GGA. The magnetic moments
are found to be 3.63'~, 2.36pz, and 1.03pz for FeO,
CoO, and NiO in the LSDA, respectively, and the corre-
sponding magnetic moments in the GGA are found to be
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TABLE II. The LSDA, GGA, and experimental magnetic
moments (in units of pz ) for FeO, CoO, and NiO.

Magnetic moment
LSDA GGA Expt.

00

FeO
CoO
NiO

3.63
2.36
1.03

3.55
2.37
1.01

3.32'
3.80'
1 90

—0.1—

'Reference 24.
Reference 25.

C3

LIJ

3.55p~, 2.37pz, and 1.01p&. These theoretical values
are compared with experimental data in Table II. We ob-
serve from Table II that the spin magnetic moments from
the LSDA for these monoxides do not agree well with ex-
periments, and the GGA results provide little or no im-
provement at all. Self-consistent LSDA and GGA band
structures at the experimental lattice constant of antifer-
romagnetic FeO, CoO, and NiO are plotted in Figs. 3—5,
where LSDA and GGA bands are shown in solid and
dotted lines, respectively. The Brillouin zone structure
and symmetry point notations can be found in Ref. 6.
We find the band structures calculated by the GGA are
very similar to the results calculated by the LSDA. It is
a well-known problem of the LSDA that it predicts me-
tallic ground states for many insulating 3d metal monox-
ides, and it is clear from Figs. 3—5 that the GGA does
not change the picture provided by the LSDA. There are
no gap openings at the Fermi level for FeO and CoO.
While it is well known for insulators that density-
functional calculations yield a band gap smaller than the
minimum energy required to produce electron-hole quasi-
particles, it is disappointing when such calculations,
even using the GGA, are unable to even obtain an insu-

U K

FIG. 4. Band structure for CoO at the experimental lattice
parameter. The solids curves are the LSDA band while the dot-
ted curves are the GGA bands. The Fermi level EF=O is
marked by a horizontal line.

lating state for FeO and CoO. The band-gap problem
may not be a deficiency of the generalized gradient ap-
proximation, since even the exact density functional may
not give a correct band gap for these oxides. '

Although the GGA does not solve the band-gap prob-
lem of the transition-metal monoxides, it does give a
better lattice parameter. We calculated the total energies
of NiO for di8'erent lattice constants. The lattice param-
eter is found to be 7.98 a.u. , compared with 7.73 a.u. in
LSDA and 7.93 a.u. experimentally.
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FIG. 3. Band structures for FeO at the experimental lattice
parameter. The solid curves are the LSDA bands while the dot-
ted curves are the GGA bands. The Fermi level EF=O is
marked by a horizontal line.

FIG. S. Band structures for NiO at the experimental lattice
parameter. The solids curves are the LSDA band while the dot-
ted curves are the GGA bands. The Fermi level EF=O is
marked by a horizontal line.
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IV. CONCLUSIONS

We have shown that the LCAO method with the use of
the GGA gives better ground-state properties for Fe, Co,
and Ni. In particular, the ground state of Fe is predicted
correctly by GGA to be ferromagnetic bcc, while LSDA
fails by predicting it to be fcc. On the other hand, the
GGA does not solve the problem encountered in the
transition-metal monoxides. The magnetic moments and
band structures obtained with the GGA for the oxides
are essentially the same incorrect ones as obtained with
the LSDA.

The inclusion of the GGA gradient corrections in our
LCAO code is easy to implement, and only a little extra
CPU time is required to calculate the GGA potential. In
view of the ease of implementation, the use of the GGA
thus seems warranted for most calculations of ground-
state properties of solids. However, we should note that

the GGA is not a panacea. While it improves on LSDA
results for many cases as far as structural and cohesive
properties are concerned, it offers like improvement for
the magnetic moments of some insulating 3d metal
monoxides. To obtain the correct insulating ground
states for these strongly localized and correlated systems,
other methods such as the self-interaction corrections
may be needed.
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