
PHYSICAL REVIEW B VOLUME 44, NUMBER 7 15 AUGUST 1991-I

Umklapp process and resistivity in one-dimensional fermion systems
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The inhuence of umklapp scattering on the resistivity of an interacting-one-dimensional-fermion sys-
tem (Luttinger liquid) is studied. By using a renormalization-group calculation and a memory-function
approximation for the conductivity, it is possible to obtain its frequency and temperature dependence at
arbitrary filling. At high temperature the conductivity behaves as a power law of the temperature with
an exponent depending on the interactions. Away from half filling there is a crossover between this be-
havior and an exponential increase of the conductivity. At half filling, the low-temperature conductivity
behaves as e, where 6 is the gap in the charge spectrum. It is argued that to get such behavior oth-
er scattering processes or phase-breaking processes are needed since in the presence of only electron-
electron scattering the conductivity should, strictly speaking, be infinite at every finite temperature, even
at half filling. Finally some results on the exponents of correlation functions and on the weight of the
Drude peak obtained previously for the Hubbard model are shown to be generic features of any Lut-
tinger liquid.

I. INTRODUCTION

Due to the discovery of high-T, superconductivity'
there has recently been a considerable interest in strongly
correlated electronic systems and in particular in the
two-dimensional Hubbard model. A possible approach
to this very di%cult problem is to understand the physics
of the one-dimensional Hubbard model and to try to ap-
ply it in higher dimensions. The one-dimensional mod-
els are usually much easier to handle than their counter-
part in higher dimensions and can even prove to be exact-
ly solvable, as is the case for the 1D Hubbard model.
Even for more complicated models, very eKcient tech-
niques, such as bosonization or renormalization calcula-
tions, are still applicable and are expected to give the
correct physics. In addition to the physical insight that
such one-dimensional interacting electron models can
offer to understand higher dimensions, they also have
proven to be of fundamental importance for purely one-
or quasi-one-dimensional specific problems, e.g. , quasi-
one-dimensional organic conductors or conducting poly-
rners, where interactions are known to play a major role.

As is well known, in one dimension an interacting-
electron gas will be, for repulsive interactions, an insula-
tor at half filling due to the existence of the urnklapp pro-
cess, whereas away from half filling the umklapp process
is expected to be irrelevant and the system is expected to
be a conductor. It is therefore of considerable interest to
understand how this Mott metal-insulator transition
takes place. Such a question has received much attention
in the recent past for the 1D Hubbard model. Using the
Bethe-ansatz solution or related methods a number of au-
thors ' have focused on the zero-temperature behavior
of the conductivity. It has been shown that away from
half filling the conductivity presents a drude peak 5(co).
The weight of the Drude peak has been computed and it
has been shown that such weight vanishes at half filling, a

signature of the metal-insulator transition. ' '
Despite this important breakthrough, such Bethe-

ansatz methods are mainly limited to zero-temperature
and zero-frequency properties, since it would otherwise
entail a calculation of correlation functions, a very
diScult task in the Bethe-ansatz framework. For the
same reasons the conductivity of more general 1D models
than the pure Hubbard one have been considered only a
little although some attempts have been made. ' '"

In this paper we will try to address the question of the
conductivity of a general Luttinger liquid in one dirnen-
sion, using bosonization techniques. These techniques
have the disadvantage of being tractable only if the in-
teractions are small compared with the bandwidth, but
on the other hand they allow for many more physical
quantities to be computed. Nevertheless, since there is
no expected phase transition as the interactions are in-
creased, as is well known from exact solutions and
renormalization-group arguments, these techniques are
expected to give the correct physical behavior for the
whole interaction range. They have already been used
with success for other scattering potentials such as im-
purities.

The plan of the paper is as follows. In Sec. II, I review
the Hamiltonian of a general Luttinger liquid that I will
use in the following as well as the general formula for the
conductivity. In Sec. III the conductivity is computed
for arbitrary filling, temperature, and frequency, by using
a memory-function approximation.

' Such an approxi-
mation is valid if the umklapp term is small. In Sec. IV
we show how the use of renormalization equations allows
one to obtain the conductivity even in the case of a gen-
eral umklapp process at, and away from, half filling, pro-
vided that the temperature is not too low or the doping
too small. Finally, in Sec. V, using the Luther-Emery
method, ' I study the low-temperature behavior of the
conductivity and argue that the 1D Hubbard model
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shows a peculiar behavior as a function of the tempera-
ture. Using a method introduced by Schulz' for the
commensurate-incommensurate transition, I also show
that some results obtained for the Hubbard model can be
generalized to an arbitrary Luttinger liquid.

II. HAMILTONIAN

Only a short derivation will be given here in order to
fix the notation; more details can be found in Ref. 5.

Let us consider, for example, the discrete 1D Hubbard
model:

H= t g—c; cj +Urn; &n; i,
&i j,o) i

(2.1)

where ( ) stands for nearest neighbors. If the interac-
tion term is small enough, then it is legitimate to linearize
the spectrum close to the Fermi surface. One introduces
left- and right-going fermions with momentum close to
+kF, denoted by c+ &. The kinetic-energy term becomes

~kin QvFk(c+ k (ac+ k ~ c,k, ac, k, cy )
k, o.

(2.2)

where v~ =2t sin(k~a), where a is the lattice spacing. As
is well known, in one dimension the fermion operators
can be represented in terms of the boson ones. To do so,
one defines the p and o. density operators by

1 1
p+ —(p+, t+p+, i)~ o'+ — (p+, t p+, i) ~ (2.3)

and the phase fields

irk x i /"t/2[re —0 +o(rP —0 ) jF e P P u a

&2ma

the complete Hamiltonian (2.1) becomes

2g3H=H +H + f dx cos[&8$ (x)+5x]
(2m-a)' P

(2.5)

+ z f dx cos(&8$ (x)),
(2vra )

where H and H are defined by

(2.6)

H = fdx (u,K )(~II ) + (8 P ) . (2.7)2' K

II and P are canonically conjugate variables and
+II =B„O. The p and cr parts of the Hamiltonian (2.6) de-
scribe the charge and spin degrees of freedom of the sys-
tem, respectively. The g, ~ term is the scattering between
electrons of opposite spins with an exchange of rnomen-
tum of 2kF. The g3 term is the umklapp process and is

P (x),8 (x)=+ g —e
p (WO) ~

X [v+(p)+v (p)], (2.4)

where v=p or o. and in A, B the upper sign refers to A.
Using the fact that the fermion operators are expressed
by

u /E =u~+ U/~,

u /IC =vF U/m, —

gi~=g3=U ~

(2.8)

In fact, (2.6) describes the most general 1D Hamiltonian
for a fermion system (with spin-conserving interactions)
and the parameters u, K,g are the only ones necessary to
describe the long-range properties of the system. In the
following I will consider the more general Hamiltonian
(2.6) without necessarily referring to the Hubbard model.
The various u, K, and g will be taken as the parameters.
In particular, in contrast to what happens in the 1D Hub-
bard model the umklapp strength g 3 and the other
(momentum-conserving) interactions that enter K and u
need not be the same.

Given the Hamiltonian (2.6), the easiest way to obtain
the current operator j is to use the continuity equation
B,p, +B„j=0. The total density of charge is given by

v'2
p, ( )= g p„( )= — 8 P(x). (2.9)

r=+,a

One therefore gets for the current

j= a, y, (x)=&a(u, IC, )11, . (2.10)

The current operator depends only on the charge degrees
of freedom and can be computed using only the charge
part of the Hamiltonian (2.6) since in one dimension there
is charge and spin separation as can be seen from Hamil-
tonian (2.6). Expression (2.10) differs from the naive
value of the current of a system of velocity vF, which
would be j =vF(g+f+ gf )=&2u~II —This com. es
from the fact that for the continuum Hamiltonian (2.6)
the density does not necessarily commute with the in-
teractions giving rise to a renormalization of the current
operator. If the interactions come from a well-defined
lattice Hamiltonian, where of course [p,H]=0, one has
indeed u X =uF as expected [see (2.8)]. It is also easy to
show that the conductivity is given by"

the only process that does not conserve momentum.
5 =4kF —2m /a measures the distance to half filling.
vr/(2a) would be the Fermi wave vector for a half-filled
band, therefore if d is the doping (d =0 at half filling and
d= 1 for a filled band) one has d =(u5)/(2'). Note that
here we assume that we work at a fixed number of parti-
cles, since kF is directly related to the filling. Another
way to incorporate deviations from half filling would
have been to start from the half-filled Hamiltonian [5=0
in (2.6)] and to add a chemical potential p. ' Although
the two representations are equivalent, to compute the
conductivity it is inconvenient to work at fixed chemical
potential since p has a discontinuity when going away
from half filling (see Sec. V). In the following (except Sec.
V) we will work with a fixed number of particles.

For the Hamiltonian (2.1) the various coefficients in
(2.6) and (2.7) are given by

u X =uoKo =VF
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i 2uK
cr(co)=- +y(co)

CO
[

7T
(2.11)

where g(co) is the retarded current-current correlation
function. In (2.11) and in the following the p indices are
dropped since only charge variable will now be con-
sidered:

Note that here what plays the role of the plasma frequen-
cy in the usual formulas for the conductivity' is uK. In
the absence of umklapp scattering, (2.11) is easily evalu-
ated to give

l 1o(co)=2uK 5(co)+—P (2.13)

P being the principal part thereof. Therefore the strength
of the Drude peak is simply given by 2uIC. ' '"

III. PERTURBATIVE CALCULATIQN

In this section I will assume that the umklapp process
g3 is sufficiently weak that some perturbative calculation
of the conductivity as a function of g3 can be performed,
the other interactions contained in K being treated exact-
ly. Of course the conductivity itself has a singular devel-
opment in power of the scattering potential g3, but the
perturbative expansion can be performed by using a
memory-function formalism. ' If one assumes that the
system is a normal conductor (o finite) at zero frequency,
then from (2.11) one gets g(0)= 2uK/rt, —and one can
express the conductivity in terms of the meromorphic
memory function M(co) by

y(co)=(j;j ) = ——' f dx J dt([j (x, t),j(0,0)])e' '.
0

(2.12)

Sg3F= [J',H ]= (uK )i sin[V8$(x, r)+5x ] .
(2ma)

(3.4)

Since the correlation function of F is evaluated in the ab-
sence of the umklapp term [g3=0 in (2.6)], one can use
known formu1as for the correlation functions of the bo-
son operators to get

2g3(uK)(F F) 2n.a T
u

' 4K —2

XB(K—iS+, 1 —2K)

ground state to the scattering potential, and in that sense
is equivalent to a Boltzmann approximation, which as-
sumes phase-breaking processes between each scattering.
Such phase-breaking processes would be inelastic pro-
cesses other than the electron-electron interaction, e.g. ,
the interaction of the electrons with a thermal bath,
which, strictly speaking, would be needed for the system
to reach thermal equilibrium. ' The main effect of such a
bath on the electrons is to make them lose their phase
coherence. The Boltzmann approximation corresponds
to the extreme case where such a randomization of the
phase of the electron wave functions occurs before each
collision process (i.e., here the umklapp interaction).
Clearly this approximation breaks down if the effect of g3
on the ground state is strong and, in particular, as is the
case for the Hamiltonian (2.6), if g3 leads to the opening
of a gap 6 in the charge excitation spectrum. We will
come back to this point in Sec. V. Nevertheless, we will
assume, as it is physically sensible at least at high temper-
atures, that the memory-function approximation gives
reasonable results.

Using the expression of the current (2.10) and the um-
klapp term (2.6), one gets for the Foperator

where'

2uK 1

co+M(co )
(3.1)

XB(K—iS, 1 2K)——
1 —2K

(3.5)
M(co) =

y(0) —y(~)
(3.2)

The calculation of the memory function can be carried
out perturbatively to give at the lowest order

( &F;F)'„—&F;F)'„=,)/
M(co) = —y(0)

(3.3)

The F operators take into account that the current is not
a conserved quantity F=[j,H] and (F;F)„stands for
the retarded correlation function of the operator F at fre-
quency co computed in the absence of the scattering po-
tential (g3=0). Expression (3.3) is correct at high fre-
quency for arbitrary temperatures, but it does not neces-
sarily remain valid at low frequencies even for finite tem-
peratures. Its validity at low frequency implicitly as-
sumes in a self-consistent way that the true conductivity
behaves as (3.1) with M(co~0) =ir as some relaxation
time. In particular, since expression (3.3) is computed for
g3=0, it neglects all effects of self-adjustments of the

with S+=(co+u5)/(4vrT) and B(x,y)=I (x)I (y)/
I (x +y) is the P function. Using (3.3) one gets

K 4K —2
2~a TMco=

m a

X [B(K iS+, 1 ——2K)B(K iS, 1 —2—K)

B(K iS+, 1 ——2K)B(—K iS, 1 —2K)], —

(3.6)

where S+=S+ (co =0).
Equation (3.6) gives the full frequency and temperature

dependence of the conductivity at every filling provided
that a perturbative expansion in g3 is possible. We will
see in Sec. IV how this limitation can be circumvented by
using the renormalization method.

Nevertheless, the limit of small g3 already exhibits the
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generic features of the complete solution in the various
physically interesting limits.

A. Half filling

At half filling 5=0, and therefore S+ =S . Expres-
sion (3.6) simplifies greatly in the two physically interest-
ing regimes co ))T and ~ && T.

l. co)& T

One then gets from (3.6)

g3K
M(co) = sin(2m. K )

K CX

XI 2(1 —2K)
cc) 2D

4K —2

(3.7)

2. co&& T

One then gets from (3.3)

One can notice that the correction M(co)/co to the con-
ductivity in the absence of the umklapp process behaves
as co" from (3.7). Therefore, for K ) 1 the correction
becomes negligible when m~0, indicating that the um-
klapp process does not contribute to the resisitivity of the
system at sufficiently small frequency, whereas for K & 1

the "correction" diverges at low frequency indicating
that the conductivity of the system is dominated by the
umklapp process. One recovers the usual boundary for
the relevance of the umklapp term obtained by renormal-
ization in the limit g3 ~0 (see also Sec. V).

The coefficient of the correction is given by (3.7), but
since it is obtained from a correlation function with
anomalous dimensions it is expected to be nonuniversal.
In contrast, the exponent should be a universal quantity.
The conductivity behaves, therefore, as o(co)-1/co if
K ) 1 and o.(co)-co /g3 if K & 1. In this last case, the
behavior is similar to the temperature dependence (see
Sec. IIIA2). Obviously this behavior is not correct at
low frequencies if one expects a gap in the charge spec-
trum, since in that case the conductivity vanishes fear fre-
quencies below the gap. This is due to the breakdown of
the approximation leading to (3,7), as pointed out before.

conductivity behaves as a power law of the temperature
with an exponent depending on the interactions. This in-
dicates that in one dimension there is a strong renormal-
ization of the scattering process due to the various Auc-
tuations of a one-dimensional electron gas (namely
charge-density wave or superconductive fluctuations). A
similar effect also happens for other scattering potentials,
such as impurities, ' ' but with a different exponent.
One can see that, compared to the Fermi-liquid behavior
I/T repulsive interactions (K & 1) will enhance the
scattering potential whereas for attractive interactions
(K ) 1) the effect is opposite and the system becomes less
and less sensitive to the scattering potential due to the su-
perconducting Auctuations. If the interactions become
sufficiently repulsive (K & —,') the conductivity decreases
with temperature even at temperatures higher than the
charge gap b.

The above formula would indicate that the conductivi-
ty behaves as a power law of the temperature. Again this
approximation is not valid for temperatures lower than
the charge gap 6, since one would expect then an ex-
ponential decay of the conductivity. We will come back
to this point in the Sec. V.

B. Away from half filling

I. u)& T

Here one gets for co & u 5

g3E2
CX

M(co) = sin(2~K)I (1—2K)
7T CX 2D

4E —2

X I [( 5)2 2)2K I
( 5)4K 2I

1
(3.10)

By expanding in co one sees that the first term is propor-
tional to co:

Again two interesting regimes occur depending on
whether T«(co, u5) or T))( a,iu5). We will not con-
sider here the cases (co, T) ))u5 since in that case we are
led back to expressions similar to those obtained for the
half-filled case, since at sufficiently large temperatures or
frequencies the system is unable to distinguish whether or
not it is at half filling.

2 4K —2

M(co)=i B (K, 1 —2K)cos (~K)—g3E 1 2~a T
7T CX T Q

g3E 6o;M(co)= sin(2')I (1—2K)
7T (X 2

4K —2

Using (3.1) one gets

(3.8) X (1—2K)
(u5)

(3.11)

i2uK
mM(0)

(3.9)

The temperature dependence of the conductivity is there-
fore cr —T . The noninteracting electron gas corre-
sponds to K= 1 and one recovers o —1/T. Such a behav-
ior is the Fermi-liquid behavior, since in one dimension
due to phase-space restrictions the usual 1/T is replaced
by a 1/T as one can easily see by a simple Boltzmann-
equation calculation. ' For arbitrary interactions the

Again, if K & 1 the memory function vanishes when
5—+0, whereas it is strongly relevant if K & 1, indicating
again that the umklapp process plays or does not play an
important role depending on E.

The next-order correction in M(co) would be of order
co giving a correction of order co to the conductivity.
One can interpret this result by noting that away from
half filling one can forget about the umklapp term at
sufficiently low frequencies or large scales. The physical
properties of the system can thus be computed with a
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long-range Hamiltonian similar to (2.6) but with g3=0
and a renormalized exponent K and velocity u*. The
conductivity therefore behaves as [see (2.13)]

l 1
o (co)=2u *K 5(co)+ P—

+regular corrections, (3.12)

2. T &&N

Then one obtains for the memory function
4K —2

u5
M(co) =i sin (2~K)

277 CX

X e '"' I (1—2K).2T' (3.13)

From (3.13) and (3.1) one thus sees that at low tempera-
ture the conductivity increases exponentially away from
half filling. This corresponds to the fact that in one di-
mension the umklapp process is very rapidly frozen due
to phase-space restrictions. The exponential behavior in
the limit %~1 corresponds to the result obtained by a
simple Boltzmann approximation.

IV. FINITE g3

The results of Sec. III are valid if a perturbation expan-
sion in powers of g3 is possible. However, it is well
known that in one dimension the g3 term leads to a
singular perturbative expansion. One way to handle this
difficulty is to vary the cutoff a in the Hamiltonian (2.6)
and to generate renormalization equations for the various
parameters u, E, and g3. In order to compute the con-
ductivity for arbitrary g3, such a renormalization of K
and g3 must also be taken into account. ' The way to do
it is to iterate the renormalization equations up to a point
where a perturbative expansion in g3 can be performed,

which is the result suggested by (3.10).
If co ) u 5 it is easy to see from (3.6) that M(co) acquires

an imaginary part, whereas it is purely real for co (5 (in
the limit where T~O). In order to explain this behavior
one has to note that the memory-function approximation
computes the conductivity with the bare Hamiltonian Ho
and all the effects of g3 are contained in the F terms. It is
equivalent to say that the scattering potential g3 will
open an infinitesimally small (compared with co and Q
gap in the charge spectrum at half filling around
k =+a/2 in.stead of a finite one (see Sec. V). Up to fre-
quencies u5, only intraband transitions among the car-
riers above half filling (and therefore above the "gap") are
allowed. As is well known, such transitions give no con-
tribution to the real part of the conductivity except at
m=0. For higher frequencies interband transitions are
allowed across the "gap" giving rise to absorption. Of
course when a finite gap is considered (see Sec. V), the
value at which absorption appears is not u 5 but
co=[(u5) +b, ]'~, where 5 would be the gap in the
charge excitation spectrum.

and then to use the formulas of Sec. III with the renor-
malized parameters to compute the conductivity.

A. Renormalization equations

First one has to know the equations giving the renor-
malized parameters as a function of the cutoff a. One
can notice that the Hamiltonian (2.6) is exactly the same
as the one describing the commensurate-incommensurate
transition. ' ' ' For such a Hamiltonian the renormal-
ization equations are well known and I will not reproduce
the derivation here. A complete derivation (with nearly
the same notations) can be found in Ref. 23. The equa-
tions are

= —
—,'y3K Jo(5(l)a),

= (2—2K )y3,

2
du
dl 2

uKJ~(5(l)a),

(4.1)

d5 =5(l)+ J,(5(1)a),

In this case only the temperature stops the renormal-
ization. The simple limit of Sec. III is equivalent to

where y3=g3/(m. u ), and l describes the renormalization
of the cutoff by a(l)=ae'. The J are Bessel functions.
The existence of the Bessel function is related to the use
of a sharp cutoff in real space, whereas a smooth cutoff
would have led to nonoscillatory functions. The impor-
tant point about the Bessel functions in (4.1) is that when
5(l)-1/a they start to oscillate and the renormalization
coming from the g3 term is stopped. At this point one
can perform a safe perturbative expansion in g3. If one is
at finite temperature the renormalization has also to be
stopped at length a(l) comparable to the thermal length
u /T, which means for 1 =in( W/T), where W=u /a is of
the order of the bandwidth. Here again one can perform
an expansion in g3.

If one is at half filling 5=0 one then recovers the usual
Kosterlitz-Thouless equations with a separatrix at
K —1 =y3/2 between a regime where g3 is irrelevant and
a regime where it is relevant.

I will focus in the following on the case K (1 since it
would correspond for the 10 Hubbard model to repulsive
interactions. In that case q3 increases under renormaliza-
tion, and Aows to strong coupling. The renormalization
equations, therefore, become inapplicable at length scales
of the order of the gap opened by the umklapp processes
at half filling. Note that if one is away from half filling,
since 5%0 there is always one length scale at which 5
stops the renormalization. Therefore we can expect to
get from the renormalization and memory function the
correct temperature dependence of the conductivity as
long as the temperature is not too small at half filling
(T) b, ) or the doping is not too small away from half
filling.

B. Half Ailing
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the conductivity. If there are no interactions the scale at
which 5 stops the renormalization is, using (4.1),
e'=1/(a5), and the crossover occurs when this scale is
just the thermal scale, i.e., when T /W=a5. When in-
teractions are present, 5 is renormalized in a nontrivial
way and T* is changed. The result is shown in Fig. 2.
One can see that the effects of the interactions are in
some sense to enhance the departure from half filling, in
the sense that the umklapp term will be frozen (exponen-
tial increase of the conductivity) at a higher temperature
than for a noninteracting system. At very small doping
the renormalization equations How to too large coupling
before 6 cuts the renormalization, for the first-order re-
normalization equations to be trustable. So T* for very
small doping cannot be obtained this way.

V. LUTHER-EMERY METHOD

Clearly although the renormalization and memory-
function approximations provide a useful tool to study
the conductivity in the high-temperature or -freq iency
region at half filling or the full behavior not too close to
half filling, they break down in the interesting region of
low-temperature behavior at half filling or very close to
half filling.

To try to obtain the correct behavior in this region we
will rewrite the Hamiltonian (2.6) in a representation
with a constant chemical potential p. The charge part of
the Hamiltonian becomes

2g3
H =H pf—dx B, „p + f dx cos( &8$ ) .

(2m.a)
(5.1)

f i [p+(p»)p+(—p)—
+p (p)p ( —p)]j,

One can use then the procedure introduced by Luther
and Emery. ' lf one introduces the new field /=&2/~,
the Hamiltonian can be written as an Hamiltonian of
spinless fermions:

H H + tru sinh(28) +[2 ( ) ( )

mions disappears and Ho can be diagonalized by a Bogo-
liubov transformation. This gives the new energies
E, z=+[(Uk) +[g3/(2ma)] ]'~ and leads to the open-
ing of a gap. If one is away from the Luther-Emery line
the interaction term in (5.2) gives a renormalization of
the gap but the energies keep the form Ei 2=+[(Uk)
+(b, /2) ]'~. The true gap 6 can either be obtained
from renormalization-group arguments or from an exact
solution. ' If one is at half filling the chemical potential
is in the gap so that all 2 states are occupied and all 1

states are empty. At zero temperature the system is obvi-
ously an insulator, and the real part of the conductivity is
zero up to frequencies equal to the gap. For frequencies
higher than the gap, interband transitions can occur and
the conductivity is finite.

One can also compute the temperature dependence of
the conductivity on the Luther-Emery line, since now one
ends basically with a two-band free-fermion system with
the lower band filled at T =0. The "fermions" here cor-
respond to solitons of charge in the original Hamiltonian
and are therefore current-carrying objects. The current
of the original Hamiltonian can be expressed in terms of
the spinless fermions of (5.3) by

&z
a, y, =—uSCy=yU(c, „c,,—c„c,„) (5.5)

k

and up to a numerical coeKcient is the current of the
spinless fermion problem. It is easy to see that at finite
temperature, although the number of thermally excited
carriers at a given temperature is exponentially small,n-e, these carriers do not scatter since the only
source of scattering comes from the umklapp term al-
ready absorbed in the diagonalization of the Hamiltoni-
an. So, strictly speaking, if the umklapp term is the only
source of scattering, the conductivity would turn out to
be infinite at every finite temperature, a rather unphysical
result. One can ask whether or not such a result is an ar-
tifact of our continuum Hamiltonian and/or the special
Luther-Emery line. In fact, assuming that all the eigen-
states of the Hamiltonian are known, the real part of the
conductivity is given by

(5.2) g(co)= y [(n ~j ~m ) [ e "5(co+E„E), —
n, m

(5.6)

H =+uk(c, „c,„c2„c~„)+— gci kc& k+H. c.

with a velocity given by

v = u [cosh(28)+f i sinh(28)],

(5.3)

(5.4)
e = 1/2K

P

The f, term has been introduced by Schulz. ' Since the
last term in (5.2) is just the kinetic energy written with
boson operators, f, is arbitrary. Its utility will be clear
below. For K= —,

' one is on the so-called Luther-Emery
line' and the interaction between the two species of fer-

where now the p operators are the density operators of
the new spinless fermions. Ho is the Hamiltonian where n, m are the exact eigenstates and E„ the exact en-

ergies. Therefore, if a thermodynamic number of excited
states such that ( n

~j ~
n )%0 exists, then from (5.6) there

will be a 5(to) part in the conductivity and therefore an
infinite static conductivity. Such states exist in the Hub-
bard model, and reduce on the Luther-Emery line to
the simple solitons. One can therefore expect the result
of an infinite conductivity not to be an artifact of the con-
tinuum Hamiltonian but due to absence of phase-
breaking processes that would give a finite lifetime to
such states at nonzero temperature. Of course if other
finite scattering is present the conductivity will be regular
with a characteristic lifetime depending on such process-
es. But in order to have a well-defined electron-electron
driven conductivity one would need the conductivity to
become finite as soon as the smallest amount of the
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+ 2vru sinh(28) f(k, )gp&(p)pz( —p) (5.7)

with

BE V kc
Vc

Q ( vk )'+ ( &/2)'

1

1+4(vk, ) /b,

f(k, )=v, /v

(5.8)

The important point is that now the interaction term is
-k, so sufficiently close to half filling the interaction
term becomes negligible compared to the Fermi energy so
that the linearization of the spectrum is well justified.
The exponents of the various correlation functions can be
determined similarly

4uk,
K =— 1 — sinh(28)

2
(5.9)

Therefore, K~ —,
' at half filling, as already obtained for

the Hubbard model. (5.9) shows that it is a much more

phase-breaking process is included in the Hamiltonian.
Whether or not this supposition is correct is not clear at
the moment, although it seems reasonable from physical
grounds. Note that the memory-function approximation
corresponds to the other extreme limit where one as-
sumes that the phase coherence is lost before each col-
lision, not allowing the eigenstates to adapt to the scatter-
ing potential.

Although the temperature dependence is somehow
pathological, one can expect the frequency dependence to
be given correctly. One can therefore use (5.2) to address
the question of the weight in the Drude peak when the
system is close to half filling. Away from half filling there
is still a gap in the charge spectrum, but now the chemi-
cal potential is above the gap to accommodate the extra
carriers, and as far as only very-low-frequency behavior is
concerned, the gap will not be of practical importance,
one being able to consider only the dispersion relation
very close to the Fermi level. Of course if the frequency
is sufficiently high to allow transitions across the gap,
then there will be interband absorption, as was already
discussed in Sec. IV B 1.

In fact, a similar problem was studied a long time ago
by Schulz' in the context of the commensurate-
incommensurate transition, and I will follow his method
here. Away from half filling the chemical potential is in
the upper band and in addition to the 2 states the 1 states
up to a value k, are occupied. If 6n is the filling,
6n =k, /~. Then assuming that we are interested only in
very-low-frequency behavior, the spectrum can again be
linearized around k, . Only the interaction processes
scattering electrons at the (new) Fermi level need to be
kept from (5.2). As pointed out by Schulz, if f, is chosen
to cancel all the p„(p)p„( —p) (so-called g~ terms) that ap-
pear after the linearization, then one has'

H=Xv, k«(&I &I'&I,)—
k

general result holding for any Luttinger liquid. One can
see that this value is approached as k„which again
should be a universal behavior although the prefactor
clearly depends on the details of the model. Such a result
agrees with the numerical results of Schulz. ' The veloci-
ty of the excitations is given by v, and from (5.8) behaves
as v, -k, /b, . Since uIC gives the weight of the Drude
peak [see (2.11)],one recovers that close to half filling the
weight of the 5(c0) part of the conductivity vanishes
linearly with doping and with a slope inversely proportion
al the umklapp gap. Again such a result is consistent
with the numerical' and analytical' results obtained for
the Hubbard model. The present analysis shows the re-
sults should hold even for more-complicated models.

VI. CONCLUSION

In this paper I have studied the inhuence of umklapp
scattering on the conductivity of a one-dimensional Lut-
tinger liquid. By using a renormalization-group method
and a memory-function approximation, it is possible to
obtain the temperature and frequency dependence of the
conductivity for arbitrary fillings, at least not too close to
half filling or at not too low temperatures or frequencies.
One finds that for a very small umklapp term the conduc-
tivity behaves at half filling as o. —T, where E is an
exponent characteristic of the Luttinger liquid and enter-
ing into the decay of various correlation functions. K de-
pends on the interactions and K &1 for repulsive ones.
If, as is the case in the Hubbard model, the umklapp term
is of the same order as the other interactions, the renor-
malization of K by the umklapp has to be taken into ac-
count and this simple power law is no longer valid, but
similar features remain. The renormalization of E tends
to decrease the conductivity.

Clearly this is to be contrasted with what one can ex-
pect from electron-electron interactions in higher dimen-
sions, where the resisitivity behaves as T . In the one-
dimensional case for repulsive interactions the resisitivity
increases always faster than T. Such a measure of the
resisitivity could prove to be a tool to determine if one is
in the one- or three-dimensional regime for quasi-one-
dimensional conductors.

Away from half filling there is a crossover temperature
above which the temperature behavior is similar to the
one at half filling and below which the conductivity starts
to increase exponentially with the temperature. Again
the full dependence can be obtained from the method.
Interactions make the system more sensitive to doping in
the sense that it crosses over to a non-half-filled behavior
(exponential increase of the conductivity) for a higher
temperature than in the absence of interactions.

I also argue that, strictly speaking, if one does not take
into account phase-breaking mechanisms the conductivi-
ty should be infinite at every finite temperature if only
electron-electron interactions are considered. This
pathology occurs because of the lack of phase-breaking
processes.

Some results that have been proven only for the Hub-
bard model on the behavior of the weight of the Drude
peak D and exponents, namely K~—,

' and D —5/6,
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where E is the exponent controlling the decay of density-
density correlation functions, 5 the doping, and 6 the
gap, are shown to be valid for any one-dimensional Lut-
tinger liquid.

Another question of interest would be the competition
between the disorder and the umklapp process. As point-
ed out by Shankar, the smallest amount of disorder will
destroy the umklapp gap,

"and the system should behave
as an Anderson insulator at least for suKciently large
length scales. But if the disorder is very weak, the um-

klapp gap will dominate the short-range properties of the
system, so that one could expect to see a crossover be-

tween a Mott and an Anderson insulator when varying
the temperature. Note that disorder also gives a power-
law dependence of the conductivity with temperature but

13 14with a different exponent cr(T)-T .' ' How the
conductivity will behave as a function of the temperature
when both processes are included is unclear.
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