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Hidden symmetries of finite-size clusters with periodic boundary conditions
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Finite-size clusters with periodic boundary conditions resemble isolated clusters for a small number of
sites, and infinite lattices for a large number of sites. The transition from a self-contained system to an
infinite lattice passes through an intermediate region with increased (hidden) symmetry. In this high-
symmetry region irreducible representations of the space group may stick together to form higher-
dimensional representations of the complete symmetry group. This transition is examined for a class of
simple-, body-centered-, and face-centered-cubic lattice clusters and the two-dimensional square lattice
cluster. The implications of an enlarged symmetry group are also studied for a model of strongly corre-
lated electrons interacting on eight-site clusters.

I. INTRODUCTION

The fundamental approximation for studying bulk
properties of solid-state systems is the periodic crystal ap-
proximation. ' It has been used quite successfully in
band-structure calculations, Monte Carlo simulations,
and the small-cluster approach to the many-body prob-
lem. In the periodic crystal approximation, an M-site
crystal is modeled by a lattice of M sites with periodic
boundary conditions (PBC). Bloch's theorem then labels
the quantum-mechanical wave functions by one of M
wave vectors in the Brillouin zone. In principle, a macro-
scopic crystal is studied by taking the thermodynamic
limit (M —+ ~ ), which replaces the finite grid in recipro-
cal space by a continuum within the Brillouin zone. In
practice, the number of lattice sites is chosen to be as
large as possible (M finite), and the solution of the
quantum-mechanical problem corresponds to a finite
sampling in reciprocal space.

In the thermodynamic limit the complete symmetry
group of the lattice is the space group, which is composed
of all translations, rotations, and refiections that (rigidly)
map the lattice onto itself and preserve its neighbor struc-
ture. In the case of a finite cluster, the complete syrnme-
try group is a subgroup of S~, the permutation group of
M elements, and is called the cluster-permutation group.
The cluster-permutation group can be a proper subgroup
of the space group (i.e., it has fewer elements than the
space group), contain operations that are not elements of
the space group, or be identical to the space group.
These three regimes are called, respectively, the self-
contained-cluster regime, the high-symmetry regime, and
the lattice regime. Note that the space group need not be
a subgroup of the cluster-permutation group in the high-
symmetry regime (although it usually is).

A self-contained cluster is a cluster that does not add
any new connections between lattice sites when PBC are
imposed, but merely renormalizes parameters in, the
Hamiltonian. In this case, the cluster-permutation group
is identical to the symmetry group of the same cluster

with box boundary conditions. This symmetry group is,
in turn, a point group (not necessarily the full point
group of the lattice) with its origin at some point which
can be called the center of the cluster; it is a proper sub-
group of the space group. This phenomenon was first ob-
served in the four-site square and tetrahedral clusters
and in the eight-site simple-cubic cluster. The regime
where the cluster-permutation group is a subgroup of the
space group is called the self-contained cluster regime
since every known example occurs in self-contained clus-
ters.

The four-site square-lattice cluster is an example of a
self-contained cluster. The lattice sites of the isolated
cluster lie on the corners of a square and are numbered
1 —4 in a clockwise direction [see Fig. 1(a)]. When PBC
are imposed (see Table I), the four first-nearest neighbors
(1NN) of site 1 are tivo each of the sites 2 and 4 and the
four second-nearest neighbors (2NN) are four each of site
3. Therefore, 1NN interactions must be renormalized by
a factor of 2 and 2NN interactions by a factor of 4. Note
that the imposition of PBC does not add any new connec-
tions to the lattice. The cluster-permutation group is iso-
morphic to the point group C&, with an origin at the
center of the square; the latter is a proper subgroup (or-
der 8) of the space group (order 32).

The neighbor structure of a finite cluster is only defined
to the full extent of the cluster; i.e., the neighbor struc-
ture includes the minimal set of neighbor shells that ex-
haust all of the sites of the cluster. The neighbor struc-
ture for the four-site square-lattice cluster is recorded in
Table I. This information is, in fact, overcomplete since
the entire lattice can be defined by the 1NN structure
alone. Such a lattice is called a 1NN-determined lattice
and all known examples of self-contained clusters are
1NN-determined lattices.

There are two ways to generate symmetry operations
that are not elements of the space group yielding the
high-symmetry regime. The first possibility is that the
lattice is not a 1NN-determined lattice. In this case,
there are always additional permutation operations that
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ing a different equivalence class (site number) to each of
the M sublattices. For example, an eight-site fcc lattice
cluster is constructed from four sc sublattices with each
sc sublattice represented by two fcc sublattices (see Fig. 3
of Ref. 8). If each sc sublattice is represented by four bcc
sublattices, a 16-site fcc lattice cluster is formed, and so
on. The sq lattice clusters (see Fig. 1) are constructed
from &M Xv'M tilings of the plane that are aligned
with (rotated by 45 with respect to) the underlying
square lattice for even (odd) j. In this fashion, every clus-
ter whose number of sites is a power of 2 can be con-
structed except for the two-site fcc lattice cluster.

Tables II and III summarize the results for the order of
the cluster-permutation groups of the sc, bcc, fcc, and sq
lattice clusters as a function of cluster size. Table II cor-
responds to arbitrary Hamiltonians, and Table III to
Hamiltonians with 1NN interactions only. The self-
contained-cluster regime corresponds to M ~ 8 (M ~4)
for the sc lattice (otherwise). The high-symmetry regime
is present at intermediate values of M: For example,
when the Hamiltonian contains only 1NN interactions,
the high-symmetry regime appears at 16 ~ M ~ 64 for the
sc lattice, 8 M~32 for the bcc lattice, and 8~M &16
for the fcc and sq lattices (see Table III). The lattice re-
gime is entered for larger cluster sizes. The cluster-
permutation group (in the high-symmetry regime) has
been studied previously for sq lattice clusters. "

A size range always exists where the lattice is not a
1NN-determined lattice. In this case the order of the
cluster-permutation group can be huge. For example, the
16-site fcc lattice is composed of four interpenetrating sc
sublattices with each sc sublattice composed of four sites
(four interpenetrating bcc sublattices). The 1NN of any
site are the 12 sites that comprise the other three sc sub-
lattices. The second-nearest neighbors (2NN) are the
three remaining sites of the original sc sublattice (each
counted twice). Therefore, any permutation of the four
elements within a sc sublattice or any permutation of the
four sc sublattices will commute with the Hamiltonian.
The order of the cluster-permutation group is then
(4!) =7 962 624.

There are many implications that result from a
cluster-permutation group that is not identical to the
space group. In the self-contained-cluster regime, the
cluster-permutation group is a subgroup of the space
group, because some space-group operations are redun-

dant (identical to the identity operation). In other words,
a homomorphism exists between the space group and the
cluster-permutation group with a nontrivial kernel com-
posed of the redundant operations. This implies that
only a subset of the irreducible representations of the
space group (those that represent the redundant opera-
tions by the unit matrix) are accessible to the solutions of
the Hamiltonian. This process of rigorously eliminating
irreducible representations as acceptable representations
is well known. It occurs, for example, in systems that
possess inversion symmetry: If the basis functions are in-
version symmetric, then the system sustains only repre-
sentations that are even under inversion.

In the high-symmetry regime, the cluster-permutation
group G contains operations that are not elements of the
space group. The set H of elements of the cluster-
permutation group G that are elements of the space
group forms a subgroup of the cluster-permutation group
that is usually equal to the space group. The group of
translations forms an Abelian invariant subgroup of H so
that Bloch's theorem holds. The irreducible representa-
tions of H are all irreducible representations of the space
group. When the full cluster-permutation group G is
considered, the class structure of H is expanded and
modified, in general, with classes of H combining togeth-
er, and/or elements of G outside of H uniting with ele-
ments in a class of H, to form the new class structure of
the cluster-permutation group G. The classes that con-
tain the set of translations typically contain elements that
are not translations, so that the translation subgroup is
no longer an invariant subgroup and representations of
the cluster-permutation group cannot be constructed in
the standard way. ' Furthermore, every irreducible repre-
sentation of H that has nonuniform characters for the set
of classes of H that have combined to form one class of G
must combine with other irreducible representations to
form a higher-dimensional irreducible representation of
the cluster-permutation group. This phenomenon can be
interpreted as sticking together of irreducible representa-
tions of the space group arising from the extra (hidden)
symmetry of the cluster.

There are further implications for short-ranged in-
teractions. In the cases when the Hamiltonian has extra
symmetry for 1NN-only interactions, the energy spec-
trum has levels that stick together in the absence of
longer-ranged interactions and split as these interactions

TABLE II. Order of the cluster-permutation group for arbitrary interactions on finite-size clusters with periodic boundary condi-
tions of the simple-, body-centered-, and face-centered-cubic lattices and of the two-dimensional square lattice. The symbols S, H,
and L denote the self-contained, high-symmetry, and lattice regimes, respectively. The cases with cluster sizes larger than 32 are in
the lattice regime.

Cluster
size

1

2
4
8

16
32

Cubic
space group

48
96

192
384
768

1536

S
S
S
S
H
L

sc

1

2
24
48

12 288
1 536

S
S
S
H
H
L

bcc

1

2
8

1 152
4 608
1 536

S
H
H
L

fcc

24
384

7 962 624
1 536

Square
space group

8
16
32
64

128
256

S
S
S
H
L
L

sq

1

2
8

128
128
256
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TABLE III. Order of the cluster-permutation group for 1NN-only interactions on finite-size clusters with periodic boundary con-
ditions of the simple-, body-centered-, and face-centered-cubic lattices and of the two-dimensional square lattice. The symbols S, H,
and L denote the self-contained, high-symmetry, and lattice regimes, respectively. The cases with cluster sizes larger than 128 are in
the lattice regime.

Cluster
size

1

2
4
8

16
32
64

128

Cubic
space group

48
96

192
384
768

1536
3 072
6144

sc

S 1

S 2
S 24
S 48
H 12 288
H 13 824
H 27 648
L 6 144

S
S
S
H
H

L
L

bcc

1

2
8

1 152
3 251 404 800

6 144
3 072
6 144

S
H
H
L
L
L

fcc

24
384

7 962 624
1 536
3 072
6 144

Square
space group

8
16
32
64

128
256
512

1024

S
S
S

H
L
L
L

sq

1

2
8

1152
384
256
512

1024

are turned on. However, the solutions will be neavly de-
generate if the longer-ranged interactions are "weak" in
relation to the 1NN interactions.

III. EXAMPLE: THE SQUARE LATTICE

The transition from the self-contained-cluster regime,
through the high-symmetry regime, to the lattice regime

is illustrated for the sq lattice. The four-site sq lattice
cluster [Fig. 1(a)] is a self-contained cluster. The space
group is of order 32 and is composed of 14 classes. The
Brillouin zone' is sampled at three symmetry stars: I
(d = 1),M (d = 1), and X (d =2). The origin of the space
group is chosen to be site 1. One finds that the twofold
rotation I C4 OI, and the rejections about the x and y
axes Io ~0] and tcr~IOI, are all redundant operations;

TABLE IV. Character table for the space group of the four-site cluster on the square lattice. The symbol 0. denotes the mirror
planes perpendicular to the x and y axes and o.' denotes the mirror planes perpendicular to the diagonals x+y. The translations are
denoted by 0 (no translation), r (first-nearest neighbor translation), and 8 (second-nearest neighbor). The subscripts

~~
and l refer to

translations parallel to or perpendicular to the normals of the mirror planes, respectively. The acceptable representations of the
space group, which form the representations of the cluster-permutation group, are emboldened.

1

E
0

1

C2

0

1

C2

0
C4

2

E
2

C2 C4

00 08

r,

I3
14
15

M)
M2

M3

M4

M5

Xi
X2

X3
X4
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TABLE V. Repeated operations of the space group for the
four-site cluster in the square lattice and their identification
with point-group operations. The cluster-permutation group is
isomorphic to the point group C4, with an origin at the center
of the square. The space-group operations are denoted in the
standard notation of a point-group operation followed by a
translation all enclosed in curly braces. Put in more mathemati-
cal terms, this table explicitly lists the homornorphism that
maps the space group onto the cluster-permutation group. The
first row (corresponding to the redundant operations of the
space group) forms the kernel of the homomorphism.

Point-group
operation

C2

C4

0

{Elej,
f C4I~),
f Elrj,

fc410, 8),

Space-group
operations

[C4IO)
fc418),
fo'lr j

f C4lrj,
fo'Io, ej

folO)
folej

[crlrj

i.e., they are identical to the identity operation [EIO), be-
cause the four-site cluster is self-contained. This implies
that only irreducible representations of the space group
that represent the twofold rotation and the rejections
about the x and y axes by the unit matrix are acceptable
representations.

The character table of the full space group (with the
acceptable representations highlighted in bold) is record-
ed in Table IV. The cluster-permutation group, with all
repeated operations eliminated, is isornorphic to the point
group C4, with its origin the center of the square. Table

V shows the mapping between the space-group notation
and the point-group notation for the group elements.
The acceptable space-group representations can now be
identified with the more traditional point-group represen-
tations: I j 3& I 3 A2 M& B~ M3 B2 and
Xi —+E.

The eight-site sq lattice cluster [Fig. 1(b)] is in the
high-symmetry regime. The subgroup H of the cluster-
permutation group G is the full space group, containing
64 elements distributed among 16 classes. The Brillouin
zone' is sampled at four symmetry stars: I (d = 1), M
(d =1),X (d =2), and X (d =4). The character table of
H may be found in Table XVI of Ref. 8.

The 8-site sq lattice cluster is not a 1NN-determined
lattice: If site 3 is placed arbitrarily on the lattice and its
1NN's (sites 2, 4, 6, and 8) are added, there are two in-
equivalent possibilities for the placement of the 2NN pair
(sites 1 and 5). The permutation operator P that inter-
changes site 1 with site 5 will map the lattice (nonrigidly)
onto itself, preserving the entire neighbor structure of the
lattice. The cluster-permutation group 6 is then generat-
ed from the space group H by closure. The existence of
this nontrivial permutation operator is a finite size'be-ct
of the eight-site cluster with PBC since it occurs because
the lattice is not a 1NN-determined lattice.

The cluster-permutation group is composed of 128 ele-
ments divided into 20 classes and recorded in Table VI.
Note that the presence of the permutation operator P
forces physically diff'erent space-group operations( such
as the translations, rotations, and reflections) to be some-
times in the same class. In fact, four pairs of classes of H
combine to form single classes of 6 (see Table VI): [Elr)

TABLE VI. Class structure and group elements of the 128-element cluster-permutation group of the
eight-site square lattice cluster. The notation is the same as that of Table IV and Q denotes the third-
nearest-neighbor translation. The element P corresponds to the transposition of sites 1 and 5 [see Fig.
1(b)].

Class

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

[Eloj
fc, lo, e, nj
[clio,nj
fo IO, Q)
[cr'IO, 8» j

{EIrj,
fc4lrj

f C4lrj,

fo'lei, nj
fEIQ)

P[EIO),
Pfc, loj,
P f C24IO),

P fcr'IO, Q),
P f EI~),
P f C4lrj,
P[Ele),
P[c, lnj,

Group elements

fcrlr, j
{o'lrj
[olr» j
Ic4lej

P[C4IQ),
P f

o' le, j
P fo. lO),
P[c,lej
P f C4'Irj,
P [cr'Ir)

P[C2lej,
Pfo'le»j

P[o ln)

P[EIQ)

P folrj

P fcrlej

Size of class

1

8
2
4
4
8

16
8
4
4
4
1

4
4
4
8

16
16
8
4
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and [o'~rj}, [C4 r} and [o' r}, [CPr} and [o' r~~~}, and

[E 8} and [CPO}. The translation subgroup is no
longer an invariant subgroup and eight irreducible repre-
sentations of H (I 2, I ~, I ~, Mz, M4, M~, X3, and X4)
must combine to form higher-dimensional representa-
tions of G. The character table is reproduced in Table
VII and includes the compatibility relations between rep-
resentations of the cluster-permutation group G and the
space-group representations (of H) in the last column.

The case when the Hamiltonian contains only 1NN in-
teractions has an enlarged symmetry group since the
eight-site sq lattice cluster with 1NN-only interactions is
identical to a bcc-lattice cluster with 1NN-only interac-
tions (see Sec. IV).

The 16-site sq lattice cluster [Fig. 1(c)] is in the lattice
regime for arbitrary interactions. There is no extra sym-
metry beyond the space-group symmetry and further
analysis proceeds in a standard fashion [the Brillouin
zone' is sampled at six symmetry stars: I (d =1), M
(d = 1), X (d =2), X (d =4), b. (d =4), and Z (d =4)].
Hidden symmetry exists when the Hamiltonian is re-
stricted to 1NN interactions only. The cluster-
permutation group then contains 384 elements divided
into 20 classes. The nonrigid permutation operator that
generates the cluster-permutation group from the space
group is given in the Appendix. This group is identical to
the point group of a four-dimensional hypercube' but
will not be pursued further here.

IV. EXAMPLE: EIGHT-SITE CLUSTERS
AND THE E-t'-J MODEL

As a further illustration, the eight-site clusters are ex-
amined in more detail. The sc lattice cluster is a self-
contained cluster (see Fig. 1 of Ref. 8). The point-group
operations (with origin at a lattice site) corresponding to
a rotation by 180' about the x, y, or z axis, [C4 ~0}, and
the inversion [J 0} are all redundant operations; i.e., they
are identical to the identity operation [E~O}. Therefore,
only irreducible representations of the space group that
represent [CPO} and [J0} by the unit matrix are ac-
ceptable representations. This is summarized in the char-
acter table for the cluster-permutation group (see Table
XIII in Ref. 8). The cluster-permutation group is iso-

morphic to the full cubic point group, 0&, with an origin
at the center of the cube defined by the eight sides of the
cluster.

The bcc, fcc, and sq lattice clusters are all in the high-
symmetry regime. The bcc lattice is constructed from
two four-site sublattices. The points in the bcc Brillouin
zone' sampled here are I, H, and N. The cluster-
permutation group includes any independent permuta-
tion of the elements within each sublattice and the inter-
change of the two sublattices. The subgroup H corre-
sponds to all translations and proper rotations and con-
tains the following 14 representations (with correspond-
ing dimensions in parentheses): I I (1), I 2 (1), I I2 (2), I"»
(3), I '

(3), H, (1), H (1), H, (2), H', (3), H' (3), N, (6),
N2 (6), N3 (6), and N4 (6). The character table is given in
Table XIV of Ref. 8. The classes [E~r} and [C2~r~}
combine to form one class of the cluster-permutation
group as do the two classes [E~0} and [ C4 ~8j } and the
three classes [C~~r}, [C~ ~},and [C2~~~}. The only rep-
resentations that are not required to stick together are
then I i, H„XI, and %4. The cluster-permutation group
has 20 irreducible representations that satisfy the compa-
tibility relations with H given in Table VIII.

The fcc lattice cluster-permutation group' has a sub-
group H that corresponds to all translations and proper
rotations (see Table XV of Ref. 8) and is generated by the
space-group generators and the permutation operator P
that transposes the origin with its 2NN. There are 20 ir-
reducible representations as recorded in Table VIII.

The sq lattice cluster-permutation group has been stud-
ied in detail in Sec. III. The compatibility relations of the
20 irreducible representations can be found in the last
column of the character table (Table VII). Note that in
the case of 1NN-only interactions the eight-site sq lattice
cluster is identical to the eight-site bcc lattice cluster.

As an application of these enlarged symmetry groups,
a model of strong electron correlation (the t t' Jmodel) is--
studied on these eight-site clusters. The t-t'-J model in-
volves hopping between 1NN and between 2NN (exclud-
ing any double-occupation of a site) and a Heisenberg an-
tiferromagnetic 1NN exchange interaction. Previous
work on this model utilized only the symmetry of the
subgroup H of the space group. Use of the cluster-
permutation group simplifies the problem even further
and explains most of the "accidental" degeneracies ob-

TABLE VIII. Reduction of the 20-irreducible representations of the cluster-permutation group to the corresponding irreducible
representations of the subgroup H of the space group for the body-centered- and face-centered-cubic lattice clusters. The dimensions
of the irreducible representations of the cluster-permutation group label the columns.

12 18

bcc lattice

fcc lattice

r,
I I

H,
H,

r,
r,
I ~

I q

I,@H,

X)
Xi
X2
Xq

r„+H„

r, er„+H,
r2@H] @H]2

LI
LI
L2
L2

Nl
Nl
N4
N4

I I~X4
I ~5@X3

X5
X5

L3
L3

I zsNz

H2~N3
H25 N3

N, eN4
NI SN4

I igeH I5NPN3
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TABLE IX. Symmetries of parameter-dependent eigenstates of the t-t'-J model that stick together in
the eight-site clusters of the face-centered-cubic lattice and the square lattice. The sticking together of
levels is not required by the cluster-permutation group. In the table below, N denotes the number of
electrons and S denotes the total spin of the many-body wave functions. The subscript n denotes repre-
sentations that have a negative character for the operation P {E~O).

fcc lattice

Symmetry

L)„SL3„
Ll„L3„
Ll„@L3„
L )„EBL3„
L)„@L3„

Number of
levels

sq lattice

Symmetry

1")„eM, „
I,„EBMi„

Number of
levels

served in the many-body energy levels. The largest Ham-
iltonian blocks that need to be diagonalized after the
cluster-permutation group symmetry is incorporated are
as follows: 5 X 5 for five electrons in the bcc lattice, 7 X 7
for six electrons in the fcc lattice, and 11 X 11 for six elec-
trons in the sq lattice. It is interesting to note that, with
the exception of two 5 X 5 blocks, the 6561 X 6561 Hamil-
tonian matrix can be diagonalized analytically for the bcc
lattice.

There are only a few cases of extra degeneracies that
remain in the energy spectrum. Most of these degenera-
cies involve parameter-independent eigenvectors; i.e.,
eigenvectors that do not depend on the hopping integrals
t or t' or on the Heisenberg antiferromagnetic interaction
J. The fcc and sq lattices both have parameter-dependent
eigenstates with energy levels that stick together and are
summarized in Table IX. This sticking-together' of lev-
els would be explained if there was a larger symmetry
group, an orbital-permutation group, that involves per-
mutations mixing spatial and spin degrees of freedom,
and contains the cluster-permutation group as a sub-
group. The evidence in favor of this conjecture is that
the extra degeneracies occur only between specific
cluster-permutation group representations that have the
same total spin. ' A similar phenomenon was observed in
the Hubbard model at half-filling on an eight-site sq lat-
tice cluster. '

V. CONCLUSIONS

This contribution outlines the transition from a system
that resembles an isolated cluster (point-group symmetry)
to a system that resembles an infinite lattice (space-group
symmetry). An intermediate region is discovered that
has increased symmetry beyond that of the space group
(it should be emphasized that any family of finite clusters
that is used to approximate an infinite lattice will pass
through this high-symmetry regime). These additional
symmetry operations are nonrigid transformations that
map the cluster into itself and form a group, the cluster-
permutation group (which typically includes the space
group as a subgroup). An analysis of the cluster-
permutation group shows two different effects: (1) the
Hamiltonian matrix for a given representation of the

space group may split into irreducible blocks, and (2) ir-
reducible representations of the space group (which fre-
quently correspond to different points in the Brillouin
zone) may "stick together. " These two effects explain
several puzzling degeneracies and level crossings found,
numerically or analytically, in many cluster calculations.

The order of the cluster-permutation group may be
quite large (see for example the group of order 7962 624
for the 16-site cluster in the fcc lattice). The extra sym-
metry of such a large group greatly facilitates the numeri-
cal problem of diagonalizing large Hamiltonians and may
result in completely analytical solutions (as seen in the
eight-site cluster in the fcc lattice). ' The size of the clus-
ter may be fairly large before this extra symmetry is lost
(it survives up to the 64-site sc lattice cluster for Hamil-
tonians with 1NN interactions only). The effect of an en-
larged symmetry group is more pronounced in systems
with short-range-only interactions (compare Tables II
and III) since many nonrigid transformations that map
the cluster onto itself preserve only the 1NN structure of
the lattice. There may be a tradeoff in actual calculations
between utilizing the full symmetry of the cluster-
permutation group or just the symmetry of a convenient
subgroup; however, the solutions will reflect the effects of
the full cluster-permutation group whether it is employed
to reduce the Hamiltonian blocks or not.

The transition from the self-contained-cluster regime,
through the hidden-symmetry regime, to the lattice re-
gime were studied explicitly for the two-dimensional
square lattice. The group theory for the eight-site clus-
ters in the simple-, body-centered-, and face-centered-
cubic lattices and in the square lattice were discussed in
detail and applied to a model of strong electron correla-
tion (the t t'-J model). Most "-accidental" degeneracies of
the many-body energy levels are now explained. There is
a strong indication that additional hidden symmetry
remains in the fcc and sq lattices that mixes spatial and
spin degrees of freedom.
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APPENDIX: LINEAR-PAIR RULE

A necessary (but not sufficient) condition for extra
symmetry operations is the linear-pair rule: A linear pair
is defined to be a pair of distinct opposite 1NN of a lat-
tice site (i.e., the linear pair and the chosen lattice site all
lie on a line). An infinite lattice has one unique lattice
site that has both elements of the linear pair as 1NN.
The linear-pair rule is satisfied whenever there is more
than one lattice site that has both elements of the linear
pair as 1NN. If the linear-pair rule is satisfied, then the
cluster-permutation group may contain elements outside

of the space group for Hamiltonians that include only
1NN interactions, but is a (proper or improper) subgroup
of the space group otherwise.

The nonrigid permuation operations that can be con-
structed when the lattice satisfies the linear-pair rule in-
volve a nonrigid transformation of the 1NN of a given
site. If a permutation operation can be constructed that
interchanges 1NN of a given site so that elements that in-
itially formed a linear pair do not form a linear pair after
the permutation, and this operation can be completed
(consistently) to the entire cluster (preserving the 1NN
structure of the lattice), then a nonrigid permutation
operator has been discovered.

As an example, consider the 16-site sq lattice cluster
[Fig. 1(c)]. The linear-pair rule is satisfied since both ele-
ments of the linear pair (2, 4) are 1NN to the sites 1 and
3. The permutation operator
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is an order-6 element that corresponds to a nonrigid
transformation of the sq lattice cluster onto itself preserv-
ing the 1NN structure of the lattice. It will generate the
entire cluster-permutation group from the space group by
closure.

The linear-pair rule is not a sufficient condition to pro-
duce extra symmetry for 1NN-only interactions since the
64-site bcc lattice and the 32- and 64-site fcc lattice clus-

I

ters all satisfy the linear-pair rule, but do not have any
additional symmetry beyond the space group (see Tables
II and III).

It is interesting to note that the fcc lattice is the only
lattice that has no extra symmetry for 1NN-only interac-
tions (compare Tables II and III). This probably arises
because the fcc lattice is not bipartite. '
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