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The distribution of pinning energies for a charge-density wave weakly pinned by random impurities is
shown to be strongly non-Gaussian, with strongly pinned regions vastly more probable than naive esti-
mates would indicate. Implications for the observability of phase slips in charge-density-wave experi-

ments are discussed.

I. INTRODUCTION

The dynamics of sliding charge-density waves (CDW’s)
has been a subject of interest for many years now.! Al-
though in principle CDW’s are described by both ampli-
tude and phase degrees of freedom, it has been customary
to describe weakly pinned CDW’s using the Fukuyama-
Lee-Rice (FLR) model, which has phase degrees of free-
dom only.? The rationale for ignoring amplitude fluctua-
tions is that long-wavelength phase distortions can have
arbitrarily low energy, whereas amplitude changes always
cost a finite energy. When the pinning is weak, it is plau-
sible to expect only low-energy distortions to occur.

However, recently it was shown that in an infinite-size
sample the FLR model cannot be used to describe
CDW’s in the presence of a uniform electric field because
unbounded strains build up, which leads to the genera-
tion of phase slips.® The large strains arise because
within the FLR model, even in the presence of random
pinning, the entire CDW has the same time-averaged ve-
locity, which is imposed by elastic forces. Since a region
with an anomalously small or large pinning strength
needs a force scaling with the volume of the region to
keep it moving at the mean velocity, while the amount of
the system available to exert this (elastic) force scales as
the surface area of the region, the strain per unit area
scales as the linear dimension of the region. Therefore,
this strain can become arbitrarily large even for bounded
fluctuations in the pinning strength. However, although
it was shown that in principle phase slips must occur in a
sample of infinite size, the question of how many phase
slips occur in experimentally relevant situations (i.e.,
finite-size samples) was not addressed.

Simple estimates of the number of phase slips in three-
dimensional samples® yield the result that they should be
unobservable in real CDW materials. Despite this, com-
parison of the dynamical predictions of the FLR model*
to experiment yields indications that phase slips are im-
portant in experimental situations. Although the FLR
model appears capable of describing many aspects of
CDW experiments, including the observation of a reason-
ably sharp threshold field where CDW conduction sets
in,> a few experimental observations are not easily ex-
plained using this model. In particular, although broad-
band noise is commonly observed in the sliding state of a
CDW,® the FLR model with periodic boundary condi-
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tions yields a periodic sliding state with no low-frequency
noise components.” Further evidence for the relation be-
tween broadband noise and phase slips is the observed
correlation between the amplitude of the broadband noise
and macroscopic velocity inhomogeneities in NbSe; sam-
ples.® Thus, it is reasonable to suspect that the phase slips
that are omitted in the FLR model lead to experimentally
relevant phenomena when the CDW slides.

This paper concerns the distribution of pinning ener-
gies as well as the density of regions with phase slips in
weakly pinned CDW’s, with the goal of estimating
whether phase slips are observable in real CDW samples.
In the weak-pinning limit, the CDW is not pinned by any
single impurity but rather by the collective action of
many impurities over a substantial length scale. It will be
argued that in this regime it is reasonable that broadband
noise (which we speculate to occur only in the presence of
phase slips) occurs in samples whose threshold fields ap-
pear quite sharp.

First, it is shown that the random pinning potential
leads to a non-Gaussian distribution of pinning energies.
Because strongly pinned regions are smaller than weakly
pinned ones, the number of strongly pinned regions falls
off much more slowly than a Gaussian distribution does.
Thus one finds that the number of strongly pinned re-
gions is much larger than naive estimates would indicate.
The problem of calculating the distribution of pinning en-
ergies is closely related to that of calculating the density
of states in impurity band tails in semiconductors.’

It is also shown that the number of regions that have
large strains and hence phase slips at their boundaries is
enormously larger than naive estimates based on the ratio
of the phase-slip energy to the threshold field would indi-
cate.®> The number of phase slips is not simply related to
the number of regions with a given pinning energy; re-
gions with phase slips are predominantly ones that are
basically undistorted, so that the pinning energy per unit
volume is the bare impurity potential strength. The num-
ber of phase slips is described by a Gaussian distribution,
but the width of the distribution is governed by the bare
impurity potential rather than the threshold field of a
typical region. This result follows because the phase slips
occur almost entirely at the boundaries of very small re-
gions whose impurities are correlated so that elastic dis-
tortions in their interiors are negligible, whereas the
threshold field of a typical region is determined by a com-
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petition between elastic and impurity energies. Because
the bare impurity strength is much greater than the
threshold field in materials with sliding CDW’s, phase
slips are much more likely to occur on experimental
scales than the estimates based on Ref. 3 would suggest.

This paper is organized as follows. In Sec. II the stan-
dard argument that shows that for d <4 the undistorted
state is unstable for any nonzero impurity potential
strength? is reviewed and generalized to yield the distri-
bution of local pinning energies in the system. The argu-
ments in this section are very similar to those used in the
context of band tails in semiconductors. The analogy be-
tween these two systems is discussed.

In Sec. III a simple generalization of the scaling
analysis used in Sec. II is used to show that the number of
phase slips is governed by the ratio V/E, where V de-
scribes the bare impurity potential and E,, describes the
phase-slip energy. In Sec. IV it is shown that the scaling
arguments used in this paper yield results for the one-
dimensional case that are consistent with some previous
exact work. Section V is a discussion of the experimental
situation, and Sec. VI is the conclusion.

II. DISTRIBUTION OF PINNING ENERGIES

In this paper we consider the distribution of pinning
energies in the absence of a field and assume that the
threshold field of a given region is proportional to the
pinning energy of the region. This assumption is stan-
dard when making estimates of this type.!°

The CDW is described by an order parameter of the
form ¥(x) cos[Q-x+¢(x)]. In the FLR model, variations
of ¥(x) are ignored. The FLR equation describing the
energy E of a system with phase degrees of freedom in
the absence of a field is

E=k [ d%[V¢(x)*— [ d V(x)cos[Q-x+¢(x)] .
2.1)

These equations describe a d-dimensional system where ¢
is the CDW phase, V' (x) describes the impurity potential,
and k describes the CDW stiffness. The amplitude de-
grees of freedom are not included. Although phase slips
occur in the presence of a field, these equations are ade-
quate to estimate the distribution of pinning energies and
hence local threshold fields. Scaling arguments can then
be used to obtain the density of phase slips.®

In this section we discuss the distribution of the pin-
ning energy per unit volume

(1/Va) [ d% V(x)cos|Qx+d(x)] ,

where ) is a given region of the d-dimensional system
with volume V. It is shown that when the pinning
arises from the collective effects of many impurities, the
probability p (e;,) of a given pinning-energy density €
obeys

pin

) (2—d/2)
—m , 2.2)

_ln[p(epin)]~ E
LR

where E;p is the typical (Lee-Rice) pinning energy
E g ~(Vin}/kd)1/4=d), In three dimensions
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—ln[p(epin)]'vsll,i/nz; this result means that strongly

pinned regions are vastly more probable than in a Gauss-
ian distribution.

To understand the result (2.2), first recall the standard
argument showing that the pinning energy is nonzero.?
Assume V(x) arises from weak uncorrelated impurities
that have density nj,,. It is assumed that the weak-
pinning limit applies; this occurs when the elastic con-
stant k is large enough that the CDW configuration does
not conform to each impurity, or kn} % >>Vn;, . This
condition is arrived at by balancing the energy cost per
unit volume of changing the phase ¢ by an amount of or-
der unity over a distance of the impurity separation with
the energy gain per unit volume from the impurity poten-
tial.

If ¢ is constant inside an infinite sample, then there is
no elastic energy cost and the contributions from
different impurities cancel, so the total energy is zero.
Now consider distorting the uniform state by taking a
rigid spherical region of size £ and deforming a region of
size £ around it in such a way as to minimize the impuri-
ty potential in the interior of the region. This process can
be viewed as constructing a variational configuration and
calculating its energy per unit volume. The elastic energy
per unit volume cost of this process scales as k /£2. This
energy must be balanced against the impurity energy
gained by adjusting the region. A typical energy gain
scales as the square root of the number of impurities in
the region, so the impurity potential leads to a gain in en-
ergy per unit volume of V(n;£%)!/2/&% where n, is the
density of impurities. Minimization of the energy
change as a function of £ leads to a pinning energy
density of k/&}p, where the Lee-Rice length
Err~(k/VV n;)*“~9 Note that the energy gain from
the impurity potential and the elastic energy cost are the
same order of magnitude on the length scale &; .

The above argument gives the pinning-energy density
of a typical region, but now we would like to consider the
distribution of pinning energies. In this paper we will be
particularly interested in regions that are more strongly
pinned than average. The main point is that the strongly
pinned regions are smaller than the weakly pinned ones,
so the probability of finding a fluctuation in the impurity
potential leading to a strongly pinned region is much
greater than one would estimate by looking at a region of
size the Lee-Rice length. It will be assumed that even
though the relevant length scale may be much less than a
Lee-Rice length, it is still large enough that each region
contains a large number of impurities, so that the pinning
still arises from the collective action of many impurities.

It is reasonable that on a length scale &, the distribu-
tion of impurity potential energies is described by a
Gaussian with width proportional to the square root of
the number of impurities in the region (n,;£%)!/2, so that
the impurity energy per unit volume is described by a
Gaussian of width (n; /£%)!/2. Accordingly, fluctuations
leading to large values of the impurity pinning-energy
density are more likely to be found in small regions. This
result can be demonstrated easily for a simpler problem
where impurities with strength +V are distributed ran-
domly in the region, with the impurity potential energy
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of a region with N = £9 sites proportional to the excess of
impurities of one sign. This model can be motivated
physically by considering each site as a volume of CDW
that can have an impurity that either raises (+) or lowers
(—) the local energy. No more than one impurity of each
sign is allowed in a given volume, so we focus on low im-
purity densities, where this restriction should be unim-
portant. We argue that the probability p (n.,.,N) of ob-
serving a particular value of the excess of impurities of
one sign per unit volume 7. in a region with N sites
(where N =£9 is described by a Gaussian distribution:

P(nexch)~exp{_[(nexc)zN/ni]} ’ (2.3)

with n; the impurity density.

To see this result, assume the chance of any site having
either a + or — impurity on it is g, and that the positions
of the + and — impurities are uncorrelated. The impuri-
ty density n; is hence 2q /a 4 where a? is the volume of
each site. Let N .=n..N, where once again N is the
number of sites in the region. Then p (N,,.,N) obeys

< N (N=N,) (N, +N_.)
PN o N)J=F g "(1—¢q) Tg T
N, =0
N!
N AN—N_ )

N!

XN AN NN, NN
(2.4)

(N—

q)N

exc

X (1— N

When N is large enough, this sum is dominated by its
largest term, which occurs (up to corrections of order

p(ch,N)%(l—q)Nexp’N[nexc In

so that the falloff of the probability distribution (2.3) is
faster than the actual tail. Thus, for this simplified mod-
el, a Gaussian form is a lower bound on the tails when
the impurity density of a region is far from its mean
value. However, scaling arguments of the type used here
are expected to be valid only when the pinning arises be-
cause of the collective effects of many impurities, where
Gaussian statistics apply.

The simplified model examined here has the unphysical
feature that the pinning energy from each impurity is ei-
ther + ¥V or — V, whereas the density modulation of a rig-
id CDW leads to a term varying as cos(Q-r; +®), where
Q is the CDW wave vector, r; is the position of the ith
impurity, and ® is a phase that one adjusts to minimize
the energy. A simple treatment of the CDW case is to
write

(Qr,+®)
e

> : 2.9

i

> cos(Q-r; +P)=Re ‘

PINNING ENERGIES AND PHASE SLIPS IN WEAKLY ...

2889
1/N) when N takes on the value N%, where
(N3 4N )Ny [ 4 ] 05
[N—(N* +N_,.)](N—N%) 1—¢ '
It is clear that % (g,N . =0)=gN. If

Nexe =Ny /N <<gN, then one can expand Eq. (2.5) to
find
2]

The variation of the number of configurations with a
given n. near the value n.,. =0 is determined by the
second variation of the largest term in the sum (2.4) with
respect to n.,. (the linear variation is zero because
Ny =0 is a maximum); one finds

1 d
N dn?

exc

n nCXC

q

€xc

q

+(1—2q)

1
8(1—q)

Reye =9 —% (2.6)

2

[largest term in (2.4)]

1, 1
qg l—g¢q

=—2 +O0(n.,./q). 2.7)

Thus, for small g, the probability of attaining an impurity
excess per unit volume of n ., satisfies Eq. (2.3).

In addition to the restriction g <<1, which arises be-
cause only one impurity of each sign is allowed per site,
this form is valid only when n., <<g. A lower bound on
P (N, N) valid for any n.,., including the case n,,. >>gq,
can be obtained by considering regions with only (— ) im-
purities, so that N ; =0 in Eq. (2.4). One finds that

)1n (2.8)

where Re denotes the real part.!! For uncorrelated im-
purities, the real and imaginary parts of this sum are each
described by random walks, and the calculation outlined
above yields the correct asymptotics for each.!? The total
pinning energy minimized with respect to ® is the abso-
lute value of the sum in Eq. (2.9), which leads to a
power-law correction to the Gaussian form (2.3). We ex-
pect power-law corrections of this type to be present, but
we will focus on the exponent because its variation dom-
inates the estimates. In any case, the scaling arguments
used here should probably not be expected to yield loga-
rithmic corrections to the exponent accurately.

Having shown that the distribution function for the
impurity contribution to the energy is described by a
Gaussian form, we now include the elasticity contribu-
tion. The pinning energy of the region is the sum of the
impurity energy gain and the elastic energy cost. The im-
purity energy gain scales as the impurity excess, and the
elastic energy cost once again scales as Ck /£2; the un-
known prefactor C depends on the fraction of 27 the re-
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gion must translate in order to minimize the impurity en-

ergy. Since the pinning energy per unit volume &, is

Vne.—Ck /€%, Eq. (2.3) can be used to calculate the

probability of observing a value of €, in a region of size

gv p (Epin’g), yleldlng

g
nv?

Ck
pin T o
3

€ (2.10)

14 ( Epin’ é-) ~exXp

The total number of regions with pinning energy density
Epins P (Epin)s 18 f d&p(eyin,§). 13 The exponential depen-
dence of the integrand enables one to evaluate the in-
tegral using steepest descents, leading to the emergence
of a dominant length scale £ that satisfies

_ |4 k
epm—C E_l ? (2.11)

Equation (2.11) makes it explicit that regions with larger
pinning energies have smaller sizes. Finally, evaluating
Eq. (2.10) at £ yields Eq. (2.2).

The arguments leading to Eq. (2.2) are similar to those
used to estimate the density of states in the band tail of
doped semiconductors.” In the band-tail problem one is
looking at the distribution of eigenvalues A of the
Schrodinger equation

_ o _
sz +V(x) |[P(x)=AY(x) , (2.12)

where V' (x) is a random potential and ¥(x) is a normal-
ized wave function. Clearly, A must satisfy

hZ
A= [ d% |Vl | (2.13)

Equation (2.13) has the same gradient term as Eq. (2.1).
The problems are different because the couplings to the
impurity potential are not the same, but in both situa-
tions one expects the energy contribution from the pin-
ning potential to be determined by Gaussian fluctuations
in the impurity distributions.

Halperin and Lax discuss how estimates analogous to
those given above can be obtained for the band-tail prob-
lem by viewing it as a construction of a variational wave
function for a state in the band tail.” One assumes that
states for different values of A have the same shape and
differ only in their characteristic size. The optimal shape
determines the coefficient of A2~ /2 in the exponent. For
the CDW the optimal shape is more difficult to calculate
because of the nonlinear dependence of the pinning ener-
gy on the configuration, but there is no reason to expect
that the functional form of the density of states should
depend on this complication.

III. DENSITY OF REGIONS WITH PHASE SLIPS

In this section the arguments in the previous section
are adapted so that the number of regions with phase
slips can be estimated. First we review the argument that
shows that phase slips must occur in CDW’s.> It relies
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on the facts that the surface-to-volume ratio of a region R
of size L tends to zero as L gets large, and that Newton’s
third law implies that the total elastic force on the region
is bounded above by kS, A, where Ay is the area of
the boundary of R, and S_,, arises because if the CDW
distortion is too large a phase slip will occur. Here con-
sideration is restricted to regions whose volumes Qj
scale like L¢ and whose surface areas Ay scale as L? 1,
(The constants of proportionality are suppressed here.)

Consider the equation of motion for the phase ¢(x)
that follows when the system described by energy func-
tional (2.1) obeys relaxational dynamics in the presence of
an external force F:!*

$=kV?p—V(x)sin[Q-x+¢(x)]+F . (3.1
If the pinning force per unit volume of a given region R is
Fix(R), then averaging the equation of motion (3.1) over
the interior of the region R yields

(0) g SF—Fpn(R)+KS a0 A /Qp 3.2)

where (v )y is the spatially averaged velocity of the re-
gion and S,,,, =max|V¢|. This equation implies that the
region R remains stationary if F;,(R)—F > kS, /L.

Now we must estimate the number of regions with pin-
ning forces that exceed this value. We assume the pin-
ning force F;,(R) is of the same order as the pinning en-
ergy at F =0, V;,(R), and we use the fact that in three
dimensions the dominant contribution will be found to
come from regions with the pinning energy per unit
volume V;,(R) of the order of the bare impurity poten-
tial ¥, which is much greater than the Lee-Rice pinning
energy E;r. Thus, for F of the order of the threshold
force Fr, the energy from the force F is negligible com-
pared to the contributions from the elasticity and from
the impurity potential. Therefore, we estimate the densi-
ty of regions that satisfy V;,(R)> kS, /L.

Again we assume that the pinning force is proportional
to the pinning energy of the region in the absence of a
field. As before, pinning energy is determined by a com-
petition between the impurity excess in the region that
can lower the energy and the elastic energy cost of the
distortion needed to align the CDW with the impurities
so as to lower the energy. However, the pinning force
must also exceed the maximum elastic force exerted by
the surrounding CDW on the region. Thus, the impurity
energy gain per unit volume in a region of size L' must
exceed Ck /L2+kS,,,, /L, where C describes the amount
of distortion needed to line up the region with the impur-
ities and kS,,,, is the maximum elasticity force that the
system can exert without creating a phase slip.

One way to make a specific estimate is to consider how
many regions of size L have pinning energies per unit
volume that exceed kS, ,,/L. As above, it is assumed
that the pinning arises from random fluctuations in the
distribution of uncorrelated impurities. The number of
regions of size L that have pinning energies per unit
volume that exceed S,,,, /L, nps(L), is
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@ Ck
nPs(L)N fksmax/L depinexp [_ [ Epin‘i‘?
d
x L (3.3)
n vV

The argument of the exponential is minimized when
k/L2~epin, but at this value of L the pinning energy is of
order k /L?, which is much less than kS, /L in the re-
gime L >>1 where these arguments apply. Thus, the
maximum of the integrand is outside the region of in-
tegration, and the dominant contribution to phase slip-
page comes from different regions than those that dom-
inate the estimates for local pinning energies. In three di-
mensions the dominant regions are those that have the
smallest possible size for a given value of the pinning en-
ergy, and whose bulk elasticity contribution to the pin-
ning energy is negligible. In other words, the regions
with phase slips are those where the impurities happen to
be arranged so that there is substantial pinning energy
even when the regions are undistorted.

An alternate way to see that the dominant contribution
leading to phase slips arises from very small regions is to
redefine the pinning force of a region F pin to include the
boundary term, so that the distribution of pinning forces
for regions of size L is written

2 L
n,vV?

1

— Ck , kSmax
Fpin + F + T

p(F,,L)~exp . (3.4)

In three dimensions the quantity in square brackets in
Eq. (3.4) is a monotonically increasing function of L, so
that the dominant contribution must come from the
smallest possible values of L.

The simple model with + and — sites can be used to
estimate the phase-slip probability. As argued above, the
dominant contribution is from regions with the smallest
possible size. One can use Eq. (2.4) to estimate the num-
ber of regions with N =¢£¢ sites obeying N_—N_
> kS nax&? ~1/V. The dominant contribution arises when
N =0 and N _ =N, one finds that N must be larger than
(kSmax /V)?, so that the number of regions with phase
slips n, obeys

In(n )~ (kS oy /V) ¥ In[g (1—9)] . (3.5)

Thus, the number of regions with phase slips is exponen-
tially small in the ratio kS_,,/V rather than the much
larger quantity kS ,, /E g, where E| g is the typical pin-
ning energy.

In this section the method used to estimate the number
of strongly pinned regions has been generalized so that
the density of phase slips can be estimated. The number
of regions with phase slips is not simply related to the
number of strongly pinned regions; rather, it is deter-
mined by the ratio of the bare impurity potential to the
phase-slip energy. In three dimensions the density of
phase slips n,; obeys n,, ~exp| — (kS pax / V)1
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IV. ONE DIMENSION

In this section it is shown that the results in this paper
are consistent with previous work that calculates the dis-
tribution of anomalously strongly pinned regions in a
one-dimensional CDW in the weak-pinning limit.’* In
one dimension the arguments in Sec. II yield a distribu-
tion of pinning-energy densities P(ey,) that satisfies
—ln[P(Epin)]~e[3,i/nz. In turn, €, of a region R is defined
to be the spatial average (¥ (x)cos[Qx +é(x)])g /Ly,
where L is the length of the region. Here these results
are compared to Ref. 15, where a transfer-matrix method
is used to calculate the distribution of the energy changes
when the boundary condition is changed. Specifically, let
E[¢(L)] be the minimum value of the total energy of the
system of length L for a given ¢(L). If ¢*(L) is the value
of ¢(L) that minimizes E [¢(L)], then the variation of E
as ¢(L) is varied about ¢*(L) depends on the pinning en-
ergy near the end of the chain. In Ref. 15 it is shown
that the probability distribution of the second varia-
tion T=d2E[¢(L)]/d*$(L)| P(g), obeys
—In[P ()] ~%.

The apparent discrepancy between these two results
arises from the different quantities calculated. The quan-
tity € is not proportional to the pinning energy €, be-
cause when one perturbs the boundary the disturbance
propagates into the system a distance that decreases as
€pin iNcreases. Simple arguments indicate that this propa-
gation distance varies as the inverse square root of the
pinning energy, so that the energy change induced by a

HL)=¢*(L)

perturbation at the boundary is proportional to 1/ pin
rather than ¢,;,. The idea can be illustrated using a com-
mensurately pinned system of length L with total energy
E given by
2

— V cos¢

E= [ "dx : @.1)

k
2

a¢
dx

where k is the spring constant, V is the potential
strength, and ¢(x) is the phase at position x. For the
ground-state configuration ¢(x)=0 for all x, clearly the
pinning energy per unit length ¢, is V. Compare this re-
sult to that for €. For a small perturbation of the phase
at x =0, the deviations from the potential minimum
¢(x)=0 are small, so that the cosine potential can be ex-
panded. The configuration is thus described by

2
O=d—d(§2x—)—%¢(x) .

The solution to Eq. (4.2) with the boundary conditions
d(x =0)=¢, and ¢(x =0 )=0 is ¢(x)=¢ye ~**, where
a=V'V/k. Thus, the disturbance induced by a change
at_the boundary propagates a distance proportional to
V'k/V. The energy change induced by changing
¢(x =0) from 0 to ¢y, SE (), is found using Eq. (4.1) to
be 8E(dy)=¢3(kV)!/2. Thus in this example the energy
change induced by a perturbation at the boundary, %, is
proportional to 1/,

Extension of this argument to the more complicated
randomly pinned case is nontrivial. However, we argue

that the relationship d’E/d¢§ < e}/ holds in this case

(4.2)
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also. Consider a region with pinning-energy density ;.
As shown in Sec. II, this value of €, occurs for regions
with characteristic size & where spiﬂ~k/§2. The pinning
energy arises because of a statistical fluctuation in the im-
purity distribution that leads to an impurity contribution
also of order €,,. If one assumes that the impurity con-
tribution can be estimated up to terms of order unity by
examining an undistorted region of size £ (an assumption
implicit in Sec. II), then using the fact that one is examin-
ing a configuration that minimizes the energy, one ex-
pects the region to be at the minimum of an effective po-
tential of depth ¢,,. Changing the configuration at the
edge of this region thus yields a perturbation that propa-

gates a distance of order \/k /€yin- This distance is the
same order as the size of the region itself, so the perturba-
tion has died away before the edge of the region is
reached. (If the decay length for the perturbation were
much larger than the region, then € would be determined
by the pinning energies of many regions.) Thus, once
again the total energy change induced by perturbing the
boundary, %, scales as V' €, Where €, is the pinning en-
ergy density of the region at the edge of the system.

That € cannot be interpreted as a pinning energy per
unit volume is indicated by the fact that its distribution
falls off faster than a Gaussian does. Even in the total ab-
sence of distortions there will be regions of the CDW
where fluctuations in the impurity distribution will lead
to regions with large (and negative) impurity contribu-
tions to the energies. Since by assumption the impurity
positions are independent, the number of these regions
obeys a Gaussian distribution. It is hard to imagine how
allowing the CDW to lower its energy by distorting will
cause the number of regions with anomalously low ener-
gies to decrease.

The observation that & < s:,i/nz means that the probabili-
ty distribution of ¢, that obeys —ln[p(z:pin)]~sl3,i/“2 cor-
responds to a probability distribution of £ satisfying
—ln[P(”F:)]fvE3 . (In this paper, any power-law prefactors
of the exponentials have been ignored.) Thus, the results
of this work in one dimension and those of Ref. 15 are
consistent.

The arguments in this section make it clear that it is
important to consider the type of perturbation when re-
lating the linear response of the system to the pinning-
energy distribution. The response of a region to a uni-
form field is proportional to the inverse of its pinning en-
ergy and is thus fundamentally different from the
response to a perturbation imposed only at the boundary.
Of course, the response to a uniform applied force is
dominated by the contribution of the weakly pinned re-
gions, so that the estimates here are not relevant to con-
ductivity experiments. Whether a region has a phase slip
at its boundary is determined not only by its pinning en-
ergy but also by its size, so separate estimates are needed,
as discussed in Sec. III.

V. EXPERIMENTAL OBSERVABILITY

This section concerns the relevance of phase slips in
CDW experiments. It will be seen that there is good evi-
dence that phase slips play a role in the dynamics of al-
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most all samples. Although at this stage it is unclear
whether the phase slips arise from macroscopic sample
inhomogeneities or from the mechanism discussed in this
paper, theoretical estimates indicate that impurity-
induced phase slips should be experimentally relevant in
at least some situations. In any case, there is evidence
that no samples are well described by the Fukuyama-
Lee-Rice model in the regime where the phase correla-
tion (or Lee-Rice) length is much smaller than the sample
size.

The experimental evidence for phase slips consists
mainly of width in narrow-band noise (NBN) peaks and
the presence of broadband noise. The relevance of these
experiments to this question arises because it is known
that the FLR model, which does not allow for phase
slips, has a strictly periodic response to a dc applied
field.” Therefore, low-frequency temporal fluctuations in
the current response to an applied voltage must arise
from effects not present in the FLR model. Even ignor-
ing this theoretical result, it is clear that samples that
have different regions with different time-averaged veloci-
ties must have phase slips present. However, phase slips
can also occur in situations where macroscopic velocity
inhomogeneities are not present.

The material with the most homogeneous velocity is
NbSe,, !¢ and even in this material no CDW experiment
done so far appears to be in a sample that has no phase
slips and also many Lee-Rice domains. Most samples
yield broadband noise,’ an observation that the FLR
model cannot explain. In samples with a thickness step
that leads to two regions with different velocities, the
broadband noise has been shown to be correlated with
the presence of the step.® This result is consistent with
the claim that broadband noise only occurs in the pres-
ence of phase slips. Further possible evidence for the
presence of phase slips is the small but unexplained
rounding of the CDW threshold transition observed by
Bhattacharya, Higgins, and Stokes.’

The situation in undoped NbSe; is complicated by the
fact that the Lee-Rice length may be of the same order as
the system size.® Evidence supporting this possibility in-
cludes the fact that in these samples the threshold field
depends strongly on sample thickness, a result that indi-
cates that surface perturbations make a significant contri-
bution to the total pinning force. Therefore, phase slips
can be caused by inhomogeneous velocity induced by a
nonuniform sample cross section. A very small fraction
(typically <10™% of samples in a batch may have a uni-
form cross section and significantly suppressed broad-
band noise; these samples appear to have a small number
of Lee-Rice domains. This latter conclusion is based on
the fact that samples with resolution-limited narrow-band
noise peaks and no broadband noise have several proper-
ties inconsistent with the infinite-volume limit of the FLR
model.!” The current-voltage characteristic in these sam-
ples is qualitatively different from typical samples and is
similar to that observed in models with a small number of
degrees of freedom.!®

Restricting consideration to samples with broadband
noise, the question remains whether macroscopic velocity
inhomogeneity is the only source of temporal fluctuations
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in the current measured when a dc applied voltage is ap-
plied. It has been shown that in many NbSe; samples the
width of the NBN arises predominantly from temporal
fluctuations in the CDW velocity.!® The instantaneous
CDW velocity appears substantially more homogeneous
than the time-average value, indicating that noise sources
other than spatial velocity inhomogeneity may be
present. Once again, these noise sources are not included
in the FLR model, so it is reasonable to speculate that
they may be identified with phase slips. Since the effects
of velocity shear are small in these measurements, it is
natural to associate these fluctuations with phase slips
that do not lead to macroscopic regions with different ve-
locities. In any case, it is of interest to compare the
broadband noise amplitude for samples with different im-
purity concentrations as well as different materials in an
attempt to distinguish impurity-induced phase slips from
those induced by thickness variations in a sample with
few Lee-Rice domains.

Theoretical estimates of the phase-slip density are in-
conclusive. It has been shown in this paper that the num-
ber density of phase slips varies as exp[ —(kS,,,,/V)%],
where kS ., is a measure of the maximum elastic force
the CDW can exert and V is the bare potential strength.
We expect kS ... /V to be roughly the ratio of the CDW
gap to the impurity potential strength.?’ This estimate
arises because kS, ,, is a measure of the energy cost of
the phase slip, and the bare impurity potential enters
(rather than the threshold field) because the dominant
contribution comes from regions that are undistorted, as
discussed in Sec. III. Although it is reasonable that
kS nax 7V is a quantity of order unity, since small changes
in the ratio kS ,,,/V lead to large changes in the phase-
slip density, a definite experimental prediction cannot be
made. However, it is clear that this estimate yields a
much larger phase-slip probability than the naive one fol-
lowing from Ref. 3. The two estimates are different by a
factor in the exponent of the Lee-Rice coherence volume,
which is % 10°.

A quantitative comparison with experiment requires
good estimates of the phase-slip energy and bare impurity
potential, neither of which is available. The phase-slip
energy is expected to be of the order of the CDW gap
(about 1000 K). The pinning strength is expected to be
stronger for charged impurities (e.g., Ti in NbSe;) than
for isoelectronic impurities (e.g., Ta in NbSe;). The pin-
ning energy for charged impurities has been estimated to
be of the order of 0.2 eV (about 2000 K).> Thus, it is
reasonable that phase slips are important when charged
impurities are present. The pinning strength for isoelec-
tronic impurities is not well known, though it is expected
to be ‘““considerably less” than for charged impurities.?
Griiner’s estimate of 102 eV (Ref. 1) leads to a negligible
density of phase slips, though factor of 2 changes in the
phase-slip energy or the pinning strength lead to observ-
able phase-slip densities. However, in any case it is clear
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that charged impurities are much more likely to induce
phase slips than isoelectronic ones. Therefore, it may be
possible to correlate broadband noise amplitudes with the
presence of charged impurities.

Since definitive theoretical estimates are impractical, it
is not possible to associate the experimentally observed
broadband noise with phase slips generated by the mech-
anism discussed in this paper and in Ref. 3 related to the
statistical properties of randomly distributed impurities.
Inhomogeneous velocity in real CDW materials also
arises from sample inhomogeneities (e.g., clumping of im-
purities) and from thickness variations as well as nonuni-
torm electric fields. In some sense the issue is semantic,
because the arguments here serve to show that an
amplification of the variations of the pinning potential
occurs (based on surface to volume ratios), so that one is
merely asking whether the observed strong-pinning be-
havior is “intrinsic” or an amplification of weak-pinning
behavior. In any case, detailed understanding of CDW
experiments requires accounting for phase-slip dynamics.

VI. DISCUSSION

This paper addresses the issue of the relevance of phase
slips to experiments on sliding charge-density-wave sys-
tems. It is shown that estimating the number of phase
slips is nontrivial because CDW’s are described by the
limit of weak pinning, where the pinning arises from the
collective action of many impurities.

It is argued that stationary regions are much more like-
ly to coexist with a moving bulk CDW than the converse
because strongly pinned regions tend to be much smaller
than weakly pinned ones. Scaling arguments similar to
those used to calculate densities of states in semiconduc-
tor band tails are used to show that the distribution of
strongly pinned regions is strongly non-Gaussian. It is
shown that the scaling arguments for the distribution of
strongly pinned regions yield results consistent with
transfer-matrix calculations in the one-dimensional case.

The number of phase slips in physical situations is es-
timated and it is shown that the phase-slip density is not
simply related to the number of regions with a given pin-
ning energy. The number of phase slips is described by a
Gaussian distribution, but the width of the Gaussian is
determined not by the bulk threshold field but rather the
microscopic impurity strength. The evidence for CDW
velocity inhomogeneities in experimental samples is ex-
amined, and it is argued that phase-slip processes lead to
experimental consequences in almost all samples.
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